
Improving Tool Support for Nested
OpenMP Parallel Regions with

Introspection Consistency
Vladimir Indic

University of Novi Sad

John Mellor-Crummey
Rice University

Developer
view

Implementation
reality

OpenMP Application-level Context is Distributed across Threads

2 / 23

OMPT: An OpenMP Tools API

• Provide introspection API for call stack unwinding

– A tool detects presence of active parallel/task regions asynchronously:

• ompt_get_parallel_info(int ancestor_level, ompt_data_t **parallel_data, …)

• ompt_get_task_info(int ancestor_level, ompt_data_t **task_data,
**parallel_data, …)

• Maintains state for each thread

• Provide API for tool to register and receive callbacks for important operations

3 / 23

OMPT Under the Hood - LLVM OpenMP Runtime

OMPTteam
parent = 0

OMPTtask
parent = 0

OMPTteam
parent

OMPTtask
parent

R1

R2

4 / 23

OMPT Under the Hood - LLVM OpenMP Runtime

OMPTteam
parent = 0

OMPTtask
parent = 0

OMPTteam
parent

OMPTtask
parent

R1

R2

OMPTteam
parent

R3

Primary Thread 1
State 4 / 23

OMPT Under the Hood - LLVM OpenMP Runtime

OMPTteam
parent = 0

OMPTtask
parent = 0

OMPTteam
parent

OMPTtask
parent

R1

R2

OMPTteam
parent

R3

Primary Thread 1
State

OMPTteam
parent (R2)

R3

OMPTteam
parent (R2)

R3

OMPTteam
parent (R2)

R3

Worker3
state

Worker2
state

Worker4
state

Worker threads 2-4
states

4 / 23

OMPT Under the Hood - LLVM OpenMP Runtime

OMPTteam
parent = 0

OMPTtask
parent = 0

OMPTteam
parent

OMPTtask
parent

R1

R2

OMPTtask T1

parent

OMPTteam
parent

R3

Primary Thread 1
State

OMPTteam
parent (R2)

OMPTtask T2
parent (R2)

R3

OMPTteam
parent (R2)

OMPTtask T3
parent (R2)

R3

OMPTteam
parent (R2)

OMPTtask T4

parent (R2)

R3

Worker3
state

Worker2
state

Worker4
state

Worker threads 2-4
states

4 / 23

OMPT Under the Hood - LLVM OpenMP Runtime

OMPTteam
parent = 0

OMPTtask
parent = 0

OMPTteam
parent

OMPTtask
parent

R1

R2

OMPTteam
parent

R3

Primary Thread 1
State

OMPTteam
parent (R2)

R3

OMPTteam
parent (R2)

R3

OMPTteam
parent (R2)

R3

Worker3
state

Worker2
state

Worker4
state

Worker threads 2-4
states

4 / 23

OMPT Under the Hood - LLVM OpenMP Runtime

OMPTteam
parent = 0

OMPTtask
parent = 0

OMPTteam
parent

OMPTtask
parent

R1

R2

4 / 23

OMPTOMPT

OMPT Under the Hood - Serialized Regions

OMPTteam
parent = 0

OMPTtask
parent = 0

R2

parent = 0

task OMPT

team OMPT R1
LWT

Primary thread’s STACKPrimary thread’s HEAP

lwt_list

5 / 23

OMPTOMPT

OMPT Under the Hood - Serialized Regions

OMPTteam
parent = 0

OMPTtask
parent = 0

R2

parent = 0

task OMPT

team OMPT R1
LWT

Primary thread’s STACKPrimary thread’s HEAP

lwt_list

parent

task OMPT

R2
LWT

team OMPT

Copy OMPT

5 / 23

OMPTOMPT

OMPT Under the Hood - Serialized Regions

OMPTteam
parent = 0

OMPTtask
parent = 0

parent = 0

task OMPT

team OMPT R1
LWT

Primary thread’s STACKPrimary thread’s HEAP

lwt_list

parent

task OMPT

R2
LWT

team OMPT

OMPT OMPTR3

5 / 23

OMPTOMPT

OMPT Under the Hood - Serialized Regions

OMPTteam
parent = 0

OMPTtask
parent = 0

parent = 0

task OMPT

team OMPT R1
LWT

Primary thread’s STACKPrimary thread’s HEAP

parent

task OMPT

R2
LWT

team OMPT

OMPT OMPTR3

lwt_list

5 / 23

Challenges

• At an arbitrary point in time, e.g. when a timer expires
– Tool invokes introspection routine to inspect the current chain of teams or tasks

