Safety Checking of Machine Code

Zhichen Xu, Barton Miller and Thomas Reps

Zhichen@cs.wisc.edu

Computer Science Department
University of Wisconsin
1210 W. Dayton St.
Madison, WI 53706-1685

@Zhichen Xu March 27, 2000 Paradyn Week'2000

Motivation

» Two prevailing trends:

- Dynamic extensibility
- Operating systems: custom policies (VINO, SPIN)
* Performance Tools: measurement code (kernInst, Paradyn)
* Databases: datablades
- Web browsers: plug-ins

- Component-based software (Java, COM)

+ Code from several sources, which could distrust each other

Safety of extensions and components is crucial

@Zhichen Xu March 27,2000 Paradyn Week 2

Related Work
Safety checking: nothing "bad" will happen

» Dynamic Techniques: |+ Static Techniques

- Hardware enforced address
spaces, SFI, interpretation,
etc.

* Hybrid Techniques

- Safe languages: Java, ML,
Modula 3, efc.

Recovery, runtime cost

@Zhichen Xu March 27, 2000

- Proof-Carry Code
- Certifying Compiler, Typed-
Assembly Language

Restricts the things that can be
expressed in the source language

Restricts the choices of language
such as C, assembly

Building a certifying compiler is a
complex task, avoid if possible

Paradyn Week 3

Our Approach

Safe code can be written in any language as long as
nothing "bad" is expressed.

Operate directly on binary code
- Based on annotations on initial inputs

Extend the host at a fine-grained
level

- Allow foreign code to manipulate the
internal data structures of the host

Data/ Control . Extensibility:
Trusted Host - Default collection of safety conditions,
plus precise and flexible access policy

- Naturally extends to the checking of
security properties

Untrusted
Foreign Code

@Zhichen Xu March 27,2000 Paradyn Week 4

QOutline

* Motivation

* Related work

» Our approach

+ Safety properties and safety policies
+ Safety checking: basis

+ Safety checking: analysis

* Initial experience

» Conclusion

@Zhichen Xu March 27, 2000 Paradyn Week

Safety Properties

* Fine-grained memory protection

- Array bounds, address alignment, initialized variables,
valid pointer dereference, and stack manipulation.

- Safe interaction with the host

- Call host functions with parameters
of proper types, and with proper initializations

* Precise and flexible host access policy

We use: <type, state, access>, linear constraints

@Zhichen Xu March 27,2000 Paradyn Week 6

Type + State

- Typestate [Strom and Yemini' 1986]
Use state to catch an uninitialized pointer

int *p, x=1; //pisin an "uninitialized" state
*p=X ; //dereference an uninitialized pointer

Untrusted code releases lock before termination
mutex_lock(&lock)

mutex_unlock(&lock) //lock will be “"unlocked"

@Zhichen Xu March 27,2000 Paradyn Week 7

Type+State+Linear Constraints

* Null-pointer dereference
int *p=NULL, x=1; //pisinan “initialized" state
*p=x. //Should also check p is valid pointer

* Array access bounds checking
int sum (int a[10]) {
ints=0;
for (i=0; i<10; i++)
s +=a[i]; //Check that "i >= 0 && i <= 9"

@Zhichen Xu March 27,2000 Paradyn Week 8

Type+State+L. Constraints + Access

* Access permissions (least privilege)
- Read(r), write(w), follow(f), execute(x)

+ Example: kernel page-replacement extension:
[Small and Seltzer, 1996]

- Pick a non-hot page from global LRU list.
typedef struct _page_list {
int page; // read-only access
struct _page_list * next; // de-reference (follow access)
} page_list;
page_list* do_graft(page_list *candidate, page_list *hot)

@Zhichen Xu March 27,2000 Paradyn Week 9

Interaction with Host

+ Access permission execute(x) specifies host
functions (methods) that can be called

+ Safety pre- and post- conditions specifies
what is a safe call
- Parameters are of the proper types and states

@Zhichen Xu March 27, 2000 Paradyn Week 10

Example: JNI array accesses

jint Java_IntArray_sumArray(JNIEnv *env, jobject, jintArray arr) {
jsizelen = ...
inti,sum=0;
--> jint *body = (*env)->GetIntArrayElements(env, arr, O);
for (i=0; i<len; i++) {
sum += body[i]; // do array bounds checking
}

return sum,

}
JNIEnv::GetIntArrayElements(env, arr)

precondition: env: <JNIEnv*, initialized, r>
arr: <jintArray, initialized, r>

postcondition: {retVal = arr.Elements}

@Zhichen Xu March 27,2000 Paradyn Week 11

Inputs to the Safety Checker

* A host-specified access policy

<Region, Category, Access Permitted>
[Host : page_list.page : r]
[Host : page_list ptr, page_list.next : rf]

[Host : INIEnv::GetIntArrayElements : x]

* Information about the initial inputs

- A host typestate specification
- Type and state of host data
* Pre- and post conditions for host functions

- A invocation specification

@Zhichen Xu March 27, 2000 Paradyn Week 12

Safety Checking: Basis

- Intuition:
- Figure out what each instruction in untrusted code does:
» Based on initial inputs to untrusted code

- Does it violate any safety properties?
» Attach a safety precondition to each instruction
» Check that each instruction obeys the precondition

