
Paradyn Project
www.paradyn.org

Computer Sciences Department
University of Wisconsin
Madison, WI 53706-1685

Computer Sciences Department
University of Maryland
College Park, MD 20742

bugs@dyninst.org

Paradyn Paral le l Performance Tools

StackwalkerAPI Programmer’s Guide 3/11/11

Release 2.0
March 2011

StackwalkerAPI
Programmer’s Guide

Table Of Contents

StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

1 Introduction..2
2 Abstractions ..3

2.1 Stackwalking Interface ...4
2.2 Callback Interface ...4

3 API Reference ...5
3.1 Definitions and Basic Types ...5

3.1.1 Definitions ..5
3.1.2 Basic Types ...7

3.2 Namespace StackwalkerAPI ...7
3.3 Stackwalking Interface ...7

3.3.1 Class Walker ...8
3.3.2 Class Frame ...11

3.4 Accessing Local Variables ...13
3.5 Callback Interface ...15

3.5.1 Default Implementations ..15
3.5.2 Class FrameStepper ...16
3.5.3 Class StepperGroup ...17
3.5.4 Class ProcessState ..20

3.5.4.1 Class LibraryState ...21
3.5.5 Class SymbolLookup ...22

4 Callback Interface Default Implementations ...22
4.1 Debugger Interface ...23

4.1.1 Class ProcDebug ..24
4.2 FrameSteppers ..26

4.2.1 Class FrameFuncStepper ..27
4.2.1.1 Class FrameFuncHelper ..27

4.2.2 Class DebugStepper ...28
4.2.3 Class SigHandlerStepper ...28
4.2.4 Class BottomOfStackStepper ...28

Page 2
1 INTRODUCTION

This document describes StackwalkerAPI, an API and library for walking a call stack. The
call stack (also known as the run-time stack) is a stack found in a process that contains the cur-
rently active stack frames. Each stack frame is a record of an executing function (or function-like
object such as a signal handler or system call). StackwalkerAPI provides an API that allows users
to collect a call stack (known as walking the call stack) and access information about its stack
frames. The current implementation supports Linux/x86, Linux/AMD-64, Linux/Power,
Linux/Power-64, BlueGene/L, and BlueGene/P.

StackwalkerAPI is designed to be both easy-to-use and easy-to-extend. Users can easily use
StackwalkerAPI to walk a call stack without needing to understand how call stacks are laid out on
their platform. Users can easily extend StackwalkerAPI to work with new platforms and types of
stack frames by implementing a set of callbacks that can be plugged into StackwalkerAPI.

StackwalkerAPI’s ease-of-use comes from it providing a platform independent interface that
allows users to access detailed information about the call stack. For example, the following C++
code-snippet is all that is needed to walk and print the call stack of the currently running thread.

std::vector<Frame> stackwalk;
string s;

Walker *walker = Walker::newWalker();
walker->walkStack(stackwalk);
for (unsigned i=0; i<stackwalk.size(); i++) {

stackwalk[i].getName(s);
cout << “Found function “ << s << endl;

}

StackwalkerAPI can walk a call stack in the same address space as where the StackwalkerAPI
library lives (known as a first party stackwalk), or it can walk a call stack in another process
(known as a third party stackwalk). To change the above example to perform a third party stack-
walk, we would only need to pass a process identifier to newWalker, e.g:

Walker *walker = Walker::newWalker(pid);

Our other design goal with StackwalkerAPI is to make it easy-to-extend. The mechanics of
how to walk through a stack frame can vary between different platforms, and even between differ-
ent types of stack frames on the same platform. In addition, different platforms may have different
mechanisms for reading the data in a call stack or looking up symbolic names that go with a stack
frame. StackwalkerAPI provides a callback interface for plugging in mechanisms for handling
new systems and types of stack frames. The callback interface can be used to port Stackwalker-
API to new platforms, extend StackwalkerAPI support on existing systems, or more easily inte-
grate StackwalkerAPI into existing tools. There are callbacks for the following StackwalkerAPI
operations:

• Walk through a stack frame - StackwalkerAPI will find different types of stack frames on dif-
ferent platforms and even within the same platform. For example, on Linux/x86 the stack
frame generated by a typical function looks different from the stack frame generated by a sig-
nal handler. The callback interface can be used to register a handler with StackwalkerAPI that
knows how to walk through a new type of stack frame. For example, the DyninstAPI tool reg-
isters an object with StackwalkerAPI that describes how to walk through the stack frames gen-
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 3
erated by its instrumentation.

• Access process data - To walk a call stack, StackwalkerAPI needs to be able to read a process’
memory and registers. When doing a first party stackwalk, this is done by directly reading
them from the current address space. When doing a third party stackwalk, this is done by read-
ing them using a debugger interface. The callback interface can be used to register new objects
for accessing process data. This can be used, for example, to port StackwalkerAPI to a new
operating system or make it work with a new debugger interface.

• Look up symbolic names - When StackwalkerAPI finds a stack frame, it gets an address that
points into the piece of code that created that stack frame. This address is not necessarily
meaningful to a user, so StackwalkerAPI attempts to associate the address with a symbolic
name. The callback interface can be used to register an object with StackwalkerAPI that per-
forms an address to name mapping, allowing StackwalkerAPI to associate names with stack
frames.

2 ABSTRACTIONS

StackwalkerAPI contains two interfaces: the Stackwalking Interface and the Callback Inter-
face. The stackwalking interface is used to walk the call stack, query information about stack
frames, and collect basic information about threads. The Callback Interface is used to provide
custom mechanisms for walking a call stack. Users who operate in one of StackwalkerAPI’s stan-
dard configurations do not need to use the Callback Interface.

Figure 1 shows the ownership hierarchy for StackwalkerAPI’s classes. Ownership is a “con-
tains” relationship; if one class owns another, then instances of the owner class maintain an exclu-
sive instance of the other. For example, in Figure 1 the each Walker instance contains exactly one
instance of a ProcessState object. No other instance of Walker uses that instance of Pro-
cessState.

This remainder of this section briefly describes the six classes that make up StackwalkerAPI’s
two interfaces. For more details, see the class descriptions in Section 3.

Figure 1: Object Ownership

Walker

StepperGroupProcessState FrameSymbolLookup

FrameStepper

1:1 1:
1 1:1

1:N

1:N

A A is a class

1:1 Each instance of class A owns one instance
of class B

1:N Each instance of class A owns multiple
instances of class B

A B

A BL
E

G
E

N
D

StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 4
2.1 Stackwalking Interface

• Walker - The Walker class is the top-level class used for collecting stackwalks. It provides a
simple interface for requesting a stackwalk. Each Walker object is associated with one pro-
cess, but may walk the call stacks of multiple threads within that process.

• Frame - A call stack is returned as a vector of Frame objects, where each Frame object repre-
sents a stack frame. It can provide information about the stack frame and basic information
about the function, signal handler or other mechanism that created it. Users can request infor-
mation such as the symbolic name associated with the Frame object, and values of its saved
registers.

2.2 Callback Interface

StackwalkerAPI includes default implementations of the Callback Interface on each of its sup-
ported platforms. These default implementations allow StackwalkerAPI to work “out of the box”
in a standard configuration on each platform. Users can port StackwalkerAPI to new platforms or
customize its call stack walking behavior by implementing their own versions of the classes in the
Callback Interface.

