
NOISE-RESILIENT PERFORMANCE MEASUREMENT AND ANALYSIS

OF HPC APPLICATIONS WITH SCORE-P + SCALASCA

JUNE 20, 2022 I BERND MOHR

The DFG Project ExtraNoise

NOISE

• On many systems, execution times show many huge run-to-run variation

• Often between 5% to 30%, but higher values have been reported too

• Sources

• Node level: operation system, dynamic frequency scaling, manufacturing variability,

shared resources like caches, memory channels or NICs

• System level: network and file-system congestion

June 20, 2022 3

PROBLEM FOR PERFORMANCE ANALYSIS

• Goal

• Understand performance behavior to identify optimization opportunities

• Often based on performance measurements

• In noisy environments

• Several repetitions required

• Trends derived with statistical methods

• Reproducibility?

• Problem

• Expensive

• Potentially misleading because variations may follow irregular patterns

June 20, 2022 4

PROJECT OBJECTIVES

• Make application performance analysis

on noisy systems both cheaper and

more reliable noise resilient

• Improve typical performance analysis techniques

• Raw performance measurements (profiling, tracing) Score-P

• Trace analysis Scalasca

• Empirical performance modeling Extra-P

• Better understand noise patterns and noise sensitivity of applications

• Derive strategies of how to lower the active and passive

interference potential of applications

June 20, 2022 5

6

• Community-developed
open-source

• Replaced tool-specific
instrumentation and
measurement components
of partners

• http://www.score-p.org

21. Oct 2019

http://www.score-p.org/

SCALASCA

• Scalable Analysis of Large Scale Applications

• Approach

• Instrument C, C++, and Fortran parallel applications (with Score-P)

• Option 1: scalable call-path profiling

• Option 2: scalable event trace analysis

• Collect event traces

• Process trace in parallel

• Wait-state analysis

• Delay and root-cause analysis

• Critical path analysis

• Categorize and rank results

http://www.scalasca.org/

11. Sep 2019 7

PROJECT PARTNERS

• Technical University of Darmstadt

Laboratory for Parallel Programming

Felix Wolf

• Forschungszentrum Jülich

Jülich Supercomputing Centre

Bernd Mohr

• ETH Zurich (associated)

Scalable Parallel Computing Lab

Thorsten Hoefler

• Moscow State University*

Research Computing Center

Dmitry Nikitenko
* In accordance with the DFG policy on joint projects with Russia, the collaboration with our Russian partners has been suspended.

June 20, 2022 8

https://www.dfg.de/en/service/press/press_releases/2022/press_release_no_01/index.html

PROJECT OVERVIEW

June 20, 2022 9

Noise-resilient Performance Measurement

and Analysis of HPC Applications

PLAN: NOISE-RESILIENT MEASUREMENT AND ANALYSIS

• Design and prototype new logical timer for Score-P with 3 modes

1. Logical time only

• Increment (+1) at Score-P events (function entry/exit, OpenMP+MPI constructs)

• Enforce Lamport relation at communication + synchronization events (OpenMP, MPI)

2. [A] Logical time + effort represented by loop iteration count of parallel (OpenMP) loops

• Automatic instrumentation based on Opari

[B] Logical time + effort represented by basic block count

[C] Logical time + effort represented by statements count

• Automatic instrumentation (C/C++) with Clang plugin [prototype]

• Logical time + effort represented by (noise-insensitive) HW counter (e.g. #instructions, #flops) [prototype]

• Scaling of HPC counter values to logical clock ticks

June 20, 2022 11

LOGICAL/LAMPORT TIMER

June 20, 2022 12

enter
main

enter
foo

leave
foo

enter
bar

leave
bar

SEND enter
bar

leave
bar

BARR
IER

enter
main

enter
foo

leave
foo

RECV BARR
IER

RECV enter
bar

leave
bar

BARR
IER

1 2 3 7 104 8 95 6

[A]

[B]

EXAMPLE CODE: TEALEAF

• TeaLeaf Reference V1.0

• HPC mini-app developed by the UK Mini-App Consortium

• Solves the linear 2D heat conduction equation on a spatially decomposed regular grid

using a 5 point stencil with implicit solvers

• https://github.com/UK-MAC/TeaLeaf_ref/archive/v1.0.tar.gz

• Measurements performed on Jureca cluster @ JSC

• Run configuration

• 8 MPI ranks with 12 OpenMP threads each

• Distributed across 4 compute nodes (2 ranks per node)

