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Developer 
view

Implementation 
reality

OpenMP Application-level Context is Distributed across Threads
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OMPT: An OpenMP Tools API

• Provide introspection API for call stack unwinding

– A tool detects presence of active parallel/task regions asynchronously:

• ompt_get_parallel_info(int ancestor_level, ompt_data_t **parallel_data, …)

• ompt_get_task_info(int ancestor_level, ompt_data_t **task_data,
**parallel_data, …)

• Maintains state for each thread

• Provide API for tool to register and receive callbacks for important operations
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OMPT Under the Hood - LLVM OpenMP Runtime
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Challenges

• At an arbitrary point in time, e.g. when a timer expires
– Tool invokes introspection routine to inspect the current chain of teams or tasks

– Tool may inspect and/or update the 64-bit ompt_data_t in any team/task in the chain

• Sometimes, LLVM runtime fails to provide correct OMPT information and loses tool 
data
– Disaster for a tool!
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Failure 1 - Regular Parallel Creation Interrupted 
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● Recall creation of a nested serialized region
► After updating team descriptor (blue)
► Before setting up the corresponding implicit task 
► Interrupt!

● Team and task information do not match
► (R3 team, R2 task)
► (R2 team, R1 task)
► ...
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OMPTOMPT

Failure 2 - Nested Serialized Region Creation Interrupted 
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OpenMP Introspection

• Standard guarantees only weak property
● Information about any active region/task may be reported as unavailable

Our Proposal: OpenMP Introspection Consistency
• A tool must receive valid and consistent OMPT information
– about parallel region and its implicit task: from implicit-task-begin until the implicit-

task-end of the primary thread in the region

• How to preserve it?

Must also guarantee introspection consistency for explicit tasks (elided for time).
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Parallel Region Creation and Introspection Consistency
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● Follow the chain of task and team descriptors unless:
► Current task (red) descriptor does not match 

current team (blue) descriptor
● Creating/destroying of region in progress
● Skip the current team representing old/new region
● Then follow the chain

► Possibly unable to provide the information about the 

innermost team
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Nested Serialized Parallel Regions and Introspection Consistency

• Introspection routine (IR) needs to know what runtime is doing
• IR helps the runtime (RT) finish creation/destruction of nested serialized region
• Wait-free coordination protocol
– Finite number of steps to decide where OMPT information resides

– Neither the runtime or introspection routines will wait for one another

11 / 23



OMPT

OMPT Under the Hood - Serialized Regions 

OMPT1
team

parent = 0

R2

Primary thread’s STACK
Primary thread’s HEAP

OMPT2ptr
OMPTOMPT1

parent = 0

OMPT2
ptr task

R2

parent = 0

task OMPT1

team OMPT1

task OMPT2

team OMPT2

ptr

R1
LWT

lwt_list

12 / 23



OMPT

OMPT Under the Hood - Serialized Regions 

OMPT1
team

parent = 0

R2

Primary thread’s STACK
Primary thread’s HEAP

OMPT2ptr
OMPTOMPT1

parent = 0

OMPT2
ptr task

R2

parent = 0

task OMPT1

team OMPT1

task OMPT2

team OMPT2

ptr

R1
LWT

R2
LWT

lwt_list

parent

???

???

ptr=0

12 / 23



OMPT

OMPT Under the Hood - Serialized Regions 

OMPT1
team

parent = 0

R2

Primary thread’s STACK
Primary thread’s HEAP

OMPT2ptr
OMPTOMPT1

parent = 0

OMPT2
ptr task

R2

parent = 0

task OMPT1

team OMPT1

task OMPT2

team OMPT2

ptr

R1
LWT

R2
LWT

lwt_list

parent

???

???

ptr=0

12 / 23



lwt_list

OMPT

OMPT Under the Hood - Serialized Regions 

OMPT1
team

parent = 0

R2

Primary thread’s STACK
Primary thread’s HEAP

OMPT2ptr
OMPTOMPT1

parent = 0

OMPT2
ptr task

R2

parent = 0

task OMPT1

team OMPT1

task OMPT2

team OMPT2

ptr

R1
LWT

R2
LWT

parent

???

???

ptr=0

12 / 23



lwt_list

OMPT

OMPT Under the Hood - Serialized Regions 

OMPT1
team

parent = 0

R2

Primary thread’s STACK
Primary thread’s HEAP

OMPT2ptr
OMPTOMPT1

parent = 0

OMPT2
ptr task

R2

parent = 0

task OMPT1

team OMPT1

task OMPT2

team OMPT2

ptr

R1
LWT

R2
LWT

parent

???

???

ptr=0
team OMPT1

task OMPT2

12 / 23



lwt_list

OMPT

OMPT Under the Hood - Serialized Regions 

OMPT1
team

parent = 0

R2

Primary thread’s STACK
Primary thread’s HEAP

OMPT2ptr
OMPTOMPT1

parent = 0

OMPT2
ptr task

R2

parent = 0

task OMPT1

team OMPT1

task OMPT2

team OMPT2

ptr

R1
LWT

R2
LWT

parent

???