– Tool may inspect and/or update the 64-bit ompt_data_t in any team/task in the chain

• Sometimes, LLVM runtime fails to provide correct OMPT information and loses tool
data
– Disaster for a tool!

6 / 23

Failure 1 - Regular Parallel Creation Interrupted

OMPTteam
parent = 0

OMPTtask
parent = 0

OMPTteam
parent

OMPTtask
parent

R1

R2

OMPTteam
parent

R3

Primary Thread 1
State

● Recall creation of a nested serialized region
► After updating team descriptor (blue)
► Before setting up the corresponding implicit task
► Interrupt!

● Team and task information do not match
► (R3 team, R2 task)
► (R2 team, R1 task)
► ...

7 / 23

OMPTOMPT

Failure 2 - Nested Serialized Region Creation Interrupted

OMPTteam
parent = 0

OMPTtask
parent = 0

R2

parent = 0

task OMPT

team OMPT R1
LWT

Primary thread’s STACKPrimary thread’s HEAP

lwt_list

parent

task OMPT

R2
LWT

team OMPT

● Recall creation of a nested serialized region
► Copying R2 OMPT when entering R3
► Intterupt!

● Where do R2 OMPT resides?
● Tool updates data while the copying is in

progress
► Miss an update of task/team data by the tool

Copy OMPT

8 / 23

OpenMP Introspection

• Standard guarantees only weak property
● Information about any active region/task may be reported as unavailable

Our Proposal: OpenMP Introspection Consistency
• A tool must receive valid and consistent OMPT information
– about parallel region and its implicit task: from implicit-task-begin until the implicit-

task-end of the primary thread in the region

• How to preserve it?

Must also guarantee introspection consistency for explicit tasks (elided for time).
9 / 23

Parallel Region Creation and Introspection Consistency

OMPTteam
parent = 0

OMPTtask
parent = 0

OMPTteam
parent

OMPTtask
parent

R1

R2

OMPTteam
parent

R3

Primary Thread 1
State

● Follow the chain of task and team descriptors unless:
► Current task (red) descriptor does not match

current team (blue) descriptor
● Creating/destroying of region in progress
● Skip the current team representing old/new region
● Then follow the chain

► Possibly unable to provide the information about the

innermost team

10 / 23

Nested Serialized Parallel Regions and Introspection Consistency

• Introspection routine (IR) needs to know what runtime is doing
• IR helps the runtime (RT) finish creation/destruction of nested serialized region
• Wait-free coordination protocol
– Finite number of steps to decide where OMPT information resides

– Neither the runtime or introspection routines will wait for one another

11 / 23

OMPT

OMPT Under the Hood - Serialized Regions

OMPT1
team

parent = 0

R2

Primary thread’s STACK
Primary thread’s HEAP

OMPT2ptr
OMPTOMPT1

parent = 0

OMPT2
ptr task

R2

parent = 0

task OMPT1

team OMPT1

task OMPT2

team OMPT2

ptr

R1
LWT

lwt_list

12 / 23

OMPT

OMPT Under the Hood - Serialized Regions

OMPT1
team

parent = 0

R2

Primary thread’s STACK
Primary thread’s HEAP

OMPT2ptr
OMPTOMPT1

parent = 0

OMPT2
ptr task

R2

parent = 0

task OMPT1

team OMPT1

task OMPT2

team OMPT2

ptr

R1
LWT

R2
LWT

lwt_list

parent

???

