Remote I/0 in Condor

Douglas Thain
Computer Sciences Department
University of Wisconsin-Madison

thain@cs.wisc.edu
http://www.cs.wisc.edu/condor

.
ondor
./

()



Outline

> Introduction

> Using Remote I/0

> Under the Hood

> Build Your Own: Bypass
> Conclusion

www.cs.wisc.edu/condor \/



Introduction

> The National Technology Grid
provides you with access to a diverse
array of machines.

> Although you have permission to use
these machines, they may be
unfriendly to your application.

G@ 1dor

[ &

www.cs.wisc.edu/condor



Introduction (Cont.)

> Remote I/0 is an adapter which
provides a friendly execution
environment on an unfriendly machine.

> Condor uses remote I/0 to
homogenize the many machines in a
Condor pool.

> Can we adapt this to the Grid?

A_ i|_ o
—«i@_udi@ r
www.cs.wisc.edu/condor § \/



What is Unfriendly?

> Programs can technically execute:
* Correct CPU and OS and enough memory

> But missing some critical items:
* No input files.
* No space for output files.
* No shared filesystem.
* No login - run as "nobody"?

(i@_ug,l r

./

N

www.cs.wisc.edu/condor



Range of Unfriendliness

> Anonymous compute node on the 6rid:
* Run as "nobody", with no access to disk.

> Machine at other institution:
* Can login, have some disk, but no file system.

> Machine down the hall:

* Can login, share one NFS mount, but not
another.

www.cs.wisc.edu/condor



Why use an unfriendly
machine?

> After all, homogeneous
clusters are the norm:

* 10s or 100s of identical
machines.

* Centrally administrated.
* Shared filesystem

www.cs.wisc.edu/condor




Need more machines!

> Another hundred idle machines could
be found across the street or in the

next department..
ey 11 I

S S%r |
8 8
_/

www.cs.wisc.edu/condor



Need more machines!
(Cont.)

> But, your application may not find the
resources it needs.

=III =II=
%u% T
IIII

HEE
g
.

File
.

www.cs.wisc.edu/condor

|
ondor

./

()



Need more machines!
(Cont.)

> The problem is worse when we consider a
global data Grid of many resourcesl!

ST eEss

www.cs.wisc.edu/condor §



Solution: Remote I/0

> Condor remote I/0 creates a friendly
environment on an unfriendly machine.

Just like home!

||
File
.

File
.

www.cs.wisc.edu/condor

L
ondor

-

()



Outline

> Introduction

> Using Remote I/0

> Under the Hood

> Build Your Own: Bypass
> Conclusion

www.cs.wisc.edu/condor \/



Using Remote I/0

> Condor provides several "universes":

* Vanilla - UNIX jobs + do not need
remote I/0

* Standard - UNIX jobs + remote I/0

* Scheduler - UNIX job on home machine
* Globus - UNIX jobs -> Globus

* PVM - specialized PVM jobs

www.cs.wisc.edu/condor



Vanilla Universe

> Submit any sort of UNIX program to
the Condor system.

> Pros:
* No relinking required.

* Any program at all, including
* Binaries
- Shell scripts
* Interpreted programs (java, perl)
* Multiple processes

www.cs.wisc.edu/condor @



Vanilla Universe (Cont.)

> Cons:
* No checkpointing.

* Very limited remote I/0 services.
- Specify input files explicitly.
- Specify output files explicitly.
* Condor will refuse to start a vanilla job

on a machine that is unfriendly.
* ClassAds: FilesystemDomain and UIDDomain __

www.cs.wisc.edu/condor @



Standard Universe

> Submit a specially-linked UNIX
application to the Condor system.

> Pros:
* Checkpointing
* Remote I/O services:
* Friendly environment anywhere in the world.
- Data buffering and staging.

» I/0 performance feedback.
- User remapping of data sources.

www.cs.wisc.edu/condor @




Standard Universe (Cont.)

> Cons:

* Must statically link with Condor library.