• Test problem “5”: 4000 × 4000 cells, CG solver

June 20, 2022 13

https://github.com/UK-MAC/TeaLeaf_ref/archive/v1.0.tar.gz

EARLY RESULTS: LOGICAL TIME MEASUREMENT AND ANALYSIS

OF TEALEAF MINI-APP

June 20, 2022 14

VERY EARLY RESULTS: LOGICAL TIME MEASUREMENT AND

ANALYSIS OF TEALEAF MINI-APP

June 20, 2022 15

Execution Real Logical Logical+

Loop

Location

Computation 69.78% 26.02% 76.71%

MPI 2.12% 2.50% 1.53%

OpenMP 11.41% 27.12% 9.00%

Idle Threads 16.70% 44.35% 21.76%

• Undercounting of
computation time
with Logical time

• Much better with Logical time
+ parallel loop iter counts

• Hopefully better with
effort counting

• Basic blocks

• Statements

• Instructions

VERY EARLY RESULTS: LOGICAL TIME MEASUREMENT AND

ANALYSIS OF TEALEAF MINI-APP

June 20, 2022 16

Patterns Real Logical Logical+

Loop

Location

Wait at MPI Barrier 0.01% 0.00% 0.00%

Late Sender 11.00% 0.38% 0.49%

Wait at NxN 0.99% 1.15% 0.73%

Fork 3.78% 10.30% 3.23%

Wait at OpenMP Barrier 2.58% 0% 0.50%

ALL OTHER

PATTERNS

0% 0% 0%

• (Almost) found same
bottlenecks

• Bottleneck found are at
same location in code

• Underestimation of some
patterns
• Should be better with effort

counting, needs more
investigation

Noise Generation: NOIGENA

PLAN: NOISE-RESILIENT MEASUREMENT AND ANALYSIS

• Find / create reliable (→ reproducible) noisy system execution environment

• Use nodes with high core count (JURECA, JUSUF: 2 sockets each 64 cores)

• Run application + noise generator side-by-side with synchronized start

• Split by socket

• Split by even/odd cores

• Noise generator NOIGENA [prototype]

• Based on MPI (FZJ_linktest), memory (stream), I/O (ior) benchmarks

• Configurable but reproducible pattern+duration of different noise phases

June 20, 2022 18

EXAMPLE NOIGENA CONFIGURATION FILE (YAML)

Benchmarks_cfg:

Stream:

- ENABLE: TRUE

- array_size: 4000000000

- OMP_use: TRUE

- Verbose: 0

LinkTest:

- ENABLE: TRUE

- num_msgs: 3

- num_warmup_msgs: 3

- len_msg: 13700

- serial: 0

- Verbose: 0

IOR:

- ENABLE: TRUE

- api: MPIIO

- block_size: 16m

- transfer_size: 1m

- segment_count: 16

- num_tasks: 64

- file_per_process: TRUE

- reorder_tasks: TRUE

- Verbose: 0

Runs:

Pattern_1:

Sequence:

- MEMORY_NOISE: 100 # secs

Pattern_2:

Sequence:

- NETWORK_NOISE: 40 # secs

- NO_NOISE: 20 # secs

- MEMORY_NOISE: 40 # secs

- NO_NOISE: 20 # secs

- IO_NOISE: 40 # secs

- NO_NOISE: 20 # secs

Pattern_3:

Sequence:

- RANDOM_NOISE:

TIME: 100 # sec

MEMORY_NOISE: 20 # %

NETWORK_NOISE: 40 # %

IO_NOISE: 30 # %

NO_NOISE: 10 # %

June 20, 2022 19

EXAMPLE NOIGENA EFFECT ON TEALEAF MINIAPP

June 20, 2022 20

Solo: TeaLeaf only

All:
Memory+Network+IO
+No_Noise

All_cont:
Memory+Network+I/O

NEXT STEPS

• Finalize prototypes

• Automatic instrumentation (C/C++) with Clang plugin

• Logical time + effort represented by (noise-insensitive) HW counter

• Measure and analyze (much) more codes

• Fine-tune methods further if necessary

June 20, 2022 21

THANK YOU!

June 20, 2022 22

Want to connect to anyone
interested in noise-related issues!

https://www.vi-hps.org/projects/extranoise/

Contact:
• b.mohr@fz-juelich.de
• felix.wolf@tu-darmstadt.de

Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – 449683531