???

ptr=0ptr
team OMPT1

task OMPT2

12 / 23



lwt_list

OMPT Under the Hood - Serialized Regions 

team

parent = 0

Primary thread’s STACK
Primary thread’s HEAP

parent = 0

task

parent = 0

task OMPT1

team OMPT1

task OMPT2

team OMPT2

ptr

R1
LWT

R2
LWT

R3 R3
OMPT1

???ptr
OMPT1

???ptr
parent

???

???

ptr=0ptr
team OMPT1

task OMPT2

12 / 23



lwt_list

OMPT Under the Hood - Serialized Regions 

team

parent = 0

Primary thread’s STACK
Primary thread’s HEAP

parent = 0

task

parent = 0

task OMPT1

team OMPT1

task OMPT2

team OMPT2

ptr

R1
LWT

R2
LWT

R3 R3
OMPT1

???ptr
OMPT1

???ptr
parent

???

???

ptr=0ptr
team OMPT1

task OMPT2

12 / 23



Wait-Free Coordination Protocol: IR Perspective
• if lwt_list is tagged (the process in progress)
– finish region creation/destruction!

● Do the same steps as the runtime:
● Use regular store registers

● Cannot be interrupted by the runtime
● Store the second element’s address (&pair[2])

● Always makes the decision if the runtime hasn’t
• If not
– reads from current_team/task or lwt_list entries
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Evaluation
• Question: Will providing introspection consistency with our wait-free protocol hurt 

overall runtime performance?
● The descriptors are slightly bigger
● We introduce an additional level of indirection when accessing the OMPT state
● The implementation of the introspection routines is more complex
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Evaluation

• We compare three runtime implementations
– U: Parent task and team information sometimes unavailable 

• Improved version of LLVM upstream

– W: Wait-free implementation of introspection consistency
– F: Introspection consistency using full region descriptors 

• No lightweight support for serialized regions

15 / 23



Experimental Setup - System
• Experiments performed on an idle system
– Intel Knights Landing (68 4-way SMT cores) running Linux

• Linux Address Space Layout Randomization disabled to avoid unnecessary changes 
in code and data layout

• Three runtime implementations (W, U, F):
– built as shared libraries with Clang 12.0.0 -O3

– OMPT_SUPPORT=ON
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Experimental Setup - MicroBenchmarks

#pragma omp parallel num_threads(1)
  for (int i = 0; i < 16000000; i++)
    #pragma omp parallel num_threads(1)
      volatile int x = 0;

Serialized micro-benchmark

for (int i = 0; i < 4000000; i++)
  #pragma omp parallel num_threads(4)
    volatile int x = 0;

Parallel micro-benchmark

• Also built with Clang with -O3 -g,

• linked to one of the .so runtime libraries (U, W, F) corresponding the following experiments 17 / 23



Cost of Maintaining Nested Serialized Regions

Code Time(s) Overhead(%)

Serialized_U 8.9846 ± 0.0006 -

Serialized_W 8.8508 ± 0.0009 -1.49
Serialized_F 16.077 ± 0.007 78.94

• Running Serialized region benchmark instances standalone for 30 times. 

• OMPT_SUPPORT compiled, but not used

• W and F overhead relative to U

• W and U are comparable

• ~80% overhead induced by heap allocation in F
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Cost of Maintaining OMPT Information about Nested Serialized Regions

Code Time(s) Overhead(%)

Serialized_U 10.926 ± 0.004 -

Serialized_W 12.477 ± 0.007 14.20

Serialized_F 16.241 ± 0.012 48.65

• Trivial tool attached to activate OMPT info maintenance

– ompt_start_tool, an initializer, and a finalizer; nothing else

• W and F overhead relative to U

• W introduces additional 2/3 costs

• Still, W delivers introspection consistency 3x cheaper than F
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Nested Serialized Regions and Statistical Sampling

Code Time(s) Overhead(%)

Serialized_U 10.959 ± 0.001 0.30
Serialized_W 12.513 ± 0.008 0.29
Serialized_F 16.280 ± 0.002 0.24

• Simple proxy tool: 

– Linux CPUTIME timer generates 200 samples/sec.

– signal handler calls ompt_get_task_info for available parallel regions

• Overhead relative to trivial tool times (previous slide)

• Similar sampling overhead for U, W and F
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Cost of Maintaining Regular Parallel Regions

Code Time(s) Overhead(%)

Parallel_U 23.588 ± 0.013 -

Parallel_W 23.610 ± 0.033 0.09
Parallel_F 23.377 ± 0.016 -0.90

• Running P benchmark instances standalone for 30

• OMPT_SUPPORT compiled, but not used

• OMPT_PROC_BIND=close to reduce the deviation

• W and F overhead relative to U

• W and U are comparable

• Perf observation of F - less branch and icache load misses

– Removing LWT support reduces the code size. 21 / 23



Something Unusual on Broadwell

•Running Parallel microbenchmark on Broadwell architecture:
– significant standard deviation using the same approach

• Additionally, disable dynamic CPU frequency adaptation

–Maximal CPU frequency set to minimal
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Conclusions
● Practical experience with LLVM OpenMP revealed the shortcomings of the 

weak specification and problematic implementations of OMPT 
introspection routines

● We proposed introspection consistency as a firm foundation for reliable 
OpenMP tools

● We developed novel implementation of wait-free coordination protocol 
that provides introspection consistency at reasonable cost

● We found repeatable experiments to be very challenging and we would 
loved to discuss this problem with folks at the Workshop
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