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NOISE

• On many systems, execution times show many huge run-to-run variation

• Often between 5% to 30%, but higher values have been reported too

• Sources

• Node level: operation system, dynamic frequency scaling, manufacturing variability, 

shared resources like caches, memory channels or NICs

• System level: network and file-system congestion
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PROBLEM FOR PERFORMANCE ANALYSIS

• Goal

• Understand performance behavior to identify optimization opportunities

• Often based on performance measurements

• In noisy environments

• Several repetitions required

• Trends derived with statistical methods

• Reproducibility?

• Problem

• Expensive

• Potentially misleading because variations may follow irregular patterns
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PROJECT OBJECTIVES

• Make application performance analysis

on noisy systems both cheaper and

more reliable   noise resilient

• Improve typical performance analysis techniques

• Raw performance measurements (profiling, tracing)  Score-P

• Trace analysis  Scalasca

• Empirical performance modeling  Extra-P

• Better understand noise patterns and noise sensitivity of applications

• Derive strategies of how to lower the active and passive

interference potential of applications
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6

• Community-developed
open-source

• Replaced tool-specific
instrumentation and
measurement components
of partners

• http://www.score-p.org

21. Oct 2019

http://www.score-p.org/


SCALASCA

• Scalable Analysis of Large Scale Applications

• Approach

• Instrument C, C++, and Fortran parallel applications (with Score-P)

• Option 1: scalable call-path profiling

• Option 2: scalable event trace analysis

• Collect event traces 

• Process trace in parallel

• Wait-state analysis

• Delay and root-cause analysis

• Critical path analysis

• Categorize and rank results

http://www.scalasca.org/
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PROJECT PARTNERS

• Technical University of Darmstadt

Laboratory for Parallel Programming

Felix Wolf

• Forschungszentrum Jülich

Jülich Supercomputing Centre

Bernd Mohr

• ETH Zurich (associated)

Scalable Parallel Computing Lab

Thorsten Hoefler

• Moscow State University*

Research Computing Center

Dmitry Nikitenko
* In accordance with the DFG policy on joint projects with Russia, the collaboration with our Russian partners has been suspended.
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PROJECT OVERVIEW
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Noise-resilient Performance Measurement 

and Analysis of HPC Applications



PLAN: NOISE-RESILIENT MEASUREMENT AND ANALYSIS 

• Design and prototype new logical timer for Score-P with 3 modes

1. Logical time only

• Increment (+1) at Score-P events (function entry/exit, OpenMP+MPI constructs)

• Enforce Lamport relation at communication + synchronization events (OpenMP, MPI)

2. [A]  Logical time + effort represented by loop iteration count of parallel (OpenMP) loops

• Automatic instrumentation based on Opari

[B]  Logical time + effort represented by basic block count

[C]  Logical time + effort represented by statements count

• Automatic instrumentation (C/C++) with Clang plugin [prototype]

• Logical time + effort represented by (noise-insensitive) HW counter (e.g. #instructions, #flops)  [prototype]

• Scaling of HPC counter values to logical clock ticks
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LOGICAL/LAMPORT TIMER
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EXAMPLE CODE: TEALEAF

• TeaLeaf Reference V1.0

• HPC mini-app developed by the UK Mini-App Consortium

• Solves the linear 2D heat conduction equation on a spatially decomposed regular grid 

using a 5 point stencil with implicit solvers

• https://github.com/UK-MAC/TeaLeaf_ref/archive/v1.0.tar.gz

• Measurements performed on Jureca cluster @ JSC

• Run configuration

• 8 MPI ranks with 12 OpenMP threads each

• Distributed across 4 compute nodes (2 ranks per node)

• Test problem “5”: 4000 × 4000 cells, CG solver

June 20, 2022 13

https://github.com/UK-MAC/TeaLeaf_ref/archive/v1.0.tar.gz


EARLY RESULTS: LOGICAL TIME MEASUREMENT AND ANALYSIS

OF TEALEAF MINI-APP
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VERY EARLY RESULTS: LOGICAL TIME MEASUREMENT AND

