Paradyn Tools Project

MRNet API
Programmer’s Guide

Release 5.0.0
July 2015

MRNet Project
www.paradyn.org/mrnet
mrnet@cs.wisc.edu

Paradyn Tools Project
www.paradyn.org
paradyn@cs.wisc.edu

Computer Sciences Department
University of Wisconsin
Madison, WI 53706-1685

Table of Contents

I [10 To (1 T 1o o SRR SSSURRP 1
2. ADSTIACLIONS ..o 2
2.1 ENA-POINES ... e e e e e 2
2.2 COMMUNICALOIS ...uuiiiiiiieee e eeee e eeeeeeee s e e e e e e e e e e e e e eeeee e eeas 2
2.3 SICAIMS ..ooiiiiieeiiei ettt sttt e e e e e e e e e e e s 2
2.4 FILEIS it e e e et r it ————————————_ 3
3. A SIMPIE EXAMPIE ..ottt e e 5
3.1 The MRNet INterfaceooooiiiiiiieeeeeieeee e 5.
Figure: MRNet Front-End Sample Codeoooiceceeeeiiiiiiiiinnnenn. 5
3.2 MRNEL INSTANTIALION ...vvvviiiiiiiiiiii i 6
Figure: MRNet Back-End Sample Codeooooiicceeeeiiiiiiiiiiiiins 6
4. The MRNEE AP .t et a e e e e e e 8
4.1 CH++ APIRETEIENCE ..oovveiiiiie e 8
4.2 CAPIREEIENCE ..ottt e 26
Appendix A: Building and Testing MRNEetccooiiiiiiiiiiiiiin 32
A.1 Supported Platforms and Compilerscccoieiiiiiiiiiiiiiiiiiiiiiiiiis 32
A.2 Configuration, Compilation, and Installation..................cccccceceeeennnn. 32
A.3 Testing the Codeoooiiiiiiiiiiiieeeeeeee e 32
A.4 Bugs, Questions, and COMMENLSccccccceeveeeiiieeeeecee e 32
Appendix B: A Complete Example: Integer ADditioncccooevveiiiiiiinnnee. 33
B.1 A Complete MRNet Front-ENd..............ommmeeeeeeiieeieiiiiiiiineeee e 34
B.2 A Complete MRNet Back-ENdcccooicceee i, 36
B.3 A Complete MRNet Lightweight Back-End.....cccccccooooiiiiiiiiiiiiiiinnnn, 37
B.4 A MRNet Filter: Integer Addition...........cccciiiiiiniiieeeeeeeeeeiis 38
Appendix C: Process-Tree TOPOIOGIEScooieiiieiieeeeeiiiie e 39
C.1 Topology File FOrmMatcccoeeees e e e e e e e e eeeeeeeeeeeeeie s 93
C.2 An Example Topology File..........cccoo o eeeeeee e 40
C.3 Topology File Generatorcuuueuieuuiiiiiiiiiiiiaeee e eeeeeeeeeeieeiieeees 40
Appendix D: Adding NeW Filtersceiiiiicce e 1.4
D.1 Defining an MRNet Filter..........coouiiimmmemiiiiee e 41
D.2 Fault-Tolerant Filtersccuuuiiimmmeeiiiiiiiiiieieeeeeeeeee e 41
D.3 Creating and Using MRNet Filter Shared Obfglds 42
Appendix E: FOrmat StriNgSovueruiiiiimmm e e e e e e e 43
Table:Format String CONVEISIONSciiiiees s e eeeeeeeeeeeeeeaannnnnns 43

MRNet API Programmer’s Guide

Release 5.0.0

Appendix F: MRNet Stream Performance Dataccc.....cvvvveiiiiiiiiiiieeeeeenn, 44

Table: Metric-Context Compatibility MatriXceeeeeviiiiviiinnnnnnnn. 45
Appendix G: Network Settingscoovvvviiiiiiieieeicrrs e 46
Table: Environment Variables and Network Attributes 46

MRNet API Programmer’s Guide Release 5.0.0

Page 1

1. INTRODUCTION

MRNet is a customizable, high-throughput commumicasoftware system for parallel tools and
applications with a master/slave architecture. MRMdduces the cost of these tools’ activities by
incorporating a tree-based overlay network (TBON)rocesses between the tool’s front-end and
back-ends. MRNet uses the TBON to distribute mamgortant tool communication and compu-
tation activities, reducing analysis time and kagpgool front-end loads manageable.

MRNet-based tools send data between front-end aok-&nds on logical flows of data called
streams. MRNet internal processes use filters nolaynize and aggregate data sent to the tool’'s
front-end. Using filters to manipulate data in pletas it passes through the network, MRNet can
efficiently compute averages, sums, and other moongplex aggregations on back-end data.

Several features make MRNet especially well-suéeda general facility for building scalable
parallel tools:

* Flexible organizationMRNet does not dictate the organization of th€&ONB MRNet process
organization is specified in a configuration fileat can specify common network overlays
like k-ary and k-nomial trees, or custom layouttad to the system(s) running the tool. For
example, MRNet internal processes can be allodateéédicated system nodes or co-located
with tool back-end and application processes.

e Scalable, flexible data aggregatioklRNet’s built-in filters provide efficient compation of
averages, sums, concatenation, and other commanredtictions. Custom filters can be
loaded dynamically into the network to perform tgpkcific aggregation operations.