- Formalizations

- Abstract locations: registers, stack or heap allocated
objects

- Typestate : <type, state, access>
- Operational semantics

@Zhichen Xu March 27, 2000 Paradyn Week 13

Safety Checking: Analyses

Produce initial
1: Pr'epar'a’rion annotations: information
of initial inputs

Figure out typestate of

2. Typestate propagation each abslLoc at each
program point

3. Annotation Facts, and safety

preconditions (local and
4. Verifying Local Safety global)
Preconditions

5: Verifying Global Safety
Preconditions

Induction Tteration

@Zhichen Xu March 27,2000 Paradyn Week 14

A Running Example

Sum of array elements
[V :int[n]: rf] [V:int :r]
- initial annotation:
a. <int, i, r>,
%00: <int[n], {a}, rwf>,
%o01: <int, i, rwf>

{7%01=n O n=0}

W ll

IS an abstract location that
models the entire array

- Verify the safety of instruction __
at program point 6 120 MOV %03, %00

@Zhichen Xu March 27,2000 Paradyn Week 15

Phase 2: Typestate Propagation

Finds out typestate of each abslLoc at each program point
- a:<int, i, r>, %00: <int [n], {a}, rwf>, %o0l:<int, i, rwf>
- {%0l=n On=0}

c>/oOO 0/002 0/092
<int[n], {a}, > Orvper [4], 2 ‘rvne' [4],>
<int[n], {a}, > <|nT, |, > ‘rvne' [4].>
<in’r[n], {G}, > <inT: I > ‘rvne' [4] >
<int[n], {a}, > <int, i, > ‘rvne' [4].>
<int[n], {a},> <int,i> O e 471>
<int[n], {a}, > <int, i, > < m’r, i, >

@Zhichen Xu March 27,2000 Paradyn Week 16

Phase 3: Annotation

+ Find out safety requirements and facts
6: %00: <int[n], {a}, rwf>; %g2 : <int, i, rwf>
0/093 = 0/000[0/092/4] // 0/093 -a

WOV 0O Y

Facts: a mod 4=0

Local Safety Precondition:
assignable(a, %g3)

Global Safety Preconditions:
align(a+7%g2,4)
inbounds(int[n],0,n,%g2)

@Zhichen Xu March 27,2000 Paradyn Week 17

Phase 5: Verifying Global Safety
Preconditions

* Floyd-style verification conditions

* Induction iteration method to synthesize loop
invariants [Susuki and Ishihata, 1977]

- Uses the weakest liberal precondition (wlp) of while
statement to synthesize loop invariant inductively

- Totally mechanical
- Suitable to verify linear-constraints

- We have extended it to synthesize invariants for
natural loops

@Zhichen Xu March 27, 2000 Paradyn Week 18

Verifying Global Preconditions

Example: Proves that %g2 is less than array upper bound n
at program point 6 in fwo iterations

Paradyn Week

Initial Experience

+ Test cases

- Array sum, start/stop timer, b-tree,
- kernel paging policy, hash, bubble sort, heap sort,
- stack-smashing, MD5, jPVM

» Summary of Results
- Finds safety violations in kernel policy, stack-smashing

- Verifies all conditions, except for some calls in MD5,
jPVM (precision lost due to array reference)

- Checking time vary from 0.1 to 20 seconds

@Zhichen Xu March 27, 2000 Paradyn Week 20

Characteristics of Test Cases

n
cC
49
S o
§ 3

N
nN

Instructions |13

Branches

Loops (Inner) |1

Procedure
Calls
(Trusted)

afet
Conditions

|]
Q
o
3
+—
G
Q
(1R
<
S
o
w
Y
o
|
Q
Q0
S
3
Z

n €] n >
- ol 28
(9]
L
O
-y —_
w
| —

@Zhichen Xu March 27, 2000

p—
(@)}
]

i L [
42) | 4| 3 | 7() |5(2)
I | |
]
3)
I_l—-=l__
e
56 | 84 | 57 | 135
N
21

Paradyn Week

0]
< X X < v 7 g X
AT APGER AT AFC gl ST NS
QO << @ R Q Q;& o Q N &
O & \§§’ R R \299' 23
S 9) 9 ¥ ot
Q (0&0

@Zhichen Xu

March 27, 2000

B Typestate
Propagation
B Annotation + Local

Verificvation
O Global Verification

Paradyn Week

Conclusion

» Can certify object code produced by commodity
compiler

- Only requires annotations to the inputs of untrusted
code

- Extensible:

- host-specified access policy,

- naturally extends to the checking of security
properties

* Initial experience promising

@Zhichen Xu March 27, 2000 Paradyn Week 23

Limitations

» Can only ensure safety properties that can be
expressed using typestate + linear constraints

- e.g., cannot prove termination

» Limitations in handling of array
- Detecting bounds of local array and array in structure
- Lost precision

* Inherited limitations of static techniques
- Must reject code that can not be checked statically
- Otherwise, there is the recovery problem

@Zhichen Xu March 27, 2000 Paradyn Week 24

Abstract Location + Typestate

» Abstract Location: name, size, alignment, writable
- Typestate: <type, state, access>

......m-mmll|||II|I|IM!‘I"IIII1|'!M!!! !Iliill

@Zhichen Xu March 27,2000 Paradyn Week 25

Abstract Operational Semantics
Example: Figure out the typestate of ry of "LD [r .+ n], ry"

typedef struct {
LD [I"a"' 4], Py Int page;
page_list * next;
} page_list;

page_list candidate;

@Zhichen Xu March 27, 2000 Paradyn Week 26

Attachment of Safety Predicates

» Annotate the instruction with safety predicates

- Local predicates and Global predicates+facts
Example LD [r +n], ry;
* Local Predicates
- There exists a field at offset n and of size 4

- r, is followable
- It is legal to assign the fields pointed to by 'ra+n’ to r,

* Global predicates:
- The addresses stored in r, is properly aligned,
- and non-null

@Zhichen Xu March 27, 2000 Paradyn Week 27