• FrameStepper - A FrameStepper object describes how to walk through a single type of stack
frame. Users can provide an implementation of this interface that allows StackwalkerAPI to
walk through new types of stack frames. For example, the DyninstAPI uses this interface to
extend StackwalkerAPI to allow it to walk through stack frames created by instrumentation
code.

• StepperGroup - A StepperGroup is a collection of FrameStepper objects and criteria that
describes when to use each type of FrameStepper. These criteria are based on simple address
ranges in the code space of the target process. In the above example with DyninstAPI, it
would be the job of the StepperGroup to identify a stack frame as belonging to instrumenta-
tion code and use the instrumentation FrameStepper to walk through it.

• ProcessState - A ProcessState interface describes how to access data in the target process.
To walk a call stack, StackwalkerAPI needs to access both registers and memory in the target
process; ProcessState provides an interface that StackwalkerAPI can use to access that
information. StackwalkerAPI includes two default implementation of ProcessState for each
platform: one to collect a first party stackwalk in the current process, and one that uses a
debugger interface to collect a third party stackwalk in another process.

• SymbolLookup - The SymbolLookup interface is used to associate a symbolic name with a
stack frame. A stackwalk returns a collection of addresses in the code space of a binary. This
class uses the binary’s symbol table to map those addresses into symbolic names. A default
implementation of this class, which uses the DynSymtab package, is provided with Stack-
walkerAPI. A user could, for example, use this interface to allow StackwalkerAPI to use libelf
to look up symbol names instead.
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 5
3 API REFERENCE

This section describes the StackwalkerAPI API. It is divided into three sub-sections: a
description of the definitions and basic types used by this API, a description of the interface for
collecting stackwalks, and a description of the callback interface.

3.1 Definitions and Basic Types

The following definitions and basic types are referenced throughout the rest of this manual.

3.1.1 Definitions

• Stack Frame - A stack frame is a record of a function (or function-like object) invocation.
When a function is executed, it may create a frame on the call stack. StackwalkerAPI finds
stack frames and returns a description of them when it walks a call stack.

The following three definitions deal with stack frames.

• Bottom of the Stack - The bottom of the stack is the earliest stack frame in a call stack, usually
a thread’s initial function. The stack grows from bottom to the top.

• Top of the Stack - The top of the stack is the most recent stack frame in a call stack. The stack
frame at the top of the stack is for the currently executing function.

• Frame Object - A Frame object is StackwalkerAPI’s representation of a stack frame. A Frame
object is a snapshot of a stack frame at a specific point in time. Even if a stack frame changes
as a process executes, a Frame object will remain the same. Each Frame object is represented
by an instance of the Frame class.

The following three definitions deal with fields in a Frame object.

• SP (Stack Pointer) - A Frame object’s SP member points to the top of its stack frame (a stack
frame grows from bottom to top, similar to a call stack). The Frame object for the top of the
stack has a SP that is equal to the value in the stack pointer register at the time the Frame
object was created. The Frame object for any other stack frame has a SP that is equal to the top
address in the stack frame.

• FP (Frame Pointer) - A Frame object’s FP member points to the beginning (or bottom) of its
stack frame. The Frame object for the top of the stack has a FP that is equal to the value in the
frame pointer register at the time the Frame object was created. The Frame object for any other
stack frame has a FP that is equal to the beginning of the stack frame.

• RA (Return Address) - A Frame object’s RA member points to the location in the code space
where control will resume when the function that created the stack frame resumes. The Frame
object for the top of the stack has a RA that is equal to the value in the program counter regis-
ter at the time the Frame object was created. The Frame object for any other stack frame has a
RA that is found when walking a call stack.

Figure 2 shows the relationship between application code, stack frames, and Frame objects. In the
figure, the source code on the left has run through the main and foo functions, and into the bar
function. It has created the call stack in the center, which is shown as a sequence of words grow-
ing down. The current values of the processor registers, while executing in bar, are shown below
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 6
the call stack. When StackwalkerAPI walks the call stack, it creates the Frame objects shown on
the right. Each Frame object corresponds to one of the stack frames found in the call stack or
application registers.

The call stack in Figure 2 is similar to one that would be found on the x86 architecture. Details
about how the call stack is laid out may be different on other architectures, but the meanings of
the FP, SP, and RA fields in the Frame objects will remain the same.

Figure 2: Stack Frame and Frame Object Layout

void main() {
 int a;
 foo(0);
 ...
}

void foo(int b) {
 int c;
 bar();
 ...
}

void bar() {
 int d;
 while(1);
}

a
b

c

d

Call Stack

Registers

main’s RA
main’s FP

foo’s RA
foo’s FP

Stack Pointer

Frame Pointer
Program Counter

main’s

foo’s

bar’s

FP
RA
SP

FP
RA
SP

FP
RA
SP

...

L
E

G
E

N
D

A B A contains B’s address
A B A contains the contents of B

Frame Object

Frame Object

Frame Object

The following four definitions deal with processes involved in StackwalkerAPI.

• Target Process - The process from which StackwalkerAPI is collecting stackwalks.

• Host Process - The process in which StackwalkerAPI code is currently running.

• First Party Stackwalk - StackwalkerAPI collects first party stackwalk when it walks a call
stack in the same address space it is running in, i.e. the target process is the same as the host
process.

• Third Party Stackwalk - StackwalkerAPI collects third party stackwalk when it walks the call
stack in a different address space from the one it is running in, i.e. the target process is differ-
ent from the host process. A third party stackwalk is usually done through a debugger inter-
face.
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 7
3.1.2 Basic Types

typedef unsigned long Address

An integer value capable of holding an address in the target process. Address variables should
not, and in many cases cannot, be used directly as a pointer. It may refer to an address in a dif-
ferent process, and it may not directly match the target process’ pointer representation.
Address is guaranteed to be at least large enough to hold an address in a target process, but
may be larger.

typedef ... Dyninst::PID

A handle for identifying a process. On UNIX systems this will be an integer representing a
PID. On Windows this will be a HANDLE object.

typedef ... Dyninst::THR_ID

A handle for identifying a thread. On Linux based platforms this is an integer referring to a
TID (Thread Identifier). On Solaris and AIX the integer refers to a LWP (Light Weight Pro-
cess). On Windows it is a HANDLE object.

typedef ... Dyninst::MachRegister

A value that names a machine register.

typedef unsigned long Dyninst::MachRegisterVal

A value that holds the contents of a register. A Dyninst::MachRegister names a specific
register, while a Dyninst::MachRegisterVal represents the value that may be in that regis-
ter.

3.2 Namespace StackwalkerAPI

The classes in Section 3.3 and Section 3.5 fall under the C++ namespace Dyninst::Stack-
walker. To access them, a user should refer to them using the Dyninst::Stackwalker:: prefix,
e.g. Dyninst::Stackwalker::Walker. Alternatively, a user can add the C++ using keyword
above any references to StackwalkerAPI objects, e.g, using namespace Dyninst and using
namespace Stackwalker.