* High-bandwidth communicatioMRNet transfers data within the tool system usangeffi-
cient, packed binary representation. Zero-copy ¢atins are used whenever possible to
reduce the cost of transferring data through itigpnocesses.

» Scalable multicastAs the number of back-ends increases, serializativzen sending control
requests limits the scalability of existing todlRNet supports efficient message multicast to
reduce the cost of issuing control requests frogndol front-end to its back-ends.

e Multiple concurrent data channelMRNet supports multiple logical streams of dataneen
tool components. Data aggregation and messagecamstltiakes place within the context of a
data stream, and multiple operations (both upwaidl downward) can be active simulta-
neously.

MRNet API Programmer’s Guide Release 5.0.0

Page 2

2. ABSTRACTIONS

The MRNet distribution has two main componetnibgirnet , a library that is linked into a tool’'s
front-end and back-end components, ameet_commnode , @ program that runs on intermediate
nodes interposed between the application frontagrlback-enddibmret exports an API (see
“C++ API Reference” on page § that enables I/O interaction between the fromt-and groups
of back-ends via MRNet. The primary purposenafet_commnode is to distribute data process-
ing functionality across multiple computer hostsl @0 implement efficient and scalable group
communications. In addition, there is another conemb, libmrnet_lightweight , Which
exports an API (se®C APl Reference” on page 26 that enables 1/O interaction between the
front-end and groups of "lightweight" back-ends M&Net. Lightweight back-ends provide a
pure C implementation of the MRNet API. They alsorebt support loading custom filters, and
by default the API cannot be used by multiple tdeeaoncurrently. There is a separately built
component, libmrnet_lightweight_r , Which is thread-safe. The following sub-sections
describe the lower-level components of the MRNel ihfnore detail.

2.1 End-Points

An MRNet end-point represents a tool or applicatpwocess. Specifically, they represent the
back-end processes (i.e., leaf processes) in thdagviree. The front-end can communicate in a
unicast or multicast fashion with these end-poaistslescribed below.

2.2 Communicators

MRNet uses communicators to represent groups ofpemds. Like communicators in MPI,
MRNet communicators provide a handle that idertifieset of end-points for point-to-point, mul-
ticast or broadcast communications. MPI applicatitypically have a non-hierarchical layout of
potentially identical processes. In contrast, MRHBeforces a tree-like layout of all processes,
rooted at the front-end. Accordingly, MRNet comnuators are created and managed by the
front-end, and communication is only allowed betwadront-end and its back-ends. Thus, back-
ends cannot interact with each other directly usmgMRNet API.

2.3 Streams

A stream is a logical channel that connects thitfemd to the end-points of a communicator. All
MRNet communication uses the stream abstractioeaBts carry data packets downstream, from
the front-end toward the back-ends, and upstreaom fthe back-ends toward the front-end.
Streams are expected to carry data of a specfig, igllowing data aggregation operations to be
associated with a stream. The type is specifiediguaiformat string (se&ppendix E: “Format
Strings” on page 43 similar to those used in C formatted 1/0O prim#sv(e.g., a packet whose
data is described by the format strirngd"%d %f %s " contains two integers followed by a float
then a character string). MRNet expands the stanftamat string specification to allow for
description of arrays.

MRNet API Programmer’s Guide Release 5.0.0

Page 3

2.4 Filters

Data aggregation is the process of merging mulinget data packets and transforming them into
one or more output packets. Though it is not nesgder the aggregation to result in less or even
different data, aggregations that reduce or mathfya values are most common. MRNet uses data
filters to aggregate data packets. Filters speamfoperation to perform and the type of the data
expected on the bound stream. Filter instanceb@uwad to a stream at stream creation. MRNet
uses two types of filters: synchronization filtarsd transformation filters. Synchronization filters
organize data packets from downstream nodes imohsgnized waves of data packets, while
transformation filters operate on the synchronidath packets yielding one or more output pack-
ets. A distinction between synchronization and gfammation filters is that synchronization fil-
ters are independent of the packet data type,rbosformation filters operate on packets of a
specific type.

Synchronization filters operate on data flowingtugam in the network, receiving packets one at
a time and outputting packets only when the spatifiynchronization criteria has been met. Syn-
chronization filters provide a mechanism to deahwhe asynchronous arrival of packets from
children nodes. The synchronizer collects packetstgpically aligns them into waves, passing

an entire wave onward at the same time. There$greshronization filters do no data transforma-
tion and can operate on packets in a type-indeperfdshion. MRNet currently supports three

synchronization modes:

* Wait For All: wait for a complete wave (i.e., a packet fromrg\ahild node) before producing
output packets (SFILTER_WAITFORALL)

* Do Not Wait:output packets immediately (SFILTER_DONTWAIT)

e Timeout output packets after ‘timeout’ milliseconds (SFER_TIMEOUT), or when a com-
plete wave has been accumulated. The timeout pbagahs upon receipt of the first packet
since the filter last produced output. The timewalue in milliseconds can be set using
Stream::set_FilterParameters . Note that this timeout value is used at eachl lefve
the tree - a timeout value of 100ms combined witrea of depth three should produce out-
puts at the front-end approximately 300ms afteaekpt is sent from a back-end. The default
timeout value is Oms. If you use SFILTER_TIMEOUTthaut setting a non-zero timeout
value, it will behave similar to SFILTER_DONTWAIT.

