

Managing Network Resources in Condor

Jim Basney
Computer Sciences Department
University of Wisconsin-Madison
jbasney@cs.wisc.edu

Why is the Network Important?

- ▶ Increase in physical memory per CPU
 - Larger checkpoints
- Increase in size of Condor pools
 - 700 CPUs in our local pool
- Increase in remote execution across WAN
 - WAN pools (INFN)
 - · Flocking: UW, NCSA, UNM, INFN
 - Remote Submitters: Personal Condor

Types of Network Usage

- Placement
- Periodic Checkpoints
- Preemption
- Remote I/O

Network Management Goals

- Provide Administrative Control
 - HTC applications must co-exist with other network users
- Improve Application Efficiency: Goodput

Monitoring Network Usage

- Configure Network Routing Info
- Monitor Network Usage Per User & Subnet
 - Checkpoint & Executable Transfers
 - Remote System Calls
- CondorView Visualization

Network & CPU Co-Allocation

- For each Subnet, configure:
 - Available capacity
 - Allocation window
- Job Placement requires capacity for
 - Checkpoint & Executable Transfer
 - Remote I/O (estimated)

Goodput = Allocation - Network Overhead

Use Network Efficiently

- Compressed Checkpoints
 - CPU vs. network resources
- Incremental Checkpointing
 - · Record changes since last checkpoint
- Buffered Remote I/O (Doug Thain)
 - Latency Hiding
 - Avoid multiple reads/writes of same file data

Ckpt and Filesystem Domains

Provide local access to checkpoint and file storage

Checkpoint Domains

- Resource offer includes nearest server
 - CkptServer = "ckpt.cs.wisc.edu"
- Job must remain in checkpoint domain
 - LastCkptServer = "ckpt.cs.wisc.edu"
 - Requirements = My.LastCkptServer == Target.CkptServer

Checkpoint Domains (cont.)

- Job may migrate if no CPUs available in domain

 - Rank = My.LastCkptServer == Target.CkptServer

Filesystem Domains

- Resource offer includes filesystem domain
 - FileSystemDomain = "cs.wisc.edu"
- > Job runs where input data is staged
 - Requirements = Target.FilesystemDomain == "cs.wisc.edu"

Filesystem Domains (cont.)

- Resource offer may include staged datasets
 - HasDataSet174 = True
- Job runs where dataset is staged
 - Requirements = Target.HasDataSet174;

Co-Allocation Revisited

- Network-Aware CPU Requests
 - Requirements = CPUBW > 8.0 && RSCBW > 4.0;
 - Rank = RestartBW;
 - Rank = 0 RSCHops;
- Time-based capacity specification
 - Limit WAN bandwidth used during work hours

Scheduling Preemption Ckpts

- Time to checkpoint is limited when preempted
 - Preempting user doesn't want to wait
- Simultaneous preemptions
 - Heavy network demand
 - Slow checkpointing
 - Missed deadlines / Failed checkpoints

Scheduling Preemption Ckpts

- Many preemption events may be anticipated
 - Start of class for lab workstation
 - Start of work hours for office workstation
 - System maintenance
- Schedule preemption checkpoints in advance of reservations

Scheduling Preemption Ckpts

Scheduling Periodic Ckpts

• Goals:

- Complete checkpoint quickly
- Don't interfere with more important transfers
- Perform when network is otherwise idle
 - Avoid synchronized periodic checkpoints

Network Scheduling

- Fit jobs to network topology
 - Place network-intensive jobs on fast networks
 - Place jobs near their data
- Locate best checkpoint and file servers at run-time
- Pre-fetch and store-behind application data when network capacity is available

Network Scheduling (cont.)

- Balance checkpoint costs with expected allocation time
- Preempt or migrate heavy network users
- Backfill pool with light network users to fully utilize CPUs

Summary

- Making the network a Condor-managed resource
- Provide administrative control over HTC network usage
- Improve execution efficiency by coscheduling network and CPU resources

