
Paradyn/Condor Week (27 March 2000, Madison/WI)© 2000 wylie@cs.wisc.edu

Instrumentation Technology Update

Brian J. N. Wylie et al.
Z\OLH#FV�ZLVF�HGX

Computer Sciences Department

University of Wisconsin

1210 W. Dayton St.

Madison, WI 53706-1685

USA

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [2]

Dynamically instrument

• anything

• anywhere

• anytime

• efficiently

• safely

it’s not active, or blocked in syscall

Dyninst vision

that can be called/coded

in process address space

as it’s possible to make it

if you know what you’re doing

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [3]

Outline

• Dynamic instrumentation vision

• Tour of selected technology developments
•Retroactive “catch-up” instrumentation

•System-call interruption/resume

•Instrumentation trap handling

•Function relocation/rewriting/expansion

•Instrumentation recursion guards

•Virtual timers

“the stuff that couldn’t be put off any longer”

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [4]

Dynamic instrumentation 101

When instrumentation of a function requested
•at key “inst-points”, function patched with detours
to instrumentation basetramps & minitramp-chains

•subsequent execution includes instrumentation
(until it is removed when no longer required)

• Typical profiling instrumentation
@entry: set/increment flag, start timer

@exits: unset/decrement flag, stop timer

@calls: stop timer before call;
 re-start after call

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [5]

Instrumentation points

Entry

Exit x

Call i

pre
post

pre
post

pre

post

• First instruction in function
• First instruction in function
 after activation record created

• Last instruction before call
• First instruction after call

• Last instruction in function
 before activation record destroyed
• Last instruction in function

Location When Semantic

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [6]

Instrumentation assumptions

• Instrumentation relations:
•A.entry < A.pre-call(B) < A.post-call(B) < A.exit

•A.pre-call(B) < B.entry < B.exit < A.post-call(B)

•no other relations supported (though definable)

• Instrumentation scenarios:
• function to be instrumented is not on stack

• function is within body of stack

• function is currently top of stack (contains %pc)

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [7]

Problem case: functions on stack

• Instrumentation will be in an inconsistent state
for partially-executed functions, e.g.:
•@exit stop timer has no matching timer started

•state flags haven’t been initialized @entry/@pre-call

• Postponing instrumentation until current
function instance completes is an option, but
•effectively lose remainder of current execution

•may not complete or re-execute soon (e.g., main)

•generally cripples callgraph-based PC search!

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [8]

Retroactive instrumentation

• Provides illusion of pre-instrumented function
with context set for subsequent execution

• Execute instrumentation which can guarantee
would have been executed
•examine call-stack for residual evidence

• Approximate past times with best estimates
available (i.e., current time)

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [9]

Stack function instrumentation

• Functions currently on the stack need very
careful instrumentation
•function entry and active callee pre-call
instrumentation should be executed immediately
• use one-time-code (aka inferiorRPCs)

• set flags, start timers, etc. (instrumentation context)

• function return addresses on stack should be
updated to return via base trampolines which
contain post-call instrumentation

•other instrumentation can be freely inserted

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [10]

main()
 subA()
 subB() if (…)
 subC()
 loop
 subD1() if (…)
 subD2() if (…)
 subD3()
 until (…)
 subB()

Code structure

Fr. currentAddr

 0. subD2+32
 1. subC.subD2
 2. main.subC

Call stack

Interrupt during subD2
to instrument subC

*

main.entry
main.pre-call(subA)
subA.entry
subA.return
main.post-call(subA)
main.pre-call(subB)
subB.entry
subB.return
main.post-call(subB)
main.pre-call(subC)
subC.entry
subC.pre-call(subD1)
subD1.entry
subD1.return
subC.post-call(subD1)
subC.pre-call(subD2)
subD2.entry
…_

Virtual instrumentation
execution record

Retroactive instrumentation example

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [11]

Dyninst plumbing diagram

 entry

 ?br
 call D1

 ?br
 call D2

 call D3

 ?br

 exit

subC

call D2

StopT

StartT

Base-tramp

Mini-tramps

Ketchup

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [12]

Retroactive instrumentation walk-thru

• Pause/interrupt process execution with request to
instrument function subC (@entry,@calls,@exits)

• Stack-walk finds subC on the stack (in frame 1)