???

ptr=0

12 / 23

OMPT

OMPT Under the Hood - Serialized Regions

OMPT1
team

parent = 0

R2

Primary thread’s STACK
Primary thread’s HEAP

OMPT2ptr
OMPTOMPT1

parent = 0

OMPT2
ptr task

R2

parent = 0

task OMPT1

team OMPT1

task OMPT2

team OMPT2

ptr

R1
LWT

R2
LWT

lwt_list

parent

???

???

ptr=0

12 / 23

lwt_list

OMPT

OMPT Under the Hood - Serialized Regions

OMPT1
team

parent = 0

R2

Primary thread’s STACK
Primary thread’s HEAP

OMPT2ptr
OMPTOMPT1

parent = 0

OMPT2
ptr task

R2

parent = 0

task OMPT1

team OMPT1

task OMPT2

team OMPT2

ptr

R1
LWT

R2
LWT

parent

???

???

ptr=0

12 / 23

lwt_list

OMPT

OMPT Under the Hood - Serialized Regions

OMPT1
team

parent = 0

R2

Primary thread’s STACK
Primary thread’s HEAP

OMPT2ptr
OMPTOMPT1

parent = 0

OMPT2
ptr task

R2

parent = 0

task OMPT1

team OMPT1

task OMPT2

team OMPT2

ptr

R1
LWT

R2
LWT

parent

???

???

ptr=0
team OMPT1

task OMPT2

12 / 23

lwt_list

OMPT

OMPT Under the Hood - Serialized Regions

OMPT1
team

parent = 0

R2

Primary thread’s STACK
Primary thread’s HEAP

OMPT2ptr
OMPTOMPT1

parent = 0

OMPT2
ptr task

R2

parent = 0

task OMPT1

team OMPT1

task OMPT2

team OMPT2

ptr

R1
LWT

R2
LWT

parent

???

???

ptr=0ptr
team OMPT1

task OMPT2

12 / 23

lwt_list

OMPT Under the Hood - Serialized Regions

team

parent = 0

Primary thread’s STACK
Primary thread’s HEAP

parent = 0

task

parent = 0

task OMPT1

team OMPT1

task OMPT2

team OMPT2

ptr

R1
LWT

R2
LWT

R3 R3
OMPT1

???ptr
OMPT1

???ptr
parent

???

???

ptr=0ptr
team OMPT1

task OMPT2

12 / 23

lwt_list

OMPT Under the Hood - Serialized Regions

team

parent = 0

Primary thread’s STACK
Primary thread’s HEAP

parent = 0

task

parent = 0

task OMPT1

team OMPT1

task OMPT2

team OMPT2

ptr

R1
LWT

R2
LWT

R3 R3
OMPT1

???ptr
OMPT1

???ptr
parent

???

???

ptr=0ptr
team OMPT1

task OMPT2

12 / 23

Wait-Free Coordination Protocol: IR Perspective
• if lwt_list is tagged (the process in progress)
– finish region creation/destruction!

● Do the same steps as the runtime:
● Use regular store registers

● Cannot be interrupted by the runtime
● Store the second element’s address (&pair[2])

● Always makes the decision if the runtime hasn’t
• If not
– reads from current_team/task or lwt_list entries

13 / 23

Evaluation
• Question: Will providing introspection consistency with our wait-free protocol hurt

overall runtime performance?
● The descriptors are slightly bigger
● We introduce an additional level of indirection when accessing the OMPT state
● The implementation of the introspection routines is more complex

14 / 23

Evaluation

• We compare three runtime implementations
– U: Parent task and team information sometimes unavailable

• Improved version of LLVM upstream

– W: Wait-free implementation of introspection consistency
– F: Introspection consistency using full region descriptors

• No lightweight support for serialized regions

15 / 23

Experimental Setup - System
• Experiments performed on an idle system
– Intel Knights Landing (68 4-way SMT cores) running Linux

• Linux Address Space Layout Randomization disabled to avoid unnecessary changes
in code and data layout

• Three runtime implementations (W, U, F):
– built as shared libraries with Clang 12.0.0 -O3

– OMPT_SUPPORT=ON

16 / 23

Experimental Setup - MicroBenchmarks

#pragma omp parallel num_threads(1)
 for (int i = 0; i < 16000000; i++)
 #pragma omp parallel num_threads(1)
 volatile int x = 0;