* Limited class of applications:
- Single-process UNIX binaries.
* A number of system calls prohibited.

www.cs.wisc.edu/condor \J



System Call Limitations

> Standard universe does not allow:
* Multiple processes:
» fork(), exec(), system()

* Inter-process communication:
- semaphores, messages, shared memory

* Complex I/O:

- mmap(), select(), poll(), non-blocking I/0, file

locking 2

www.cs.wisc.edu/condor @



System Call Limitations
(Cont.)

> Standard universe also does not allow:
* Kernel-level threads.

> Too restrictive? Try the vanilla
universe.

G@_u,li@r
www.cs.wisc.edu/condor \_/

[ &



System Call Features

> The standard universe does allow:

* Signals

 But, Condor reserves SIGTSTP and
SIGUSRI1.

* Sockets

- Keep it brief - network connections, by
nature, cannot migrate or checkpoint.

www.cs.wisc.edu/condor @




System Call Features
(Cont.)

> The standard universe does allow:

* Complex I/0 on sockets

- select(), poll(), and non-blocking I/O can be
used on sockets, but not other sorts of files.

* User-level threads

www.cs.wisc.edu/condor \/



What Universe?

> Vanilla:
* Perfect for a Condor pool of identical machines.

> Standard:

* Needed for heterogeneous Condor pools,
flocked pools, and more generally, unfriendly
machines on the Grid.

> The rest of this talk concerns ’rhe
standard universe.

www.cs.wisc.edu/condor @



Using the Standard
Universe

> Link with Condor library.
> Submit the job.
> Get brief I/0 feedback while running.

> Get complete I/0 feedback when
done.

> If needed, remap files.




Link with Condor Library

> Simply use condor_compile in front of
your normal link line.

> For example,

gcc main.o utils.o -0 program

> Becomes:

condor _conpile gcc main.o utils.o -0 program

> Despite the name, only re-linking is
required, not re-compiling. —

www.cs.wisc.edu/condor § \/



Submit Job

Uni ver se = standard

| nput = programin
out put = program out

> Create a submit fi e/' execut abl e = program

queue 3

% vi program subm t

> Submit the job:

% condor _submt program submt

www.cs.wisc.edu/condor C

ondor

(/ﬁl



Brief I/0 Summary

% condor _g -io0
-- Schedd: c0l.cs.wi sc.edu : <128.105.146.101: 2016>

| D OMNNER READ VWRI TE SEEK XPUT BUFSI ZE
756. 15 |oe 244.9 KB 379.8 KB 71 1.3 KB/s 512.0 KB
758. 24 ] oe 198.8 KB 219.5 KB 78 45.0 B /s 512.0 KB
758. 26 ] oe 44.7 KB 22.1 KB 2727 13.0 B /s 512.0 KB

3 jobs; Oidle, 3 running, O held

www.cs.wisc.edu/condor

BLKSI ZE
32.0 KB
32.0 KB
32.0 KB



Complete I/0 Summary in
Email

Your condor job "/usr/joel/records.renote input output" exited
wth status 0.

Total 1/C _
104. 2 KB/s effective throughput
5 files opened
104 reads totaling 411.0 KB
316 wites totaling 1.2 MB
102 seeks

|/ O by File:

buffered file /usr/joel out put
opened 2 tines
4 reads totaling 12.4 KB
4 wites totaling 12.4 KB

buffered file /usr/joel/input
opened 2 tines
100 reads totaling 398.6 KB
311 wite totaling 1.2 MB
101 seeks

www.cs.wisc.edu/condor



Complete I/0 Summary in
Email

> The summary helps identify
performance problems. Even
advanced users don't know exactly
how their programs and libraries
operate.




Complete I/0 Summary in
Email (Cont.)

> Example:
* CMS - physics analysis program.
* "Why is this job so slow?”

* Data summary: read 250 MB from 20
MB file.

* Very high SEEK total -> random access.

* Solution: Increase data buffer to 20
MB.

www.cs.wisc.edu/condor @



Buffer Parameters

> By default:
* buffer_size = 524288 (512 KB)
* buffer_block_size = 32768 (32 KB)

> Change parameters in submit file:

* buffer_size = 20000000
* buffer_block size = 32768

www.cs.wisc.edu/condor @




If Needed, Remap Files

> Suppose the program is hard-coded
to open datafil e, but you want each
instance to get a slightly different
copy. In the submit file, add:

file_remaps = "datafile = /usr/joe. data. $( PROCESS) "
> Process one gets

/usr/joe.data.l

> Process two gets

/usr/joe.data. 2

> And so on...

onac
www.cs.wisc.edu/condor § \/

—'{J

—
S

o



If Needed, Remap Files
(Cont.)