Transformation filters can be used on both upstraathdownstream data flows. Transformation
filters input a group of synchronized packets, anthbine data from multiple packets by per-
forming an aggregation that yields one or more wewa packets. Data packets produced by a
transformation filter can be forwarded in eitheredtion on a Stream by placing them in the
appropriate output set. Since transformation 8lt@re expected to perform computational opera-
tions on data packets, there is a type requirefoenhe data packets to be passed to this type of
filter: the data format string of the stream’s patskand the filter must be the same. Transforma-
tion operations must be synchronous, but are abledintain state from one execution to the
next. MRNet provides several transformation filtdrat should be of general use:

» Basic scalar operations on characters/integerstgominimum (TFILTER_MIN), maximum
(TFILTER_MAX), summation (TFILTER_SUM), average (LFER_AVG)

MRNet API Programmer’s Guide Release 5.0.0

Page 4

« Concatenationoperation that inputs n scalars and outputs &ovex length n of the same
base type (TFILTER_ARRAY_CONCAT)

Appendix D: “Adding New Filters” on page 41describes facilities for adding new user-defined
transformation and synchronization filters.

MRNet API Programmer’s Guide Release 5.0.0

Page 5

3. A SMPLE EXAMPLE

3.1 The MRNet Interface

A complete description of the MRNet API is‘i6++ API Reference” on page 8and“C API
Reference” on page 26This section offers a brief overview only. Usiitgnrnet, a tool can
leverage a system of internal processes, instayfd@g mrnet_commnode program, as a commu-
nication substrate. After instantiation of the MRMetwork (discussed in “MRNet Instantiation”
on page 6), the front-end and back-end processesoarected by the internal processes. The
connection topology and host assignment of thesegsses is determined by a configuration file,
thus the geometry of MRNet’s process tree can Beomized to suit the physical topology of the
underlying hardware resources. While MRNet can geae variety of standard topologies, users
can easily specify their own topologies; s&ppendix C: “Process-Tree Topologies” on
page 39for further discussion.

The MRNet API contains Network, EndPoint, Commutocaand Stream objects that a tool’s
front-end and back-end use for communication. Tleeéwdrk object is used to instantiate the
MRNet network and access EndPoint objects thaesgmt available tool back-ends. The Com-
municator object is a container for groups of endys, and Stream objects are used to send data
to the EndPoints in a Communicator.

1 front_end_main(...) {

2 Network * net;

3 Communicator * comm;

4 Stream * stream;

5 PacketPtr packet;

6 int tag = FirstApplicationTag;

7 float result;

8

9 net = Network::CreateNetworkFE(topology _file, back end_exe, argv);
10 comm = net->get_BroadcastCommunicator();

11 stream = net->new_Stream(comm, TFILTER_SUM, SFILT ER_WAITFORALL);
12 stream->send(tag, "%d", SUM_INIT);

13 stream->recv(&tag, packet)

14 packet->unpack("%f", &result);

15 '}
Figure 1: MRNet Front-End Sample Code

A simplified version of code from an example toarft-end is shown ifrigure 1. In the front-
end code, after some variable definitions in lide& an instance of the MRNet network is created
on line 9 using the topology specified in topolofie. In line 10, the newly created Network
object is queried for an auto-generated broadaastrwunicator that contains all available end-
points. In line 11, this Communicator is used taleksh a Stream that will use a built-in filteath
finds the summation of the data sent upstream ffbimé-end then sends one or more initialization
messages to the backends; in our example code@i 2, we broadcast an integer initializer on
the new stream. The tag parameter is an applicapenific value denoting the nature of the mes-

MRNet API Programmer’s Guide Release 5.0.0

Page 6

1 back_end_main(int argc, char** argv) {

2 Stream * stream;

3 PacketPtr packet;

4 int val, tag;

5 float random_float = (float) random();
6

7

8

9

Network * net = Network::CreateNetworkBE(argc,argv);
net->recv(&tag, packet, &stream);
packet->unpack("%d", &val);

10 if(val == SUM_INIT)

11 stream->send(tag, "%f", random_float);

Figure 2: MRNet Back-End Sample Code

sage being transmitted. After the send operati@front-end performs a blocking stream receive
at line 13. This call returns a tag and a packeglly, line 14 calls unpack to deserialize theafto
ing point value contained in packet.

Figure 2 shows the code for the back-end that reciprod¢hteactions of the front-end. Each tool
back-end first connects to the MRNet network ire Iy using the back-end version of the Net-
work constructor that receives its arguments v pihogram argument vectosrdc/argv).
While the front-end makes a stream-specific recealk the back-ends use a stream-anonymous
network receive that returns the tag sent by tbetfend, the packet containing the actual data
sent, and a stream object representing the streainthte front-end has established. Finally, each
back-end sends a scalar floating point value uagstriward the front-end.

A complete example of MRNet code can be found befoppendix B: “A Complete Exam-
ple: Integer Addition” on page 33

3.2 MRNet Instantiation

While conceptually simple, creating and connecting internal processes is complicated by
interactions with the various job scheduling systein the simplest environments, MRNet can
launch processes directly using facilities likke or ssh. In more complex environments, it is
necessary to submit all requests to a job managesgstem. In this case, MRNet is constrained
by the operations provided by the job manager {aese vary from system to system). Currently,
two modes of instantiating MRNet-based tools appsued.