Serialized micro-benchmark

for (int i = 0; i < 4000000; i++)
 #pragma omp parallel num_threads(4)
 volatile int x = 0;

Parallel micro-benchmark

• Also built with Clang with -O3 -g,

• linked to one of the .so runtime libraries (U, W, F) corresponding the following experiments 17 / 23

Cost of Maintaining Nested Serialized Regions

Code Time(s) Overhead(%)

Serialized_U 8.9846 ± 0.0006 -

Serialized_W 8.8508 ± 0.0009 -1.49
Serialized_F 16.077 ± 0.007 78.94

• Running Serialized region benchmark instances standalone for 30 times.

• OMPT_SUPPORT compiled, but not used

• W and F overhead relative to U

• W and U are comparable

• ~80% overhead induced by heap allocation in F

18 / 23

Cost of Maintaining OMPT Information about Nested Serialized Regions

Code Time(s) Overhead(%)

Serialized_U 10.926 ± 0.004 -

Serialized_W 12.477 ± 0.007 14.20

Serialized_F 16.241 ± 0.012 48.65

• Trivial tool attached to activate OMPT info maintenance

– ompt_start_tool, an initializer, and a finalizer; nothing else

• W and F overhead relative to U

• W introduces additional 2/3 costs

• Still, W delivers introspection consistency 3x cheaper than F
19 / 23

Nested Serialized Regions and Statistical Sampling

Code Time(s) Overhead(%)

Serialized_U 10.959 ± 0.001 0.30
Serialized_W 12.513 ± 0.008 0.29
Serialized_F 16.280 ± 0.002 0.24

• Simple proxy tool:

– Linux CPUTIME timer generates 200 samples/sec.

– signal handler calls ompt_get_task_info for available parallel regions

• Overhead relative to trivial tool times (previous slide)

• Similar sampling overhead for U, W and F

20 / 23

Cost of Maintaining Regular Parallel Regions

Code Time(s) Overhead(%)

Parallel_U 23.588 ± 0.013 -

Parallel_W 23.610 ± 0.033 0.09
Parallel_F 23.377 ± 0.016 -0.90

• Running P benchmark instances standalone for 30

• OMPT_SUPPORT compiled, but not used

• OMPT_PROC_BIND=close to reduce the deviation

• W and F overhead relative to U

• W and U are comparable

• Perf observation of F - less branch and icache load misses

– Removing LWT support reduces the code size. 21 / 23

Something Unusual on Broadwell

•Running Parallel microbenchmark on Broadwell architecture:
– significant standard deviation using the same approach

• Additionally, disable dynamic CPU frequency adaptation

–Maximal CPU frequency set to minimal

22 / 23

Conclusions
● Practical experience with LLVM OpenMP revealed the shortcomings of the

weak specification and problematic implementations of OMPT
introspection routines

● We proposed introspection consistency as a firm foundation for reliable
OpenMP tools

● We developed novel implementation of wait-free coordination protocol
that provides introspection consistency at reasonable cost

● We found repeatable experiments to be very challenging and we would
loved to discuss this problem with folks at the Workshop

23 / 23

	Slide: 1
	Slide: 2
	Slide: 3
	Slide: 4 (1)
	Slide: 4 (2)
	Slide: 4 (3)
	Slide: 4 (4)
	Slide: 4 (5)
	Slide: 4 (6)
	Slide: 5 (1)
	Slide: 5 (2)
	Slide: 5 (3)
	Slide: 5 (4)
	Slide: 6
	Slide: 7
	Slide: 8
	Slide: 9
	Slide: 10
	Slide: 11
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 12 (3)
	Slide: 12 (4)
	Slide: 12 (5)
	Slide: 12 (6)
	Slide: 12 (7)
	Slide: 12 (8)
	Slide: 13
	Slide: 14
	Slide: 15
	Slide: 16
	Slide: 17
	Slide: 18
	Slide: 19
	Slide: 20
	Slide: 21
	Slide: 22
	Slide: 23

