
Paradyn/Condor Week (27 March 2000, Madison/WI)© 2000 mihai@cs.wisc.edu

Bypassing License Checking
Using Dyninst

Mihai Christodorescu
PLKDL#FV�ZLVF�HGX

Computer Sciences Department

University of Wisconsin

1210 W. Dayton St.

Madison, WI 53706-1685

USA

Bypassing License Checking Using Dyninst© 2000 mihai@cs.wisc.edu [2]

Outline

• Background on Dyninst

• Bypassing License Checking
•Why? [motivation]

•How? [approach]

•Example [Adobe FrameMaker]

•What? [tools / techniques]

• Future work

• Conclusion

Bypassing License Checking Using Dyninst© 2000 mihai@cs.wisc.edu [3]

Binary Code Rewriting

• Executables are no longer black boxes
•binaries can be modified safely at runtime

• Without access to source code
•optimize a binary for a given input

•change program behavior on the fly

• Open-source? What about:
• long-running programs

•legacy programs

Bypassing License Checking Using Dyninst© 2000 mihai@cs.wisc.edu [4]

Dyninst - Overview

• API to:
•Control a process (start, stop, pause).

• Insert code in a process.

• Current capabilities:
•Code insertion happens at function-level (entry,
exit, call site).

• Is instruction-level granularity needed?

Bypassing License Checking Using Dyninst© 2000 mihai@cs.wisc.edu [5]

Why Bypass the License Check?

Program License Data

Network

License

Server

Program License Data

Network

License

Server

Normal: licensed program runs after communicates with license server.

Undesired: licensed program refuses to run if license server does not respond.

Bypassing License Checking Using Dyninst© 2000 mihai@cs.wisc.edu [6]

How to Bypass License Checking?

• Program = Code + Data

• Option 1: feed synthesized license data to
the program

• Option 2: remove all the code that performs
license checks

Bypassing License Checking Using Dyninst© 2000 mihai@cs.wisc.edu [7]

How…?

• Faking the license data
•“clean” solution: capture the data once, reuse it
over and over

•problem: requires reverse engineering of client-
server protocol

•problem: license data might be time-stamped

•problem: license data might be encrypted with a
session key

Bypassing License Checking Using Dyninst© 2000 mihai@cs.wisc.edu [8]

How…?

• Removing the license checking code
•removes the need of running a license server

•problem: (very) complicated

•problem: might alter program functionality

•problem: not possible with current Dyninst
capabilities

Bypassing License Checking Using Dyninst© 2000 mihai@cs.wisc.edu [9]

How…?

• Middle ground solution:

Controlled Failure

•allow program to try to contact license server

• if data is OK, then nothing needs to be changed

•otherwise, force program to believe license data
is OK

•limited scope of changes

Bypassing License Checking Using Dyninst© 2000 mihai@cs.wisc.edu [10]

Example: Adobe FrameMaker

• 2 step license verification:
•retrieve license data from server [once]

•check license data for correctness [often]

• allow FM to time out waiting for server

• allow FM to attempt to go into demo mode

• switch FM back to full-functionality mode

• later license checks always “succeed”

Bypassing License Checking Using Dyninst© 2000 mihai@cs.wisc.edu [11]

Strategies & Tools

• Complete reverse engineering:
•not an option

• legal problems

• complexity (FrameMaker is a 7 MB binary!)

• Focus on certain characteristics:
• I/O traffic

•execution trace

Bypassing License Checking Using Dyninst© 2000 mihai@cs.wisc.edu [12]

I/O Monitoring

• Reduced overhead

• Low interactivity

• Can generate large amounts of data

• Cannot provide the timing information
needed to modify program behavior

Bypassing License Checking Using Dyninst© 2000 mihai@cs.wisc.edu [13]

Function Tracing

• Fairly high overhead

• Can be interactive and incremental

(… pause trace - change - continue trace …)

• Determining where to apply changes:
•get trace for a successful run

•get trace for a (forced-)failure run

•compare to find differences

•repeat as needed

Bypassing License Checking Using Dyninst© 2000 mihai@cs.wisc.edu [14]

• Monitor 2 processes (one successful, one
failing) in parallel, and make one behave
like the other one

• Rob Iverson riverson@cs.wisc.edu

• Tevfik Kosar kosart@cs.wisc.edu

• Mihai Christodorescu mihai@cs.wisc.edu

Future Developments

Project Team

Bypassing License Checking Using Dyninst© 2000 mihai@cs.wisc.edu [15]

Conclusions

• Dyninst is a powerful and flexible tool

• Unlimited applicability:
•dynamic optimizations

(measure with Paradyn, optimize with Dyninst!)

•enhance program behavior

(load new dynamic library, change calls while
program is running)