> The same syntax will allows the user
to direct the application to other
third-party data sources such as web
servers:

file remaps = "datafile =
http://ww. cs.w sc. edu/ usr/ | oe/data”

www.cs.wisc.edu/condor @



Outline

> Introduction

> Using Remote I/0

> Under the Hood

> Build Your Own: Bypass
> Conclusion

www.cs.wisc.edu/condor \/



The Big Picture

Home Machine Foreign Machine
™) r ™)
Trapped
Remote A - System
e i e il ent N
System Calls 8 v Calls
7]
+ 1
, Local + : Local Application
| System Ckpt Server | System
| Calls FTP server | Calls
Y GASS server Y
HTTP server
—
AO®O SRB A v

www.cs.wisc.edu/condor



The Machines

Home Machine

Has all o

your

files, or knows
where to find

them.

Accepts your
identity and

credentials

AO®O

Foreign Machine

Allows you to
run a process,
but it might
hot:

> have some of
your files.

> accept your
identity.

A — V

www.cs.wisc.edu/condor @




General Strategy

> Trap all the application's I/0
operations.

* open(), close(), read(), write(), seek(), ..
> Route them to the right service (at
the shadow's direction)

> Cache both service decisions and
actual data.




Application

> Plain UNIX
program.

> Unaware that it
is part of a
distributed
system.

> Statically linked
against Condor

li brarx.

www.cs.wisc.edu/condor

Home Machine

~
J‘

A

| Local

| System
: Calls

Y

A@®O

Foreign

Machine

-

Trapped
Remot A - System
_____________ — 11 N
System Calls 8 » Calls
- ’ A
- I
# : Local Application
Ckpt Server : System
FTP server | Calls
(GASS server ¥
HTTP server
- '
SRB A
277 ™




Condor Library

> Sends system
calls to various
services via RPC.

> Buffers and
stages data.

> Asks shadow for
policy decisions.

Home Machine

‘-‘----

A

Local
System
Calls

A® O

www.cs.wisc.edu/condor

Foreign Machine

-

Trapped
System
Agent s, Calls




> Makes policy
decisions for
application.

> Executes
remote
system calls
for
application.

Shadow

Home Machine Foreign Machine

-

A - .

i Local yd :Local
1 System Ckpt Server | System
Calls i Calls

|

FTP server
GASS server

™ ™
Trapped
- Remote - A - System
S ent S
Systemn Calls 8 v Calls
ki / A

Application

|
AG@OD I A=V
- < o

www.cs.wisc.edu/condor




Opening a File




Opening a File

Whereis "datafile?"
<«
vXen( "datafile", O RDONLY);




Opening a File

Where is"datafile?

<
> Open("dat afile", O RDONLY);
URL:
local:/usr/joe/datafile
Buffering:
none.

www.cs.wisc.edu/condor



Opening a File

Where is"datafile?"

<
> Open("dat afile", O RDONLY);
URL.:
local:/usr/joe/datefile
Buffering:
none.

Open("/usr/joel/datafile", O RDONLY)

v

Foreign
Machine

www.cs.wisc.edu/condor



Opening a File

Where is"datafile?"

<
> Open("datafile", O RDONLY) ;
URL.:
local:/usr/joe/datefile
Buffering:
none.
Qpen("/usr/joel/datafile”, O RDONLY) Success
\/
Foreign
Machine

www.cs.wisc.edu/condor



Opening a File

Where is"datafile?"

> Qpen("datafile", O RDONLY);
URL.:
local:/usr/joe/datefile

Buffering: A
none. Success

Qpen("/usr/joel/datafile”, O RDONLY) Success
\/

Foreign
Machine

www.cs.wisc.edu/condor



Shadow Responses

> URL:
* remote: Use remote system calls.
* local: Use local system calls.
* special: Use local system calls, disable
checkpointing.
* http: Fetch from a web server.
* Others in development...

www.cs.wisc.edu/condor @



Shadow Responses (Cont.)