• Function subC instrumented as specified

• Return address of subC-callee subD2 updated with
subC.call(subD2) basetramp post-call location

• Retroactive execution of @entry & @pre-call(subD2)
instrumentation of subC determined necessary to
construct virtual instrumentation record/state

• Instrumentation complete, continue process execution

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [13]

Advanced ketchup

• If can’t instrument all of a function with requested
instrumentation, don’t instrument any of it

• If can’t retroactively execute all instrumentation for
all essential points in function, don’t run any of it
• (and don’t instrument function either)

• execute ketchup instrumentation in “virtual record” order

• If %pc within an instrumentation footprint, relocate
it to the corresponding instruction in the basetramp

• Update returning destinations of callee(s) on stack
• should return to appropriate post-call basetramp location
such that post-call instrumentation will be executed

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [14]

Advanced ketchup (cont’d)

• Stack-walk must understand already-instrumented
functions (with their basetramps & minitramps)

• Don’t execute retroactive instrumentation that will
be executed in the now-instrumented base function
when the process continues
• check prepend/append conditions vs. current location

• State for context-dependent instrumentation must
be reconstructed for its retroactive execution
• e.g., when a snippet accesses function call arguments or
local variables from the stack, these must be restored or
appropriate acquisition code incorporated

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [15]

Instrument anytime

• Reliably instrument active functions
(i.e., those on the call-stack)
• these are generally the most interesting functions
for execution/performance analysis

•requires retroactive instrumentation activation to
ensure consistency

• Execute actions promptly
•Current program execution, including system calls,
must be temporarily interrupted

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [16]

System-call interruption/resume

• Need to interrupt application’s system calls to
run inferiorRPCs, during attach, ketchup, etc.
•select(), sleep(), wait(), ...

• Solution:
•Solaris & Irix have /proc interrupt mechanism;
syscall resumes/restarts when execution continues

•Linux, AIX, WindowsNT require investigation

•Workaround on Linux awaits completion of
system-call before execution of inferiorRPC

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [17]

Basic instrumentation challenges

• Address spaces are too vast for 1-inst jumps
•fast/compact jumps have insufficient reach

•multiple instruction jump sequences required

• Some available instrumentation techniques are
highly intrusive
•use of traps (often extremely inefficiently handled)

• Some functions can’t be instrumented in-situ
• too compact or convoluted (i.e., highly optimized)

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [18]

Instrumentation-trap handling

• On x86 platforms, single byte trap instructions
required for tight instrumentation points

• Signal handler uses address of trap to lookup
and jump to destination base-trampoline

• sigaction instrumented to register application’s
SIGTRAP handlers for execution only with
non-instrumentation traps

• Interrupt signal delivery varies by platform

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [19]

Solaris signal-handling

• Use /proc to mask forwarding trap signals for
efficient handling directly in inferior process
•Signal may be delivered and instrumentation signal
handler started at any time

•Handler needs to defer to started inferiorRPCs
(which are ‘registered’ prior to execution)

•Upon inferiorRPC completion, execution will
continue with re-executing & handling the trap

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [20]

Linux signal-handling

• Signals delivered to attached ‘debugger’
returned to inferior process for handling
•Round-trip routing and context switches result in
low efficiency and high daemon overheads

• Daemon/mutator detaching will allow traps
to be efficiently handled in inferior process
•Daemon/mutator needs to temporarily re-attach
to perform instrumentation, etc.

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [21]

Windows NT signal-handling

• Signals always delivered to debugger/daemon
•Costly context-switches involved

•Resulting poor performance

• Debuggee always terminated on detach
•No hope of efficient instrumentation trap handling

• Function rewriting with expansion required to
avoid use of traps to reach instrumentation

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [22]

Function relocation & expansion

• Copy of original function relocated to heap,
selectively de-optimized, and rewritten with
extra space provided for instrumentation
•tease apart optimized call-returns (“tail-calls”)
and overlapping instrumentation point footprints
to allow each to be individually instrumented

•provide extra space for footprints which overrun
the end of the function or basic block

• Original function rewritten to branch to new

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [23]

Reasons for relocation/expansion

1. Instrumentation footprints would overlap

2. Instrumentation footprint internally
contains a branch target (i.e., crosses a basic
block boundary)

3. Instrumentation footprint would extend past
the end of function

• Previously, these would all have resulted in
functions considered “uninstrumentable”