3.3 Stackwalking Interface

This section describes StackwalkerAPI’s interface for walking a call stack. This interface is
sufficient for walking call stacks on all the systems and variations covered by our default call-
backs.

To collect a stackwalk, first create new Walker object associated with the target process via

Walker::newWalker()
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 8
or

Walker::newWalker(Dyninst::PID pid).

Once a Walker object has been created, a call stack can be walked with the

Walker::walkStack

method. The new stack walk is returned as a vector of Frame objects.

3.3.1 Class Walker

Defined In: walker.h

The Walker class allows users to walk call stacks and query basic information about threads
in a target process. The user should create a Walker object for each process from which they are
walking call stacks. Each Walker object is associated with one process, but may walk call stacks
on multiple threads within that process. The Walker class allows users to query for the threads
available for walking, and it allows you to specify a particular thread whose call stack should be
walked. Stackwalks are returned as a vector of Frame objects.

Each Walker object contains three objects:
• ProcessState

• StepperGroup

• SymbolLookup

These objects are part of the Callback Interface and can be used to customize Stackwalker-
API. The ProcessState object tells Walker how to access data in the target process, and it deter-
mines whether this Walker collects first party or third party stackwalks. Walker will pick an

appropriate default ProcessState object based on which factory method1 the users calls. The
StepperGroup object is used to customize how the Walker steps through stack frames. The Sym-
bolLookup object is used to customize how StackwalkerAPI looks up symbolic names of the
function or object that created a stack frame.

static Walker *newWalker()

This factory method creates a new Walker object that performs first party stackwalks.

The new Walker object uses the default StepperGroup and SymbolLookup callbacks for the
current platform, and it uses the ProcSelf callback for its ProcessState object. See
Section 3.5.1 for more information about defaults in the Callback Interface.

This method returns NULL if it was unable to create a new Walker object. The new Walker
object was created with the new operator, and should be deallocated with the delete operator
when it is no longer needed.

static Walker *newWalker(Dyninst::PID pid)

1. “Factory method” is a object-oriented design pattern term that describes a method that is responsible for
constructing new objects. StackwalkerAPI uses factory methods to allow it to return an error when con-
structing an object. The Walker::newWalker methods are the factory methods for the Walker
class.
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 9
This factory method creates a new Walker object that performs third party stackwalks, on the
process identified by pid.

The new Walker object uses the default StepperGroup and SymbolLookup callbacks for the
current platform, and it uses the ProcSelf callback for its ProcessState object. See
Section 3.5.1 for more information about defaults in the Callback Interface.

This method returns NULL if it is unable to create a new Walker object. The new Walker object
is created with the new operator, and should be deallocated with the delete operator when it
is no longer needed.

static Walker *newWalker(ProcessState *proc,
StepperGroup *steppergroup = NULL,
SymbolLookup *lookup = NULL)

This factory method creates a new Walker object that walks call stacks on the given proc
object. Custom StepperGroup and SymbolLookup can be given with the steppergroup and
lookup parameters. If the steppergroup or lookup parameters are NULL, then Stackwalker-
API will create a Walker object that uses a default callbacks for the NULL parameter, as
described in Section 3.5.1.

It is an error to pass NULL in the proc parameter. proc is used to determine whether to collect
first party or third party stackwalks and, in the case of third party stackwalks, identify the tar-
get process.

This method returns NULL if there was an error creating the new Walker object. The new
Walker object is created with the new operator, and should be deallocated with the delete
operator when it is no longer needed.

bool walkStack(std::vector<Frame> &stackwalk, Dyninst::THR_ID thread =
NULL_THR_ID)

This method walks a call stack in the process associated with this Walker. The call stack is
returned as a vector of Frame objects in stackwalk. The top of the stack is returned in index 0
of stackwalk, and the bottom of the stack is returned in index stackwalk.size()-1.

A stackwalk can be taken on a specific thread by passing a value in the thread parameter. If
thread has the value NULL_THR_ID, then a default thread will be chosen. When doing a third
party stackwalk, the default thread will be the process’ initial thread. When doing a first party
stackwalk, the default thread will be the thread that called walkStack.

This method returns true on success and false on failure.

bool walkStackFromFrame(std::vector<Frame> &stackwalk, const Frame &frame)
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 10
This method walks a call stack starting from the given stack frame, frame. The call stack will
be output in the stackwalk vector, with frame stored in index 0 of stackwalk and the bot-
tom of the stack stored in index stackwalk.size()-1.

This method returns true on success and false on failure.

bool walkSingleFrame(const Frame &in, Frame &out)

This methods walks through single frame, in. Parameter out will be set to in’s caller frame.

This method returns true on success and false on error.

bool getInitialFrame(Frame &frame, Dyninst::THR_ID thread = NULL_THR_ID)

This method returns the Frame object on the top of the stack in parameter frame. Under walk-
Stack, frame would be the one returned in index 0 of the stackwalk vector.

A stack frame can be found on a specific thread by passing a value in the thread parameter. If
thread has the value NULL_THR_ID, then a default thread will be chosen. When doing a third
party stackwalk, the default thread will be the process’ initial thread. When doing a first party
stackwalk, the default thread will be the thread that called getInitialFrame.

This method returns true on success and false on failure.

bool getAvailableThreads(std::vector<Dyninst::THR_ID> &threads)

This method returns a vector of threads in the target process upon which StackwalkerAPI can
walk call stacks. The threads are returned in output parameter threads. Note that this method
may return a subset of the actual threads in the process. For example, when walking call stacks
on the current process, it is only legal to walk the call stack on the currently running thread. In
this case, getAvailableThreads returns a vector containing only the current thread.

This method returns true on success and false on failure.

ProcessState *getProcessState() const

This method returns the ProcessState object associated with this Walker.

StepperGroup *getStepperGroup() const

This method returns the StepperGroup object associated with this Walker.

SymbolLookup *getSymbolLookup() const

This method returns the SymbolLookup object associated with this Walker.
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 11
3.3.2 Class Frame

Defined In: frame.h

The Walker class returns a call stack as a vector of Frame objects. As described in
Section 3.3.1, each Frame object represents a stack frame, and contains a return address (RA),
stack pointer (SP) and frame pointer (FP). For each of these values, optionally, it stores the loca-
tion where the values were found. Each Frame object may also be augmented with symbol infor-
mation giving a function name (or a symbolic name, in the case of non-functions) for the object
that created the stack frame.

The Frame class provides a set of functions (getRALocation, getSPLocation and getFPLo-
cation) that return the location in the target process’ memory or registers where the RA, SP, or
FP were found. These functions may be used to modify the stack. For example, the DyninstAPI
uses these functions to change return addresses on the stack when it relocates code. The RA, SP,
and FP may be found in a register or in a memory address on a call stack.

static Frame *newFrame(Dyninst::MachRegisterVal ra,
Dyninst::MachRegisterVal sp, Dyninst::MachRegisterVal fp, Walker *walker)

This method creates a new Frame object and sets the mandatory data members: RA, SP and
FP. The new Frame object is associated with walker.

The optional location fields can be set by the methods below.

The new Frame object is created with the new operator, and the user should be deallocate it
with the delete operator when it is no longer needed.

