User perspectives on GPU
performance

Scalable Tools Workshop — Discussion Group Out-brief



Perspective of “naive user” trying to tune
GPU code

. Dl?ta prO\?/ided by vendor tools is overwhelming and complex — what does it
all mean-

e LLNL application team process (approx.)
* Example: new platform - AMD - porting from code that runs on NVIDIA
 Compare theoreticals, if comparable performance to expectation, all good.
* If drastically different, start a manual process to find out how it is limited
* Memory access, compute, etc.
e Didn’t have sufficient metrics (to date) on AMD side.
* Want to do roofline (currently can’t).
» Ask for the data, then ask for an explanation of the data.

* Some people are focused on their piece of the code, some people are looking
holistically.

e Other obvious process — porting from CPU to GPU



Problem types

* Two types of kernels - those that fill the GPU and
don’t overlap, and many small kernels that can

* LLNL Kernel types - C++ is using Raja. Remainder is
Fortran+OpenMP offload. (Kokkos examples similar)

* What about tuning one kernel? Is roofline enough?
Would loop nest information help?

* Understanding register pressure is key
* Differential analysis is important (GPU-GPU or CPU-GPU)



Proposal — something like top-down or CPI
stack analysis process

GPA - gpu performance advisor

Distinguishes stalls and leads back to
potential causes and potential
improvements

https://github.com/Jokeren/GPA

K. Zhou, X. Meng, R. Sai and J. Mellor-
Crummey, "GPA: A GPU Performance
Advisor Based on Instruction
Sampling,”

International Symposium on Code
Generation and Optimization (CGO),
Seoul, Korea (South), 2021, pp. 115-
125, doi:
10.1109/CG051591.2021.9370339.

Table 2. A brief description of GPU optimizers in GPA.

Code Optimizers

Stall Elimination

Register Reuse

Match memory dependency stalls
of local memory read/write instructions

Strength Reduction

Match execution dependency stalls of
long latency arithmetic instructions

Function Split

Match instruction fetch stalls

Fast Math Match stalls in CUDA math functions
Warp Balance Match warp synchronization stalls
Memory Transaction Reduction | Match global memory throttling stalls
Latency Hiding
. Match global memory and execution
Heop Unrolling dependency stalls in loops
O T Match global memory and execution

dependency stalls

Function Inlining

Match stalls in device functions
and their call sites

Parallel Optimizers

Block Increase

Match if the number of blocks
is less than the number of SMs

Thread Increase

Match if occupancy is limited by
the number of threads per block



https://github.com/Jokeren/GPA

Another example:
Yueming Hao’s work

* Potential organization - assume GPU
only for compute, only care about
issue stalls

e https://github.com/drgpu/drgpu-
artitact

* Top-down organization of metrics

e Latency bound, compute bound,

bandwidth bound, contention
bound...?

* Non issue cycles

* Delay due to dependent
instructions/issue rate
* |nteger
* Fp32
e Uniform
* Memory
* Waiting at barrier

* Delay due to global memory access
* Latency per request
* Occupancy

* etc.

nnnnnnn


https://github.com/drgpu/drgpu-artifact

Final suggestion

* Need something like profiler guided optimization for GPU