In the first mode of process instantiation, MRNegtates the internal and back-end processes,
using the specified MRNet topology configurationdetermine the hosts on which the compo-
nents should be located. First, the front-end cbsshe configuration and uses a remote shell
program to create internal processes for thelékstl of the communication tree on the appropri-
ate hosts. Upon instantiation, the newly createatgsses establish a network connection to the
process that created it. The first activity on ttesinection is a message from parent to child con-
taining the portion of the configuration relevamthat child. The child then uses this information
to begin instantiation of the sub-tree rooted at thild. When a sub-tree has been established,
the root of that sub-tree sends a report to itenqgazontaining the end-points accessible via that

MRNet API Programmer’s Guide Release 5.0.0

Page 7

sub-tree. Each internal node establishes its dnlgrocesses and their respective connections
sequentially. However, since the various processesexpected to run on different compute
nodes, sub-trees in different branches of the métwece created concurrently, maximizing the
efficiency of network instantiation.

In the second mode of process instantiation, MREks on a process management system to
create some of the MRNet processes. This mode anodates tools that require their back-ends
to create, monitor, and control other processesekample, IBM’s POE uses environment vari-
ables to pass information, such as the procesk’wéhin the application’s global MPI communi-
cator, to the MPI run-time library in each applioatprocess. In cases like this, MRNet cannot
provide back-end processes with the environmenésseay to start MPI application processes.
As a result, MRNet creates its internal processesrsively as in the first instantiation mode, but
does not instantiate any back-end processes. MfRBetwaits for the tool back-ends to be started
by the process management system to ensure theyttaenvironment needed to create applica-
tion processes successfully. To allow back-endsotmect to the MRNet network, information
such as process host names and connection portensiminist be provided to the back-ends. This
information can be provided via the environmeningishared filesystems or other information
services as available on the target system. Teadlhe necessary information, the front-end can
use the MRNet API methods for discovering the nétvtopology details. This mode of process
instantiation is referred to as “back-end attactdeioWe show how to construct a tool that
requires back-end attach$mRNET_ROOT/Examples/NoBackEndInstantiation

MRNet API Programmer’s Guide Release 5.0.0

Page 8

4. THE MRNET API

Standard MRNet relies on the back-end nodes supgatt++ libraries. However, we have also
created a lightweight backend library with a puren@rface. The instantiation process is the
same and both methods of process instantation ugmeoged, although the API interface is
slightly different.

4.1 C++ API Reference

All classes are included in thdRNNnamespace. For this discussion, we do not eXgliciclude
reference to the namespace; for example, when f@eeree the classetwork , we are implying
the classvRN::Network .

In MRNet, there are five top-level class®stwork , NetworkTopology , Communicator , Stream ,

and Packet . The Network class primarily contains methods for instantiatengd destroying
MRNet process trees. ThwetworkTopology class represents the interface for discoveringildet
about the topology of an instantiated network. Aqgilon back-ends are referred to as end-
points, and theommunicator class is used to reference a group of end-pdntemmunicator is
used to establish stream for unicast, multicast, or broadcast communicaioia the MRNet
infrastructure. Theacket class encapsulates the data packets that arersardtream. The pub-
lic members of these classes are detailed below.

4.1.1 Class Network

The corresponding lightweight backend API clas€iass Network” on page 26
Net wor k * Networ k: : Cr eat eNet wor KFE(

const char * topol ogy,

const char * backend_exe,

const char ** backend_argv,

const std::map< std::string, std::string>* attrs=NULL,

bool rank _backends = true,

bool using nenory buffer = false);

The front-end constructor method that is used $taimtiate the MRNet process tregol-
ogy Is the path to a configuration file that descritfessdesired process tree topology.

backend_exe is the path to the executable to be used forppécation’s back-end processes.
backend_argv is a null terminated list of arguments to pasth&back-end application upon
creation (NOTEbackend_argv shoud not contain the executablepdékend exe is NULL,

no back-end processes will be started, and thee¢eaf/the topology specified by topology
will be instances ahrnet_commnode .

attrs IS a pointer to a map of attribute-value stringgattrs allows front-ends to progra-
matically set the values to use for the MRNet aRtaXenvironment variables (see Table 3 on
page 46) -- MRNet will only query the environment $ettings not given viaitrs . On Cray

MRNet API Programmer’s Guide Release 5.0.0

Page 9

XT, when communication or back-end processes oMR&let tree are to be co-located with
application processesattrs must contain a string pair that provides eithee th
“CRAY_ALPS APID” or “CRAY_ALPS APRUN_PID" attributevalue (see Table 3 on
page 46 for a description of these attributes).

rank_backends indicates whether the back-end process ranks ghmgdin at O, similar to
MPI rank numbering, and defaultstioe .

If using_memory_buffer is set tarue (default isfalse), the topology parameter is actually
a pointer to a memory buffer containing the speatfon, rather than the name of a file.

When this function completes without error, all M&Nprocesses specified in the topology
will have been instantiated. You may wsgwork::has_error to check for successful com-
pletion. The explicit use of theetwork constructor is now deprecated.