Dyninst::MachRegisterVal getRA() const

This method returns this Frame object’s return address.

void setRA(Dyninst::MachRegisterVal val)

This method sets this Frame object’s return address to val.

Dyninst::MachRegisterVal getSP() const

This method returns this Frame object’s stack pointer.

void setSP(Dyninst::MachRegisterVal val)

This method sets this Frame object’s stack pointer to val.

Dyninst::MachRegisterVal getFP() const

This method returns this Frame object’s frame pointer.

void setFP(Dyninst::MachRegisterVal val)
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 12
This method sets this Frame object’s frame pointer to val.

typedef enum { loc_address, loc_register, loc_unknown } storage_t;
typedef struct {

union {
address addr;
Dyninst::MachRegister reg;

} val;
storage_t location;

} location_t;

The location_t structure is used by the getRALocation, getSPLocation, and getFPLoca-
tion methods to describe where in the process a Frame object’s RA, SP, or FP were found.
When walking a call stack these values may be found in registers or memory. If they were
found in memory, the location field of location_t will contain loc_address and the addr
field will contain the address where it was found. If they were found in a register the loca-
tion field of location_t will contain loc_register and the reg field will refer to the regis-
ter where it was found. If this Frame object was not created by a stackwalk (using the
newframe factory method, for example), and has not had a set location method called, then
location will contain loc_unknown.

location_t getRALocation() const

This method returns a location_t describing where the RA was found.

void setRALocation(location_t newval)

This method sets the location of where the RA was found to newval.

location_t getSPLocation() const

This method returns a location_t describing where the SP was found.

void setSPLocation(location_t newval)

This method sets the location of where the SP was found to newval.

location_t getFPLocation() const

This method returns a location_t describing where the FP was found.

void setFPLocation(location_t newval)

This method sets the location of where the FP was found to newval.

bool getName(std::string &str)
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 13
This method returns a stack frame’s symbolic name. Most stack frames are created by func-
tions, or function-like objects such as signal handlers or system calls. This method returns the
name of the object that created this stack frame. For stack frames created by functions, this
symbolic name will be the function name. A symbolic name may not always be available for
all Frame objects, such as in cases of stripped binaries or special stack frames types.

The function name is obtained by using this Frame object’s RA to call the SymbolLookup call-
back. By default StackwalkerAPI will attempt to use the SymtabAPI package to look up sym-
bol names in binaries. If SymtabAPI is not found, and no alternative SymbolLookup object is
present, then this method will return an error.

This method returns true on success and false on error.

bool getObject(void* &obj)

In addition to returning a symbolic name (see getName) the SymbolLookup interface allows
for an opaque object, a void*, to be associated with a Frame object. The contents of this
void* is determined by the SymbolLookup implementation. Under the default implementation
that uses SymtabAPI, the void* points to a Symbol object or NULL if no symbol is found.

This method returns true on success and false on error.

bool getStepper(FrameStepper* &stepper) const

This method returns the FrameStepper object that was used to construct this Frame object in
the stepper output parameter. This method returns true on success and false on error.

bool getLibOffset(std::string &lib, Dyninst::Offset &offset, void* &symtab)

This method returns the DSO (a library or executable) and an offset into that DSO that points
to the location within that DSO where this frame was created. lib is the path to the library
that was loaded, and offset is the offset into that library. The return value of the symtab
parameter is dependent on the SymbolLookup implementation—by default it will contain a
pointer to a Dyninst::Symtab object for this DSO. See the SymtabAPI Programmer’s Guide
for more information on using Dyninst::Symtab objects.

3.4 Accessing Local Variables

Defined In: local_var.h

StackwalkerAPI can be used to access local variables found in the frames of a call stack. The
StackwalkerAPI interface for accessing the values of local variables is closely tied to the Sym-
tabAPI interface for collecting information about local variables--SymtabAPI handles for func-
tions, local variables, and types are part of this interface.
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 14
Given an initial handle to a SymtabAPI Function object, SymtabAPI can look up local vari-
ables contained in that function and the types of those local variables. See the SymtabAPI Pro-
grammer’s Guide for more information.

Dyninst::SymtabAPI::Function *getFunctionForFrame(Frame f)

This method returns a SymtabAPI function handle for the function that created the call stack
frame, f.

const int glvv_Success = 0;
const int glvv_EParam = -1;
const int glvv_EOutOfScope = -2;
const int glvv_EBufferSize = -3;
const int glvv_EUnknown = -4;

int getLocalVariableValue(Dyninst::SymtabAPI::localVar *var,
 std::vector<Frame> &swalk,
 unsigned frame,
 void *out_buffer,
 unsigned out_buffer_size)

Given a local variable and a stack frame from a call stack, this function returns the value of the
variable in that frame. The local variable is specified by the SymtabAPI variable object, var.
swalk is a call stack that was collected via StackwalkerAPI, and frame specifies an index into
that call stack that contains the local variable. The value of the variable is stored in
out_buffer and the size of out_buffer should be specified in out_buffer_size.

A local variable only has a limited scope with-in a target process’ execution. StackwalkerAPI
cannot guarantee that it can collect the correct return value of a local variable from a call stack
if the target process is continued after the call stack is collected.

Finding and collecting the values of local variables is dependent on debugging information
being present in a target process’ binary. Not all binaries contain debugging information, and
in some cases, such as for binaries built with high compiler optimization levels, that debug-
ging information may be incorrect.

getLocalVariableValue will return on of the following values:

• glvv_Success - getLocalVariableValue was able to correctly read the value of the given vari-
able.

• glvv_EParam - An error occurred, an incorrect parameter was specified (frame was larger
than swalk.size(), or var was not a variable in the function specified by frame).

• glvv_EOutOfScope - An error occurred, the specified variable exists in the function but isn’t
live at the current execution point.

• glvv_EBufferSize - An error occurred, the variable’s value does not fit inside out_buffer.

• glvv_EUnknown - An unknown error occurred. It is most likely that the local variable was
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 15
optimized away or debugging information about the variable was incorrect.

3.5 Callback Interface

This subsection describes the Callback Interface for StackwalkerAPI. The Callback Interface
is primarily used to port StackwalkerAPI to new platforms, extend support for new types of stack
frames, or integrate StackwalkerAPI into existing tools.

The classes in this subsection are interfaces, they cannot be instantiated. To create a new
implementation of one of these interfaces, create a new class that inherits from the callback class
and implement the necessary methods. To use a new ProcessState, StepperGroup, or Symbol-
Lookup class with StackwalkerAPI, create a new instance of the class and register it with a new
Walker object using the

Walker::newWalker(ProcessState *, StepperGroup *, SymbolLookup *)

factory method (see Section 3.3.1). To use a new FrameStepper class with StackwalkerAPI, cre-
ate a new instance of the class and register it with a StepperGroup using the

StepperGroup::addStepper(FrameStepper *)

method (see Section 3.5.3).
Some of the classes in the Callback Interface have methods with default implementations. A

new class that inherits from a Callback Interface can optionally implement these methods, but it is
not required. If a method requires implementation, it is written as a C++ pure virtual method
(virtual funcName() = 0). A method with a default implementation is written as a C++ virtual
method (virtual funcName()).