ANALYSIS OF TEALEAF MINI-APP
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Execution Real Logical Logical+

Loop

Location

Computation 69.78% 26.02% 76.71%

MPI 2.12% 2.50% 1.53%

OpenMP 11.41% 27.12% 9.00%

Idle Threads 16.70% 44.35% 21.76% 

• Undercounting of
computation time
with Logical time

• Much better with Logical time 
+ parallel loop iter counts

• Hopefully better with
effort counting

• Basic blocks

• Statements

• Instructions



VERY EARLY RESULTS: LOGICAL TIME MEASUREMENT AND

ANALYSIS OF TEALEAF MINI-APP
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Patterns Real Logical Logical+

Loop

Location

Wait at MPI Barrier 0.01% 0.00% 0.00%

Late Sender 11.00% 0.38% 0.49% 

Wait at NxN 0.99% 1.15% 0.73% 

Fork 3.78% 10.30% 3.23% 

Wait at OpenMP Barrier 2.58% 0% 0.50% 

ALL OTHER 

PATTERNS

0% 0% 0%

• (Almost) found same
bottlenecks

• Bottleneck found are at
same location in code

• Underestimation of some 
patterns
• Should be better with effort 

counting, needs more 
investigation



Noise Generation: NOIGENA



PLAN: NOISE-RESILIENT MEASUREMENT AND ANALYSIS 

• Find / create reliable (→ reproducible) noisy system execution environment

• Use nodes with high core count (JURECA, JUSUF: 2 sockets each 64 cores)

• Run application + noise generator side-by-side with synchronized start

• Split by socket

• Split by even/odd cores

• Noise generator NOIGENA [prototype]

• Based on MPI (FZJ_linktest), memory (stream), I/O (ior) benchmarks

• Configurable but reproducible pattern+duration of different noise phases
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EXAMPLE NOIGENA CONFIGURATION FILE (YAML)

Benchmarks_cfg:

Stream:

- ENABLE: TRUE

- array_size: 4000000000

- OMP_use: TRUE

- Verbose: 0

LinkTest:

- ENABLE: TRUE

- num_msgs: 3

- num_warmup_msgs: 3

- len_msg: 13700

- serial: 0

- Verbose: 0

IOR:

- ENABLE: TRUE

- api: MPIIO

- block_size: 16m

- transfer_size: 1m

- segment_count: 16

- num_tasks: 64

- file_per_process: TRUE

- reorder_tasks: TRUE

- Verbose: 0

Runs:

Pattern_1:

Sequence:

- MEMORY_NOISE: 100  # secs

Pattern_2:

Sequence:

- NETWORK_NOISE: 40  # secs

- NO_NOISE: 20               # secs

- MEMORY_NOISE: 40    # secs

- NO_NOISE: 20               # secs

- IO_NOISE: 40                 # secs

- NO_NOISE: 20               # secs

Pattern_3:

Sequence:

- RANDOM_NOISE:

TIME: 100         # sec

MEMORY_NOISE: 20    # %

NETWORK_NOISE: 40  # %

IO_NOISE: 30        # %

NO_NOISE: 10       # %
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EXAMPLE NOIGENA EFFECT ON TEALEAF MINIAPP
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Solo: TeaLeaf only

All:
Memory+Network+IO
+No_Noise

All_cont: 
Memory+Network+I/O



NEXT STEPS

• Finalize prototypes

• Automatic instrumentation (C/C++) with Clang plugin

• Logical time + effort represented by (noise-insensitive) HW counter

• Measure and analyze (much) more codes

• Fine-tune methods further if necessary
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THANK YOU!
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Want to connect to anyone
interested in noise-related issues!

https://www.vi-hps.org/projects/extranoise/

Contact:
• b.mohr@fz-juelich.de
• felix.wolf@tu-darmstadt.de

Funded by the Deutsche Forschungsgemeinschaft (DFG, German 
Research Foundation) – 449683531