Net work * Network:: CreateNetworkBE(int argc, char ** argv);

The back-end constructor method that is used wherptocess is started due to a front-end
network instantiation. MRNet automatically pasdesrecessary information to the back-end
process using the program argument veciacfrgy) by inserting it after the user-speci-
fied arguments. The explicit use of the&work constructor is now deprecated.

In the “back-end attach” mode of network instaimiat where the back-end is not launched
directly by MRNet, the back-end program must caridta suitable argument vector. Typi-
cally, the front-end program will obtain informatiabout the leafirnet_commnode processes
using theNetworkTopology ~ class, and pass this information to back-endguestternal com-
munication channels (e.g., a shared file systeimg.dack-ends choose a leaf process as a par-
ent, and use that parent’s host, port, and rankrnmdtion to attach. Each back-end must
choose a unique value for its local rank; this gatwst be larger than any of the ranks of the
processes in the existing network. The followingeshows how to construct a valid argu-
ment vector:

char parHostname[64], myHostname[64], parPort[6], p arRank[6], myRank][6];
I/ fill parent data here using info from front-end
gethostname(myHostname, 64);

sprintf(myRank, “%d”, <unique rank>);
be_argc = 6;

char* be_argv[be_argc];

be_argv[0] = argv[0];

be_argv[1] = parHosthame;

be_argv[2] = parPort;

be_argv[3] = parRank;

be_argv[4] = myHostname;

be_argv[5] = myRank;

voi d Network: : ~Net wor k() ;

Network::~Network tears down the MRNet process tree whermieork object is deleted.
Note thatNetwork::shutdown_Network is deprecated.

MRNet API Programmer’s Guide Release 5.0.0

Page 10

voi d Network: :waitfor_Shut Down();

Network::waitfor_ShutDown can be used by back-ends to block until the ndtwas been
shut down by the front-end.

bool Network::is_Shut Down();

Back-ends use this method to query if the netwak been shut down; retunage if it has
been shut dowralse otherwise.

bool Network::set_ Fail ureRecovery(bool enable);

Network::set_FailureRecovery Is used by a front-end to control whether integahmu-
nication processes and back-ends will automatiaalfgonnect to a new parent when their
parent terminates unexpectedly. By default, faile®very is enabled and processes will re-
connect. Call this method witdnable set tofalse to turn off automatic failure recovery.
This method returngue if the setting has been applied successftidise otherwise.

bool Network::has_Error();

Network::has_error returnstrue if an error has occured during the last call toea@vork
method Network::print_error can be used to print a message describing the exac.

Error Code Network::get Error();

Network::get_Error returns arerrorCode for an error that occured during the last cakto
Network method Network::get_ErrorStr can be used to retrieve a message string describ-
ing the error.

const char * Network::get ErrorStr(ErrorCode code);
Network::get_ErrorStr returns a character string describing the errdicated bycode .
void Network::print_error(const char * error_nsg);

Network::print_error prints a message taderr describing the last error encountered
during aNetwork method. It first prints the null-terminated striagor_msg followed by a
colon, then the actual error message followed bgvaline.

std::string Network::get Local Host Name();

Network::get_LocalHostName returns the name of the host on which the locaNdRpro-
cess is running.

Port Network::get Local Port();
Network::get_LocalPort returns the listening port of the local MRNet prexe
Rank Network::get Local Rank();

Network::get_LocalRank returns the rank of the local MRNet process.

MRNet API Programmer’s Guide Release 5.0.0

Page 11

int Network::load_FilterFunc(const char * so_file, const char* func);

This method loads a new filter operation for usthenNetwork, and is conveniently similar to
the conventionadlopen facilities for opening a shared object and dynathdoading sym-
bols defined within.

so_file is the path to a shared object file that cont#inesfilter function to be loaded and
func_name is the name of the function to be loaded.

On successyetwork::load_FilterFunc returns the id of the newly loaded filter whichyma
be used in subsequent calls\tawork::new_Stream . A value of -1 is returned on failure.

int Network::load_FilterFuncs(
const char * so file,
const std::vector< const char* > & functions,
std::vector< int > & filter_ids);

This method loads several new filter operationgdneg in the same shared library into the
Network.

so_file is the path to a shared object file that cont#inesfilter function to be loaded and
functions is a vector of function names to be loadid:_ids is an output vector of filter

ids, where the id for the function at index i fimctions will be stored at index i in

filter_ids

Network::load_FilterFuncs returns the number of filter functions that weovewessfully
loaded, and populates the fiter_ids vector with the ids of the newly loaded filters (o
1 if a function could not be loaded).

int Network::recv(
int * tag,
Packet Ptr & packet,
Stream ** stream
bool blocking = true);

Network::recv IS used to invoke a stream-anonymous receive tperaAny packet avail-
able (i.e., addressed to any stream) will be rewi(m roughly FIFO order).

otag Wwill be filled in with the integer tag value thatas passed by the corresponding
Stream::send ~ operationpacket Is the packet that was received. A pointer todineam to
which the packet was addressed will be returnetgdam .

blocking is used to signal whether this call should blocketurn if data is not immediately
available; it defaults to a blocking call.