> Buffering:
* None.
* Buffer partial data.
* Stage whole file to local disk.

www.cs.wisc.edu/condor \_/



Reading data from a file

RPC over network:
Several
milliseconds,

or (much) worse!

<

> .
Function call:

Lessthan a

microsecond?
" \

System call:
10s or 100s of
microseconds

v
Foreign

Machine

www.cs.wisc.edu/condor



Reading data from a file

Low latency, random-access data source: Read directly

Library remembers
where datafileis- no
need to communicate
with the shadow

Read 1024 bytes from
"datafile"

A \
Success

Read 1024 bytes from Success
“/usr/joeldatafile" v
Foreign
Machine

www.cs.wisc.edu/condor



Reading data from a file

High-latency, random-access data source: Buffer large chunks

Read 32768pyt$
< from "otherfil€
>
www.cs.wisc.edu/condor ( :




Reading data from a file

High-latency, sequential-access data source: Stage file to local disk.

Where do | open
» "datafile"?
URL:
ftp://server/datafile
Buffer: _

Stage to disk.

Local copy of
"otherfile"

www.cs.wisc.edu/condor

Open( datafile’,O_RDONLY);




Reading data from a file

Random access service can be provided from the local copy.

www.cs.wisc.edu/condor ( :




Guiding Principle

> Policy in shadow, mechanisms in
library.
* Shadow makes policy decisions because
it knows the system configuration.

* Library is closest to the application, so
it routes system calls to the destination
selected by the shadow.

www.cs.wisc.edu/condor C—— 4 —



Policy at Shadow

Scheduling
System

User Override

"l know file x can be
quickly loaded from
ftp://ftp.cs.wisc.edu/y"

v

'‘The foreign machineis
not in your cluster"

Condor
Ll%rary

<

www.cs.wisc.edu/condor

"Thereis plenty of space
to stage files over here."

ondor



Policy at Shadow

Scheduling |"The foreign machineis
System not in your cluster"

v

Ei%ndor

User Override rary

<

"l know file x can be
quickly loaded from
ftp://ftp.cs.wisc.edu/y"

"Thereis plenty of space
to stage files over here."

.

"Direct al requestsfor x to
ftp://ftp.cs.wisc.edu/y"

L
ondor

-~

www.cs.wisc.edu/condor



Policy Decisions

> May be different on each foreign
machine

* In same building: "use foreign machine”
* In other country: "use home machine"

> May change as job migrates
* same building -> other country

> May change by user control
*'"Let's see if NFS is faster than AFS”

( ndor

www.cs.wisc.edu/condor § \/

N



Outline

> Introduction

> Using Remote I/0

> Under the Hood

> Build Your Own: Bypass
> Conclusion

www.cs.wisc.edu/condor \_/



Build Your Own: Bypass

> Generalize remote I/0 -> split
execution.

> Building split execution systems is
hard.

> Bypass is a tool for building split
execution systems.

www.cs.wisc.edu/condor



Build Your Own: Bypass
(Cont.)

> Unlike Condor, Bypass can be used on
any UNIX program without re-linking.

> Example: GASS Agent




Generalized Split Execution

Allow arbitrary Replace them
code at the home with arbitrary
machine. code.

Trap a subset
< > of available
' system calls
Allow RPCs
to a shadow v\\A
In the home
environment.

www.cs.wisc.edu/condor



Split Execution is Hard

> Trapping system calls involves a large body
of knowledge of particular OS and version
* Library entry points:
* read, _read, _libc_read

* System call entries:
- socket(), open("/dev/tcp")

* Wacky header files:
+ #define stat(a,b) _xstat(VERSION,a,b)

www.cs.wisc.edu/condor @



Split Execution is Hard
(Cont.)

> RPCs must be platform-neutral

* Byte sizes and ordering
+ off_t is 8 bytes on Alpha, but 4 bytes on Intel

* Structure contents and order

- struct stat has different members on different
platforms

* Symbolic values

- O_CREAT is a source-level symbol, but its actual
value is different on every platform.

www.cs.wisc.edu/condor



Split Execution is Hard
(Cont.)

> The code replacing system calls must
be able to execute the original
system calls!

