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Binary Code Rewriting

• Executables are no longer black boxes
•binaries can be modified safely at runtime

• Without access to source code
•optimize a binary for a given input

•change program behavior on the fly

• Open-source? What about:
• long-running programs

•legacy programs
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Dyninst - Overview

• API to:
•Control a process (start, stop, pause).

• Insert code in a process.

• Current capabilities:
•Code insertion happens at function-level (entry,
exit, call site).

• Is instruction-level granularity needed?
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Why Bypass the License Check?

Program License Data
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Normal: licensed program runs after communicates with license server.

Undesired: licensed program refuses to run if license server does not respond.
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How to Bypass License Checking?

• Program = Code + Data

• Option 1: feed synthesized license data to
the program

• Option 2: remove all the code that performs
license checks
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How…?

• Faking the license data
•“clean” solution: capture the data once, reuse it
over and over

•problem: requires reverse engineering of client-
server protocol

•problem: license data might be time-stamped

•problem: license data might be encrypted with a
session key
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How…?

• Removing the license checking code
•removes the need of running a license server

•problem: (very) complicated

•problem: might alter program functionality

•problem: not possible with current Dyninst
capabilities
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How…?

• Middle ground solution:

Controlled Failure

•allow program to try to contact license server

• if data is OK, then nothing needs to be changed

•otherwise, force program to believe license data
is OK

•limited scope of changes
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Example: Adobe FrameMaker

• 2 step license verification:
•retrieve license data from server [once]

•check license data for correctness [often]

• allow FM to time out waiting for server

• allow FM to attempt to go into demo mode

• switch FM back to full-functionality mode

• later license checks always “succeed”
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Strategies & Tools

• Complete reverse engineering:
•not an option

• legal problems

• complexity (FrameMaker is a 7 MB binary!)

• Focus on certain characteristics:
• I/O traffic

•execution trace
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I/O Monitoring

• Reduced overhead

• Low interactivity

• Can generate large amounts of data

• Cannot provide the timing information
needed to modify program behavior
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Function Tracing

• Fairly high overhead

• Can be interactive and incremental

(… pause trace - change - continue trace …)

• Determining where to apply changes:
•get trace for a successful run

•get trace for a (forced-)failure run

•compare to find differences

•repeat as needed
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• Monitor 2 processes (one successful, one
failing) in parallel, and make one behave
like the other one

• Rob Iverson riverson@cs.wisc.edu

• Tevfik Kosar kosart@cs.wisc.edu

• Mihai Christodorescu mihai@cs.wisc.edu

Future Developments

Project Team
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Conclusions

• Dyninst is a powerful and flexible tool

• Unlimited applicability:
•dynamic optimizations

(measure with Paradyn, optimize with Dyninst!)

•enhance program behavior

(load new dynamic library, change calls while
program is running)