A return value of -1 indicates that the Network baperienced a terminal failure, and further
attempts to send or receive data on the Networkfaill A return value of 0 indicates no

MRNet API Programmer’s Guide Release 5.0.0

Page 12

packets were available for a non-blocking receiveg stream has been closed for a blocking
receive. The return value 1 indicates a packebkas received successfully.

i nt Network::send(
Rank be,
int tag,

const char * format_string, ...);

Network::send IS used to singlecast a packet from the front{eral specific back-ende is
the rank of the back-end processy is an integer that identifies the data in the pack
format_string is a format string describing the data in the pa¢seeAppendix E: “For-
mat Strings” on page 43for a full description.)

A return value of -1 indicates that the Network baperienced a terminal failure, and further
attempts to send or receive data on the Networllkfaifl The return value O indicates a packet
has been sent successfully.

NOTE:tag must have a value greather than or equal to thstaptFirstApplicationTag
defined by MRNet#include "mrnet/Types.h"). Tag values less thamirstApplication-
Tag are reserved for internal MRNet use.

bool Network: :enabl e_PerformanceDat a(
perfdata netric_t netric,
perfdata_context t context);

Network::enable_PerformanceData usesStream::enable_PerformanceData to start the
recording of performance data of the specifiedric type for the givercontext on all
streams. Returnsue on successSalse otherwise Appendix F: “MRNet Stream Perfor-

mance Data” on page 44 describes the supported metric and context tyf&ese
Stream::enable_PerformanceData for additional details.

bool Network: : di sabl e _PerformanceDat a(
perfdata netric_t netric,

perfdata_context t context);

Network::disable_PerformanceData stops the recording of performance data of theispe
fied metric type for the giverontext on all streams. Returmse on successalse other-
wise. Seestream::disable_PerformanceData for additional details.

bool Network::collect PerformanceDat a(
std::map< int, rank perfdata map > & results,
perfdata_netric_t netric,
perfdata_context _t context,
int aggr _filter_id = TFI LTER_ARRAY_CONCAT);

Network::collect_PerformanceData collects the performance data of the spectietlic
type for the givercontext on all streams. The performance data of eachmstisgassed

MRNet API Programmer’s Guide Release 5.0.0

Page 13

through the transformation filter identified lggr_filter_id . The data for all streams is
stored within the mapesults , keyed by stream identifier. Returnge on succesdalse
otherwise. Sestream::collect_PerformanceData for additional details.

voi d Network: : print_PerformanceDat a(
perfdata netric_t netric,
perfdata_context t context);

Network::enable_PerformanceData uses Stream::print_PerformanceData to print

recorded performance data of the specifivedic type for the giverontext on all streams.
Data is printed to the MRNet log files. S&eam::print_PerformanceData for additional

details.

unsi gned int Network::num Event sPendi ng();

Network::num_EventsPending returns the number of pending events availabledtieval
usingNetwork::next_Event

Event * Network::next_ Event();

This method returns a pointer the next pendvgnt , or NULL if no events are available. Each
event has an associategkntClass , one ofEvent:DATA_EVENT , Event:TOPOLOGY_EVENT,

or Event::ERROR_EVENT, that can be queried usiggent::get_Class . Similarly, each event
has an associat&dentType that can be queried usiggent::get_Type

voi d Network::clear Events();
This method clears all pending events.

bool Network::register EventCal | back(
Event C ass ecl ass,
Event Type etyp,
evt _cb _func cb_func,
void * cb_func_data,

bool onetine = false);

Network::register_EventCallback allows users to register a callback function tchked
when events are generated.

eclass should be set to one ofvent:DATA EVENT , Event:TOPOLOGY_EVENT, oOr
Event.::ERROR_EVENT.

etyp should be set to eitheérent::EVENT_TYPE_ALL , to have the function called when any
event within the specifiedventClass occurs, or one of the valid class-specHientType
values (see the classeataEvent , TopologyEvent , andErrorEvent in “mrnet/Event.h”

for the class-specific types).

The typeevt_cb_func is defined asvoid (*evt_cb_fn)(Event* e, void* cb_data)
All user-defined callback functions must use thensdunction prototype. When an event

MRNet API Programmer’s Guide Release 5.0.0

voi

voi

Page 14

occurs, all callbacks registered for that type\adrd will be called. Each function is passed a
pointer to theevent , and the value of the auxiliary data pointierfunc_data given at regis-
tration, which may beluLL

onetime should be set toue if the function should be removed after it is edlfor the first
(and only) time. Note that onetime callbacks mstdnistered for a specific event type.

d Network::remove_Event Cal | back(
evt _cb _func cb_func,
Event Cl ass ecl ass,
Event Type etyp);

This method removes_func from the list of functions to be called for theespied Event-
Class andEventType . If eclass is given agvent:EVENT_CLASS_ALL , the function will be
removed for all eventstyp can be given aBvent:EVENT_TYPE_ALL to remove the func-
tion for all types of events in the givetlass .

d Network::remove_Event Cal | backs(
Event C ass ecl ass,

Event Type etyp);

This method removes all functions to be calledtierspecifiedkventClass andEventType .