3.5.1 Default Implementations

The classes described in the Callback Interface are C++ abstract classes, or interfaces. They
cannot be instantiated. For each of these classes StackwalkerAPI provides one or more default
implementations on each platform. These default implementations are classes that inherit from the
abstract classes described in the Callback Interface. If a user creates a Walker object without pro-
viding their own FrameStepper, ProcessState, and SymbolLookup objects, then Stackwalker-
API will use the default implementations listed in Table 1.

1. Callback Interface Defaults

StepperGroup ProcessState SymbolLookup FrameStepper

Linux/x86
Linux/x86_64

1.AddrRange 1.ProcSelf

2.ProcDebug

1.FrameFuncStepper

2.SigHandlerStepper

3.DebugStepper

4.StepperWanderer

5.BottomOfStackStepper

Linux/PPC 1.AddrRange

2.ProcDebug

1.SwkSymtab 1.FrameFuncStepper

2.SigHandlerStepper

BlueGene 1.AddrRange 1.SwkSymtab 1.FrameFuncStepper

1.SwkSymtab

1.ProcSelf

1.ProcDebug
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 16
3.5.2 Class FrameStepper

Defined In: framestepper.h

The FrameStepper class is an interface that tells StackwalkerAPI how to walk through a spe-
cific type of stack frame. There may be many different ways of walking through a stack frame on
a platform, e.g, on Linux/x86 there are different mechanisms for walking through system calls,
signal handlers, regular functions, and frameless functions. A single FrameStepper describes
how to walk through one of these types of stack frames.

A user can create their own FrameStepper classes that tell StackwalkerAPI how to walk
through new types of stack frames. A new FrameStepper object must be added to a Stepper-
Group before it can be used.

In addition to walking through individual stack frames, a FrameStepper tells its Stepper-
Group when it can be used. The FrameStepper registers address ranges that cover objects in the
target process’ code space (such as functions). These address ranges should contain the objects
that will create stack frames through which the FrameStepper can walk. If multiple FrameStep-
per objects have overlapping address ranges, then a priority value is used to determine which
FrameStepper should be attempted first.

FrameStepper is an interface class; it cannot be instantiated. Users who want to develop new
FrameStepper objects should inherit from this class and implement the below virtual functions.

typedef enum { gcf_success,
 gcf_stackbottom,
 gcf_not_me,
 gcf_error } gcframe_ret_t

virtual gcframe_ret_t getCallerFrame(const Frame &in, Frame &out) = 0

This method walks through a single stack frame and generates a Frame object that represents
the caller’s stack frame. Parameter in will be a Frame object that this FrameStepper is capa-
ble of walking through. Parameter out is an output parameter that this method should set to
the Frame object that called in.

There may be multiple ways of walking through a different types of stack frames. Each
FrameStepper class should be able to walk through a type of stack frame. For example, on
x86 one FrameStepper could be used to walk through stack frames generated by ABI-com-
pliant functions; out’s FP and RA are found by reading from in’s FP, and out’s SP is set to
the word below in’s FP. A different FrameStepper might be used to walk through stack
frames created by functions that have optimized away their FP. In this case, in may have a FP
that does not point out’s FP and RA. The FrameStepper will need to use other mechanisms
to discover out’s FP or RA; perhaps the FrameStepper searches through the stack for the RA
or performs analysis on the function that created the stack frame.

If getCallerFrame successfully walks through in, it is required to set the following parame-
ters in out. See Section 3.3.2 for more details on the values that can be set in a Frame object:
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 17
• Return Address (RA) - The RA should be set with the Frame::setRA method.

• Stack Pointer (SP) - The SP should be set with the Frame::setSP method.

• Frame Pointer (FP) - The FP should be set with the Frame::setFP method

Optionally, getCallerFrame can also set any of following parameters in out:

• Return Address Location (RALocation) - The RALocation should be set with the
Frame::setRALocation() method.

• Stack Pointer Location (SPLocation) - The SPLocation should be set with the
Frame::setRALocation() method.

• Frame Pointer Location (FPLocation) - The FPLocation should be set with the Frame::set-
FPLocation() method.

If a location field in out is not set, then the appropriate Frame::getRALocation,
Frame::getSPLocation or Frame::getFPLocation method will return loc_unknown.

getCallerFrame should return gcf_success if it successfully walks through in and creates
an out Frame object. It should return gcf_stackbottom if in is the bottom of the stack and
there are no stack frames below it. It should return gcf_not_me if in is not the correct type of
stack frame for this FrameStepper to walk through. StackwalkerAPI will then attempt to
locate another FrameStepper to handle in or abort the stackwalk. It should return gcf_error
if there was an error and the stack walk should be aborted.

virtual void registerStepperGroup(StepperGroup &steppergroup)

This method is used to notify a FrameStepper when StackwalkerAPI adds it to a Stepper-
Group. The StepperGroup to which this FrameStepper is being added is passed in parameter
steppergroup. This method can be used to initialize the FrameStepper (in addition to any
FrameStepper constructor).

virtual unsigned getPriority() = 0

This method is used by the StepperGroup to decide which FrameStepper to use if multiple
FrameStepper objects are registered over the same address range (see addAddressRanges in
Section 3.5.3 for more information about address ranges). This method returns an integer rep-
resenting a priority level, the lower the number the higher the priority.

The default FrameStepper objects provided by StackwalkerAPI all return priorities between
0x1000 and 0x2000. If two FrameStepper objects have an overlapping address range, and
they have the same priority, then the order in which they are used is undefined.

3.5.3 Class StepperGroup

Defined In: steppergroup.h
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 18
The StepperGroup class contains a collection of FrameStepper objects. The Stepper-
Group’s primary job is to decide which FrameStepper should be used to walk through a stack
frame given a return address. The default StepperGroup keeps a set of address ranges for each
FrameStepper. If multiple FrameStepper objects overlap an address, then the default Stepper-
Group will use a priority system to decide.

StepperGroup provides both an interface and a default implementation of that interface.
Users who want to customize the StepperGroup should inherit from this class and re-implement
any of the below virtual functions.

virtual StepperGroup(Walker *walker)

This factory constructor creates a new StepperGroup object associated with walker.

virtual bool addStepper(FrameStepper *stepper)

This method adds a new FrameStepper to this StepperGroup. The newly added stepper
will be tracked by this StepperGroup, and it will be considered for use when walking through
stack frames.

This method returns true if it successfully added the FrameStepper, and false on error.

virtual bool addAddressRanges(
const std::vector<std::pair<Address, Address> >&ranges,
const FrameStepper *stepper) = 0

This method associates a set of address ranges, ranges, with a FrameStepper, stepper.
These address ranges contain objects in the process’ code space that create stack frames that
stepper can walk through.

The default StepperGroup will use stepper to walk through a Frame object (by returning it
from findStepperForAddr) if the Frame object’s RA falls within a range registered by this
method. A Frame object, frame, falls within a range, range[i], if
range[i].first frame.getRA() range[i].second<≤ . If multiple FrameStepper

objects have overlapping ranges, then the default StepperGroup will use the one with the
highest priority first (see FrameStepper::getPriority in Section 3.5.2).