> Example: Sandboxing
* Trap open().

* Check for unauthorized file names.

 Return failure for some.
* Re-invoke the original open() for others.

G@_u,l I

./

[
N~

www.cs.wisc.edu/condor



Bypass Makes it Easy!

Y ou provide: How
you want the
system to work.

Specification
File

o

We provide:
Knowledge | ugly details of
File system

call trapping.

e

www.cs.wisc.edu/condor

@ﬁﬂ@f

O



Example: GASS Agent

> Let's create an Agent that changes all calls to UNIX
open() and close() into their analogues in Globus GASS.
This will instrument the application with remote file
fetching and staging.

Open(“http://www.yahoo.com/index.htm!”,O_RDONLY);

(THE GRID) < . .

Globus_gass_open(“http://www. yahoo com/index.htm!”,0_RDONLY);

www.cs.wisc.edu/condor N



Example: GASS Agent
(Cont.)

@ ncl ude "gl obus_common. h"
@ ncl ude "gl obus gass file.h"

agent prol ogue

{1

1}

I nt open( const char *nanme, int flags, [int node] )
agent _action

{{
gl obus_nodul e_activate( GOBUS GASS FI LE MODULE );

return gl obus _gass_open( nanmane, flags, node );

1}

int close( int fd )
agent _action

{{
1}

return gl obus gass close( fd );

www.cs.wisc.edu/condor



Example: GASS Agent
(Cont.)

> Generate the source code.
* bypass -agent gass.bypass

> Compile into a shared library.
* g++ gass_agent.C (libraries) -shared -0 gass.so

> Insert the library into your

environment.
* setenv LD_PRELOAD /path/to/gass.so

www.cs.wisc.edu/condor



Example: GASS Agent
(Cont.)

> Now, run any plain old UNIX program.
The program may be given URLs in
place of filenames. Globus GASS will
stage and cache the needed files.

% cp http://ww.yahoo. contindex. htm /tnp/yahoo. htmn

% grep address http://ww.cs.w sc. edu/i ndex. htm

<Ll > <A HREF="/academ c. ht Ml ">Academ ¢ i nf or mati on</ A>

5
@_lfdli@f

www .cs.wisc.edu/condor \/




Bypass

> Uses ideas from Condor, but is a
separate tool.

> User specifies design, Bypass
provides details.

G@_u,li@r
www.cs.wisc.edu/condor \J

Ml



Bypass (Cont.)

> Can be applied to any unmodified,
dynamically-linked UNIX program at
run time.
* Works on Linux, Solaris, IRIX, OSF/1.
* Static linking only on HP-UX.

www.cs.wisc.edu/condor @



Bypass (Cont.)

> The "knowledge file" is certainly not
completel

* Our experience: Each new OS version
has new tricks in the standard library
that must be foleded into the knowledge
file.

www.cs.wisc.edu/condor @



Outline

> Introduction

> Using Remote I/0

> Under the Hood

> Build Your Own: Bypass
> Conclusion

www.cs.wisc.edu/condor \/



Future Work

> Lots of new plumbing, but still adding
faucets

*FTP, SRB, GASS, SAM ...
> Find and use third-party staging
grounds?

* Turn checkpoint server into general
staging ground.

www.cs.wisc.edu/condor



Future Work (Cont.)

> Interaction with CPU scheduling:
* Release CPU while waiting for slow tape?
* Stage data, then allocate CPU?

www.cs.wisc.edu/condor \_/



In Summary...

> Harnessing large numbers of CPUs
requires that you use unfriendly
machines.

> Remote I/0 is an adapter which
provides a friendly execution
environment on an unfriendly machine.

GDﬁdi@f
www.cs.wisc.edu/condor § \/



In Summary... (Cont.)

> Condor uses remote I/0 to
homogenize the many machines in a
Condor pool.

> Bypass allows the quick construction
of split execution systems, allowing
remote I/O techniques to be used
outside of Condor.

@Bﬁd@r
www.cs.wisc.edu/condor § \/



Need More Info?

> Demo of Bypass on Wednesday in
Room 3381.

> Contact Douglas Thain
(thain@cs.wisc.edu)

> Questions how?