If eclass Is given asvent::EVENT_CLASS_ALL , all callback functions will be removed for
all eventsetyp can be given aBvent:EVENT_TYPE_ALL to remove all functions registered
for all types of events in the givenlass .

int Network::get EventNotificationFd(EventC ass eclass);

Network::get_EventNotificationFd returns a file descriptor that can be used wstéct
or poll to receive notification of interesting DATA, TOPOIGY, or ERROR events.

eclass should be set to one oOfvent:DATA_EVENT , Event:TOPOLOGY_EVENT, oOr
Event::ERROR_EVENT. Event:DATA_EVENT can be used by both front-end and back-end pro-
cesses to provide notification that one or moreadpackets have been received.
Event: TOPOLOGY_EVENT and Event:ERROR_EVENT can only be used by front-end pro-
cesses, and provide notification when the front-@nskrves a change in network topology or
an error, respectively.

When the file descriptor has data available (fomedmeg), you should -callNet-
work::clear_EventNotificationFd before taking action on the notification. Whenifiot
cations are no longer needed, Ns&vork::close_EventNotificationFd

NOTE: this functionality is not available on Windswlatforms.

MRNet API Programmer’s Guide Release 5.0.0

Page 15

voi d Network::clear_EventNotificationFd(EventC ass ecl ass);

This method resets the event notification file dgsor returned from Net-
work::get_EventNotificationFd . eclass should be set to one @&kent:DATA EVENT ,
Event::TOPOLOGY_EVENT, Or Event::ERROR_EVENT.

NOTE: this functionality is not available on Windswlatforms.
voi d Network::close EventNotificationFd(EventC ass ecl ass);

This method closes the event notification file dggor returned from Net-
work::get_EventNotificationFd . eclass should be set to one @&hent::DATA EVENT ,
Event::TOPOLOGY_EVENT, Or Event::ERROR_EVENT.

NOTE: this functionality is not available on Windswlatforms.

bool is_Local NodeChild() const;
bool is_Local NodeParent() const;
bool is_Local Nodelnternal () const;
bool is_Local NodeFront End() const;
bool is_Local NodeBackEnd() const;

These methods retutiue if the local process is of the specified tyfagse otherwise.

4.1.2 Class NetworkTopology

Instances ofNetworkTopology are network specific, so they are created wheveta@ork is
instantiated. MRNet API users should not need ¢ater their owmetworkTopology instances.

The corresponding lightweight backend API clas€isss NetworkTopology” on page 28

Net wor kTopol ogy * Network: : get _Net wor kTopol ogy();

Network::get_NetworkTopology is used to retrieve a pointer to the underlyzegvorkTo-
pology instance of aletwork .

unsi gned i nt Networ kTopol ogy: : get _NunNodes();

This method returns the total number of nodeséntitbe topology, including front-end, inter-
nal, and back-end processes.

Net wor kTopol ogy: : Node * Networ kTopol ogy: : fi nd_Node(Rank node_rank);

This method returns a pointer to the tree node waitik equal tmode_rank , or NULL if not
found.

Net wor kTopol ogy: : Node * Networ kTopol ogy: : get_Root ();

This method returns a pointer to the root nofdie tree, or NULL if not found.

MRNet API Programmer’s Guide Release 5.0.0

Page 16

voi d NetworkTopol ogy: : get _Leaves(
std::vect or <Net wor kTopol ogy: : Node * > & | eaves);

This method fills théeaves vector with pointers to the leaf nodes in the toge. In the case
where back-end processes are not started whertiernk is instantiated, a front-end process
can use this function to retrieve information abthé leaf internal processes to which the
back-ends should attach.

voi d Networ kTopol ogy: : get _BackEndNodes(
std: :set< NetworkTopol ogy:: Node * > & nodes);

This method fills a set with pointers to all bagidgorocess tree nodes. Note that this method
is unsafe to use while the network topology isluxfas is the case during the “back-end
attach” mode of MRNet tree instantiation.

voi d Networ kTopol ogy: : get _Par ent Nodes(
st d: : set <Net wor kTopol ogy: : Node * > & nodes);

This method fills a set with pointers to all tremdes that are parents (i.e., those nodes having
at least one child).

voi d Networ kTopol ogy: : get _Or phanNodes(
std: :set< NetworkTopol ogy:: Node * > & nodes);

This method fills a set with pointers to all treses that have no parent due to a failure.

voi d NetworkTopol ogy::get_TreeStatistics(
unsi gned i nt & num nodes,
unsi gned int & depth,
unsigned int & m n_fanout,
unsi gned int & nmax_fanout,
doubl e & avg_fanout,
doubl e & stddev_fanout);

This method provides users statistics about theettpeology by setting the passed parameters.

num_nodes is the total number of tree nodes (same as theevaturned byetworkTopol-
ogy::get_NumNodes), depth is the depth of the tree (i.e., the maximum petigth from root
to any leaf)min_fanout is the minimum number of children of any parend@&eax_fanout

is the maximum number of children of any parentejady_fanout is the average number of
children across all parent nodes, antdlev_fanout is the standard deviation in number of
children across all parent nodes.

voi d Networ kTopol ogy: : print_Topol ogyFil e(const char * filenane);

This method will create (or overwrite) the spedfitepology filefilename using the current
state of thisNetworkTopology ~ Object.