For example, suppose this FrameStepper was designed to walk through a signal handler
frame on Linux/x86. During initialization the FrameStepper inspects the target process’ vsy-

scall page2 and finds that signal handlers will appear on the call stack with a RA between
0xffffe000 and 0xffffe400. It then registers this range with its StepperGroup using add-
AddressRanges. If the StepperGroup encounters an RA in this range, it then uses the signal
handler FrameStepper to walk through it.

2. The vsyscall page is a small shared object that is loaded by the kernel into every process’ address space. It
is part of Linux’s mechanism for quickly transferring control between the kernel and user space. It also
provides information about how to stack walk through system calls and signal handlers.
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 19
Suppose another FrameStepper was designed to walk through regular stack frames created by
ABI-compliant functions. This FrameStepper will be used as a general catch-all if no other
FrameStepper can walk through a Frame object. The FrameStepper can register itself with
an address range that spans the whole address space, and a lower priority than the signal han-
dler FrameStepper. The StepperGroup will then use the signal handler FrameStepper to
step through signal handlers, and this FrameStepper to step through any other Frame object.

This method returns true on success and false if there is an error.

virtual bool removeAddressRanges(
const std::vector<std::pair<Address, Address > > &ranges,
const FrameStepper *stepper) = 0

This method removes a FrameStepper’s address range from a StepperGroup. See addAd-
dressRange for more details on how StepperGroup and FrameStepper objects use address
ranges. The address ranges specified by ranges will be deleted from stepper’s address
ranges. For example, if the address range 0x1000 to 0x2000 was registered to a FrameStep-
per named foo, and then removeAddressRanges was used to remove the address range
0x1500 to 0x1600 out of foo, then foo would have two address ranges associated with it:
0x1000 to 0x1500 and 0x1600 to 0x2000.

This function returns true on success and false on error.

virtual bool findStepperForAddr(Address addr, FrameStepper* &out,
const FrameStepper *last_tried = NULL)

Given an address that points into a function (or function-like object), addr, this method
decides which FrameStepper should be used to walk through the stack frame created by the
function at that address. A pointer to the FrameStepper will be returned in parameter out.

It may be possible that the FrameStepper this method decides on is unable to walk through
the stack frame (it returns gcf_not_me from FrameStepper::getCallerFrame). In this case
StackwalkerAPI will call findStepperForAddr again with the last_tried parameter set to
the failed FrameStepper. findStepperForAddr should then find another FrameStepper to
use. Parameter last_tried will be set to NULL the first time getStepperToUse is called for a
stack frame.

The default version of this method uses address ranges to decide which FrameStepper to use.
The address ranges are contained within the process’ code space, and map a piece of the code
space to a FrameStepper that can walk through stack frames created in that code range. If mul-
tiple FrameStepper objects share the same range, then the one with the highest priority will
be tried first.

This method returns true on success and false on failure.

Walker *getWalker() const
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 20
This method returns the Walker object that associated with this StepperGroup.

3.5.4 Class ProcessState

Defined In: procstate.h

The ProcessState class is a virtual class that defines an interface through which Stackwalk-
erAPI can access the target process. It allows access to registers and memory, and provides basic
information about the threads in the target process. StackwalkerAPI provides two default types of
ProcessState objects: ProcSelf does a first party stackwalk, and ProcDebug does a third party
stackwalk.

A new ProcessState class can be created by inheriting from this class and implementing the
following functions.

virtual bool getRegValue(Dyninst::MachRegister reg, Dyninst::THR_ID thread,
Dyninst::MachRegisterVal &val) = 0

This method takes a register name as input, reg, and returns the value in that register in val in
the thread thread.

This method returns true on success and false on error.

virtual bool readMem(void *dest, Address source, size_t size) = 0

This method reads memory from the target process. Parameter dest should point to an allo-
cated buffer of memory at least size bytes in the host process. Parameter source should con-
tain an address in the target process to be read from. If this method succeeds, size bytes of
memory is copied from source, stored in dest, and true is returned. This method returns
false otherwise.

virtual bool getThreadIds(std::vector<Dyninst::THR_ID> &threads) = 0

This method returns a list of threads whose call stacks can be walked in the target process.
Thread are returned in the threads vector. In some cases, such as with the default ProcDebug,
this method returns all of the threads in the target process. In other cases, such as with Proc-
Self, this method returns only the calling thread.

The first thread in the threads vector (index 0) will be used as the default thread if the user
requests a stackwalk without specifying an thread (see Walker::WalkStack)

This method returns true on success and false if an error occurs.

virtual bool getDefaultThread(Dyninst::THR_ID &default_tid) = 0

This method returns the thread representing the initial process in the default_tid output
parameter.
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 21
This method returns true on success and false if an error occurs.

virtual Dyninst::PID getProcessID() = 0

This method returns a process ID for the target process. The default ProcessState imple-
mentations (ProcDebug and ProcSelf) will return a PID on UNIX systems and a HANDLE
object on Windows

3.5.4.1 Class LibraryState

Defined In: procstate.h

LibraryState is a helper class for ProcessState that provides information about the current
DSOs (libraries and executables) that are loaded into a process’ address space. FrameSteppers
frequently use the LibraryState to get the DSO through which they are attempting to stack
walk.

Each Library is represented using a LibAddrPair object, which is defined as follows:

typedef std::pair<std::string, Dyninst::Address> LibAddrPair

LibAddrPair.first refers to the file path of the library that was loaded, and LibAd-
drPair.second is the load address of that library in the process’ address space. The load address
of a library can be added to a symbol offset from the file in order to get the absolute address of a
symbol.

virtual bool getLibraryAtAddr(Address addr, LibAddrPair &lib) = 0

This method returns a DSO, using the lib output parameter, that is loaded over address addr
in the current process.

This method returns false if no library is loaded over addr or an error occurs, and true if it suc-
cessfully found a library.

virtual bool getLibraries(std::vector<LibAddrPair> &libs) = 0

This method returns all DSOs that are loaded into the process’ address space in the output
vector parameter, libs.

This method returns true on success and false on error.

virtual void notifyOfUpdate() = 0

This method is called by the ProcessState when it detects a change in the process’ list of
loaded libraries. Implementations of LibraryStates should use this method to refresh their
lists of loaded libraries.

virtual Address getLibTrapAddress() = 0
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 22
Some platforms that implement the System/V standard (Linux, Solaris, BlueGene/P) use a
trap event to determine when a process loads a library. A trap instruction is inserted into a cer-
tain address, and that trap will execute whenever the list of loaded libraries change.

On System/V platforms this method should return the address where a trap should be inserted
to watch for libraries loading and unloading. The ProcessState object will insert a trap at this
address and then call notifyOfUpdate when that trap triggers.

On non-System/V platforms this method should return 0.

3.5.5 Class SymbolLookup

Defined In: symlookup.h

The SymbolLookup virtual class is an interface for associating a symbolic name with a stack
frame. Each Frame object contains an address (the RA) pointing into the function (or function-like
object) that created its stack frame. However, users do not always want to deal with addresses
when symbolic names are more convenient. This class is an interface for mapping a Frame
object’s RA into a name.

In addition to getting a name, this class can also associate an opaque object (via a void*) with
a Frame object. It is up to the SymbolLookup implementation what to return in this opaque object.