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [24]

Relocation/expansion example

+2

+1

+1

+1
+1

0x01: inst1
0x02: call A
0x03: inst3
0x04: ?br +4
0x05: call B
0x06: inst6
0x07: ret
0x08: inst8
0x09: ?br +3
0x0A: call C
0x0B: ret
0x0C: inst12
0x0D: inst13
0x0E: call D
0x0F: inst15
0x10: ret

Original function

0x101: inst1
0x102: nop
0x103: nop
0x104: call A
0x105: inst3
0x106: ?br +5
0x107: call B
0x108: inst6
0x109: ret
0x10A: nop
0x10B: inst8
0x10C: ?br +5
0x10D: call C
0x10E: nop
0x10F: ret
0x110: nop
0x111: inst12
0x112: inst13
0x113: call D
0x114: inst15
0x115: ret
0x116: nop

Relocated
expanded
function

Type1

Type2

Type3

Type1

Type2

Footprint
overlap/conflict
analysis

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [25]

Relocation/expansion benefits

• New function can be (safely) instrumented
more thoroughly
•more points (and entire functions!) become
instrumentable, potentially even every instruction

• New function can be (safely) instrumented
more efficiently
•more space for larger instrumentation footprints
avoids the need to use costly traps

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [26]

Rewriting requirements

• Function expansion/rewriting must preserve
execution semantics
•retain expected order of execution

•set context for de-optimized sequences

•adjust branches/jumps affected by expansion and
relocation of targets

• Allocate sufficient heap space for expanded
function (near function or instrumentation)

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [27]

Trampoline recursion guards

• Dyninst supports arbitrary instrumentation
•Instrumentation can call other functions or make
system calls

• Instrumentation can therefore end up calling
itself (directly or more usually indirectly)

• The results are usually unintended
•infinite loops, resource exhaustion, ...

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [28]

void instrumentation ()
{
 // Do something ...
 if (error) printf(“There was an error\n”);
}

Simple motivating example

• If printf() is instrumented with a call to this function,
then any circumstance which sets error will cause an
infinite loop

• If any function printf() calls, such as write(), is
similarly instrumented, same net result

• These errors can be extremely subtle

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [29]

Guard implementation

• Guard uses a flag in the inferior heap and
extra instructions in the base-tramp

<save registers>
<if guard flag is set, jump to POST>
<set guard flag>
<execute mini-tramp>
<unset guard flag>
POST:
<restore registers>

Fragment of guarded base-tramp

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [30]

Recursion guard example

foo bar()

Basetramp

bar bar()

Basetramp

• Function foo() is
instrumented with
a call to bar

• Function bar() is also
instrumented with
a call to bar

• With the tramp guards,
inner instrumentation
will not be executed,
i.e., foo() calls bar, but
guard prevents
recursive call to bar

G?

G?

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [31]

Trampoline guard benefits

• Trampoline guards prevent mini-tramps from
being executed when the function/base-tramp
was reached (via snippet code in a mini-tramp)
from inside a base-tramp

• Avoids instrumentation recursively calling itself
or any other instrumentation

• Provides additional safety and flexibility with
dynamic instrumentation

• Guards can be disabled/removed for extra speed

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [32]

Virtual timers

• Want to exclude all time spent in unproductive
non-computing activities:
• Synchronizations that use busy waiting
(e.g., MPI send, MPI receive, Spinlock)

• Performance tool activities (e.g., sampling, flushing)

• Thread queuing

• Build each metric instance timer on top of
(per-thread) virtual timers
• Logically simpler and cleaner implementation

• More efficient since only need to start/stop virtual timers
instead of lists of individual metric timers

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [33]

Virtual timer replaces many actual timers

Only need to start/stop the
virtual timer to account for
non-computing activities,
leading to improved efficiency

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [34]

Dynamically instrument

• anything

• anywhere

• anytime

• efficiently

• safely

it’s not active, or blocked in syscall

Dyninst revision

that can be called/coded

in process address space

(remove guards at own risk)

(further improvements in progress)

Paradyn Instrumentation Technology Update© 2000 wylie@cs.wisc.edu [35]

Now withKetchup!