The default implementation of SymbolLookup provided by StackwalkerAPI uses the Dyn-
Symtab tool to lookup symbol names. It returns a Symbol object in the anonymous void*.

virtual bool lookupAtAddr(Address addr, string &out_name, void* &out_value) = 0

This method takes an address, addr, as input and returns the function name, out_name, and an
opaque value, out_value, at that address. Output parameter out_name should be the name of
the function that contains addr. Output parameter out_value can be any opaque value deter-
mined by the SymbolLookup implementation. The values returned are used by the
Frame::getName() and Frame::getObject() functions.

This method returns true on success and false on error.

virtual Walker *getWalker()

This method returns the Walker object associated with this SymbolLookup.

virtual ProcessState *getProcessSate()

This method returns the ProcessState object associated with this SymbolLookup.

4 CALLBACK INTERFACE DEFAULT IMPLEMENTATIONS

StackwalkerAPI provides one or more default implementations of each of the callback classes
described in Section 3.5. These implementations are used by a default configuration of Stack-
walkerAPI.
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 23
4.1 Debugger Interface

This section describes how to use StackwalkerAPI for collecting 3rd party stack walks. In 3rd

party mode StackwalkerAPI uses the OS’s debugger interface to connect to another process and
walk its call stacks. As part of being a debugger StackwalkerAPI receives and needs to handle
debug events. When a debugger event occurs, StackwalkerAPI must get control of the host pro-
cess in order to receive the debugger event and continue the target process.

To illustrate the complexities with running in 3rd party mode, consider the follow code snippet
that uses StackwalkerAPI to collect a stack walk every five seconds.

Walker *walker = Walker::newWalker(pid);
std::vector<Frame> swalk;
for (;;) {

walker->walkStack(swalk);
sleep(5);

}

StackwalkerAPI is running in 3rd party mode, since it attached to the target process, pid. As
the target process runs it may be generating debug events such a thread creation and destruction,
library loads and unloads, signals, forking/execing, etc. When one of these debugger events is
generated the OS will pause the target process and send a notice to the host process. The target
process will remain paused until the host process handles the debug event and resumes the target
process.

In the above example the host process is spending almost all of its time in the sleep call. If a
debugger event happens during the sleep, then StackwalkerAPI will not be able to get control of
the host process and handle the event for up to five seconds. This will cause long pauses in the tar-
get process and lead to a potentially very large slowdown.

To work around this problem StackwalkerAPI provides a notification file descriptor. This file
descriptor represents a connection between the StackwalkerAPI library and user code. Stackwalk-
erAPI will write a single byte to this file descriptor when a debug event occurs, thus notifying the
user code that it needs to let StackwalkerAPI receive and handle debug events. The user code can
use system calls such as select to watch for events on the notification file descriptor.

The following example illustrates how to properly use StackwalkerAPI to collect a stack walk
from another process at a five second interval. Details on the ProcDebug class, getNotifica-
tionFD method, and handleDebugEvent method can be found in Section 4.1.1. See the UNIX
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 24
man pages for more information on the select system call. Note that this example does not
include all of the proper error handling and includes that should be present when using select.

Walker *walker = Walker::newWalker(pid);
ProcDebug *debugger = (ProcDebug *) walker->getProcessState();
std::vector<Frame> swalk;

for (;;) {
walker->walkStack(swalk);

struct timeval timeout;
timeout.tv_sec = 5;
timeout.tv_usec = 0;

int max = 1;
fd_set readfds, writefds, exceptfds;
FD_ZERO(&readfds); FD_ZERO(&writefds); FD_ZERO(&exceptfds);
FD_SET(ProcDebug::getNotificationFD(), &readfds);

for (;;) {
int result = select(max, &readfds, &writefds, &exceptfds,

 &timeout);
if (FD_ISSET(ProcDebug::getNotificationFD(), readfds)) {

//Debug event
ProcDebug::handleDebugEvent();

}

if (result == 0) {
//Timeout
break;

}
}

}

4.1.1 Class ProcDebug

Defined In: procstate.h

Access to StackwalkerAPI’s debugger is through the ProcDebug class, which inherits from
the ProcessState interface. The easiest way to get at a ProcDebug object is to cast the return
value of Walker::getProcessState() into a ProcDebug. C++’s dynamic_cast operation can
be used to test if a Walker uses the ProcDebug interface:

ProcDebug *debugger;
debugger = dynamic_cast<ProcDebug*>(walker->getProcessState());
if (debugger != NULL) {

//3rd party
...

} else {
//1st party
...

}

In addition to the handling of debug events, described in Section 4.1, the ProcDebug class pro-
vides a process control interface; users can pause and resume process or threads, detach from a
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 25
process, and test for events such as process death. As an implementation of the ProcessState
class, ProcDebug also provides all of the functionality described in Section 3.5.4.

virtual bool pause(Dyninst::THR_ID tid = NULL_THR_ID)

This method pauses a process or thread. The paused object will not resume execution until
ProcDebug::resume is called. If the tid parameter is not NULL_THR_ID then StackwalkerAPI
will pause the thread specified by tid. If tid is NULL_THR_ID then StackwalkerAPI will pause
every thread in the process.

When StackwalkerAPI collects a call stack from a running thread it first pauses the thread,
collects the stack walk, and then resumes the thread. When collecting a call stack from a
paused thread StackwalkerAPI will collect the stack walk and leave the thread paused. This
method is thus useful for pausing threads before stack walks if the user needs to keep the
returned stack walk synchronized with the current state of the thread.

This method returns true if successful and false on error.

virtual bool resume(Dyninst::THR_ID tid = NULL_THR_ID)

This method resumes execution on a paused process or thread. This method only resumes
threads that were paused by the ProcDebug::pause call, using it on other threads is an error.
If the tid parameter is not NULL_THR_ID then StackwalkerAPI will resume the thread speci-
fied by tid. If tid is NULL_THR_ID then StackwalkerAPI will resume all paused threads in the
process.

This method returns true if successful and false on error.

virtual bool detach(bool leave_stopped = false)

This method detaches StackwalkerAPI from the target process. StackwalkerAPI will no
longer receive debug events on this target process and will no longer be able to collect call
stacks from it. This method invalidates the associated Walker and ProcState objects, they
should be cleaned using C++’s delete operator after making this call. It is an error to attempt
to do operations on these objects after a detach, and undefined behavior may result.

If the leave_stopped parameter is true StackwalkerAPI will detach from the process but
leave it in a paused state so that it does resume progress. This is useful for attaching another
debugger back to the process for further analysis. The leave_stopped parameter is not sup-
ported on the Linux platform and its value will have no affect on the detach call.

This method returns true if successful and false on error.

virtual bool isTerminated()

This method returns true if the associated target process has terminated and false otherwise. A
target process may terminate itself by calling exit, returning from main, or receiving an unhan-
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 26
dled signal. Attempting to collect stack walks or perform other operations on a terminated
process is illegal an will lead to undefined behavior.

A process termination will also be signaled through the notfication FD. Users should check
processes for the isTerminated state after returning from handleDebugEvent.

static int getNotificationFD()

This method returns StackwalkerAPI’s notification FD. The notification FD is a file descriptor
that StackwalkerAPI will write a byte to whenever a debug event occurs that need. If the user
code sees a byte on this file descriptor it should call handleDebugEvent to let Stackwalker-
API handle the debug event. Example code using getNotificationFD can be found in
Section 4.1.

If StackwalkerAPI will only create one notification FD, even if it is attached to multiple 3rd

party target processes.

static bool handleDebugEvent(bool block = false)

When this method is called StackwalkerAPI will receive and handle all pending debug events

from each 3rd party target process to which it is attached. After handling debug events each
target process will be continued (unless it was explicitly stopped by the ProcDebug::pause
method) and any bytes on the notification FD will be cleared. It is generally expected that
users will call this method when a event is sent to the notification FD, although it can be
legally called at any time.

If the block parameter is true, then handleDebugEvents will block until it has handled at
least one debug event. If the block parameter is false, then handleDebugEvents will handle
any currently pending debug events or immediately return if none are available.

StackwalkerAPI may receive process exit events for target processes while handling debug
events. The user should check for any exited processes by calling ProcDebug::isTermi-
nated after handling debug events.

This method returns true if it handled at least one debug events and false otherwise.

4.2 FrameSteppers

Defined In: framestepper.h

StackwalkerAPI ships with numerous default implementations of the FrameStepper class.
Each of these FrameStepper implementations allow StackwalkerAPI to walk a type of call
frames. Section 3.5.1 describes which FrameStepper implementations are available on which
platforms. This sections gives a brief description of what each FrameStepper implementation
does. Each of the following classes implements the FrameStepper interface described in
Section 3.5.2, so we do not repeat the API description for the classes here.
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 27
Several of the FrameSteppers use helper classes (see FrameFuncStepper as an example).
Users can further customize the behavior of a FrameStepper by providing their own implementa-
tion of these helper classes.

4.2.1 Class FrameFuncStepper

This class implements stack walking through a call frame that is setup with the architectures
standard stack frame. For example, on x86 this FrameStepper will be used to walk through stack
frames that are setup with a push %ebp/mov %esp,%ebp prolog.

4.2.1.1 Class FrameFuncHelper
FrameFuncStepper uses a helper class, FrameFuncHelper, to get information on what kind

of stack frame it’s walking through. The FrameFuncHelper will generally use techniques such as
binary analysis to determine what type of stack frame the FrameFuncStepper is walking through.
Users can have StackwalkerAPI use their own binary analysis mechanisms by providing an imple-
mentation of this FrameFuncHelper.

There are two important types used by FrameFuncHelper and one important function:

typedef enum {
unknown_t=0,
no_frame,
standard_frame,
savefp_only_frame,

} frame_type;

The frame_type describes what kind of stack frame a function uses. If it does not set up a
stack frame then frame_type should be no_frame. If it sets up a standard frame then
frame_type should be standard_frame. The savefp_only_frame value currently only has
meaning on the x86 family of systems, and means that a function saves the old frame pointer,
but does not setup a new frame pointer (it has a push %ebp instruction, but no mov
%esp,%ebp). If the FrameFuncHelper cannot determine the frame_type, then it should be
assigned the value unknown_t.

typedef enum {
unknown_s=0,
unset_frame,
halfset_frame,
set_frame

} frame_state;

The frame_state type determines the current state of function with a stack frame at some
point of execution. For example, a function may set up a standard stack frame and have a
frame_type of standard_frame, but execution may be at the first instruction in the function
and the frame is not yet setup, in which case the frame_state will be unset_frame.

If the function sets up a standard stack frame and the execution point is someplace where the
frame is completely setup, then the frame_state should be set_frame. If the function sets up
a standard frame and the execution point is at a point where the frame does not yet exist or has
been torn down, then frame_state should be unset_frame. The halfset_frame value of
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

Page 28
frame_state is currently only meaningful on the x86 family of architecture, and should if the
function has saved the old frame pointer, but not yet set up a new frame pointer.

typedef std::pair<frame_type, frame_state> alloc_frame_t;
virtual alloc_frame_t allocatesFrame(Address addr) = 0;

The allocatesFrame function of FrameFuncHelper returns a alloc_frame_t that describes
the frame_type of the function at addr and the frame_state of the function when execution
reached addr.

If addr is invalid or an error occurs, allocatedFrame should return
alloc_frame_t(unknown_t, unknown_s).

4.2.2 Class DebugStepper

This class uses debug information found in a binary to walk through a stack frame. It depends
on SymtabAPI to read debug information from a binary, then uses that debug information to walk
through a call frame.

Most binaries must be built with debug information (-g with gcc) in order to include debug
information that this FrameStepper uses. Some languages, such as C++, automatically include
stackwalking debug information for use by exceptions. The DebugStepper class will also make
use of this kind of exception stacking information if it is available.

4.2.3 Class SigHandlerStepper

The SigHandlerStepper is used to walk through UNIX signal handlers as found on the call
stack. On some systems a signal handler generates a special kind of stack frame that cannot be
walked through using normal stack walking techniques.

4.2.4 Class BottomOfStackStepper

The BottomOfStackStepper doesn’t actually walk through any type of call frame. Instead it
attempts to detect whether the bottom of the call stack has been reached. If so, BottomOfStack-
Stepper will report gcf_stackbottom from its getCallerFrame method. Otherwise it will
report gcf_not_me. BottomOfStackStepper runs with a higher priority than any other Frame-
Stepper class.
StackwalkerAPI Programmer’s Guide March 2011 Release 2.0

	StackwalkerAPI Programmer’s Guide
	1 Introduction
	2 Abstractions
	Figure 1: Object Ownership
	2.1 Stackwalking Interface
	2.2 Callback Interface

	3 API Reference
	3.1 Definitions and Basic Types
	3.1.1 Definitions
	Figure 2: Stack Frame and Frame Object Layout

	3.1.2 Basic Types

	3.2 Namespace StackwalkerAPI
	3.3 Stackwalking Interface
	3.3.1 Class Walker
	3.3.2 Class Frame

	3.4 Accessing Local Variables
	3.5 Callback Interface
	3.5.1 Default Implementations
	1. AddrRange
	1. ProcSelf
	2. ProcDebug
	1. FrameFuncStepper
	2. SigHandlerStepper
	3. DebugStepper
	4. StepperWanderer
	5. BottomOfStackStepper
	1. AddrRange
	2. ProcDebug
	1. SwkSymtab
	1. FrameFuncStepper
	2. SigHandlerStepper
	1. AddrRange
	1. SwkSymtab
	1. FrameFuncStepper
	1. Callback Interface Defaults

	3.5.2 Class FrameStepper
	3.5.3 Class StepperGroup
	3.5.4 Class ProcessState
	3.5.4.1 Class LibraryState

	3.5.5 Class SymbolLookup

	4 Callback Interface Default Implementations
	4.1 Debugger Interface
	4.1.1 Class ProcDebug

	4.2 FrameSteppers
	4.2.1 Class FrameFuncStepper
	4.2.1.1 Class FrameFuncHelper

	4.2.2 Class DebugStepper
	4.2.3 Class SigHandlerStepper
	4.2.4 Class BottomOfStackStepper