MRNet API Programmer’s Guide Release 5.0.0

Page 17

voi d NetworkTopol ogy: : print_DOTG aph(const char * fil ename);

This method will create (or overwrite) the spedfot graph filgilename using the current
state of thisNetworkTopology = object.

std::string NetworkTopol ogy: : Node: : get _Host Nare() ;
This method returns a string identifying the hosteaf the tree node.
Port Networ kTopol ogy: : Node: : get _Port();
This method returns the listening port of the tnede.
Rank Networ kTopol ogy: : Node: : get _Rank();
This method returns the unique rank of the treeenod
Rank Networ kTopol ogy: : Node: : get _Parent () ;
This method returns the rank of the tree node’siar

const std::set< NetworkTopol ogy::Node * > &
Net wor kTopol ogy: : Node: : get _Children();

This method returns a set containing pointerseactiildren of the tree node, and is useful for
navigating through the tree.

unsi gned i nt Networ kTopol ogy: : Node: : get _NuntChi | dren();
This method returns the number of children of tee hode.
unsi gned i nt Networ kTopol ogy: : Node: : fi nd_SubTr eeHei ght () ;

This method returns the height of the subtree tbatéhisNetworkTopology — node.

4.1.3 Class Communicator

Instances oCommunicator are network specific, so their creation methodsfanctions of an
instantiatedNetwork object. There is no corresponding lightweight leakclass.

Conmruni cat or * Networ k: : new_Comuni cat or () ;

This method returns a pointer to a neammunicator 0bject. The object contains no end-
points. UseCommunicator::add_EndPoint to populate the communicator.

Conmruni cat or * Networ k: : new_Comuni cat or (Conmuni cat or & comm) ;

This method returns a pointer to a heammunicator 0bject that contains the same set of
end-points contained itomm

MRNet API Programmer’s Guide Release 5.0.0

Page 18

Conmruni cat or * Networ k: : new_Comuni cat or (

std::set< Communi cati onNode * > & endpoints);

This method returns a pointer to a neswmunicator object that contains the provided set of
end-points.

Conmruni cat or * Network: : new _Comuni cator(std::set< Rank > & endpoints);

This method returns a pointer to a neammunicator 0object that contains the set of end-
points corresponding to processes whose ranksravelpd in the passed set.

Conmruni cat or * Network: : get Broadcast Conmuni cator();

This method returns a pointer to a broadeastmunicator containing all the end-points
available in the system at the time the functiocaited.

Multiple calls to this method return the same p&irto theCommunicator object created at
network instantiation. If the network topology clyas, as can occur when starting back-ends
separately, the object will be updated to reflaet additions or deletions. This object should
not be deleted.

bool Conmuni cat or::add_EndPoi nt (Rank ep_rank);

This method is used to add an existing end-poitth vankep_rank to the set contained by
this Communicator .

If the set of end-points in the communicator algeedntains the new end-point, the function
returns success. This method fails if there exmtsend-point defined bgp_rank . This
method returngue on successalse on failure.

bool Conmmuni cat or::add_EndPoi nt (Comuni cati onNode * endpoint);

This method is similar tadd_EndPoint above except that it takes a pointer toamunica-
tionNode object instead of a rank. Success and failureitond are exactly as stated above.
This method returngue on success arfdise on failure.

const std::set< Comunicati onNode * > & Communi cator::get_ EndPoints();

Returns a reference to the setcofnmunicationNode pointers comprising the end-points in
the communicator.

std::string Comruni cati onNode: : get _Host Nanme();

Returns a character string identifying the hostnafrihe end-point represented by thisn-
municationNode

Port Comuni cati onNode: : get _Port();

Returns the listening port of the end-point repnése by thisSCommunicationNode

MRNet API Programmer’s Guide Release 5.0.0

Page 19

Rank Comuni cati onNode: : get _Rank();

Returns the rank of the end-point represented isyCtiimmunicationNode

4.1.4 Class Stream

Instances obtream are network specific, so their creation methodsfanctions of an instanti-
atedNetwork object. The corresponding lightweight backend ARks is‘Class Stream” on
page 28

MRNet provides two types of streams, homegenousatetogeneous. Homogenous streams use
the same filters at every process participatinthenstream, while heterogeneous streams allow
for different filters to be used at different preses.

Stream * Network:: new_Stream
Conmruni cat or * comm
int up_transfilter_id = TFI LTER _NULL,
int up_syncfilter_id = SFILTER WAl TFORALL,
int down _transfilter_id = TFI LTER NULL);

This version ofNetwork::new_Stream is used to create a homogendiieeam object
attached to the end-points specified by a Commtoricdjectcomm

up_transfilter_id specifies the transformation filter to apply totaldlowing upstream
from the application back-ends toward the front:¢hd default value ISFILTER_NULL.

up_syncfilter_id specifies the synchronization filter to apply tpstream packets; the
default value ISFILTER_WAITFORALL

down_transfilter_id allows the user to specify a filter to apply tonhstream data flows;
the default value ISFILTER_NULL.

Stream * Networ k:: new_Strean
Conmruni cat or * comm
std::string us_filters,
std::string sync_filters,

std::string ds_filters);

This version ofNetwork::new_Stream IS used to creae a heterogenestsam object. Users
specify where packet filters are placed within titee. Like the homogenous versionNeat-
work::new_Stream , the end-points are specified by taexmargument.

Strings are used to specify the filter placemewntt) the following syntax: filter_id =>

rank; [filter_id => rank; ...] " If "+" is specified as theank for an assignment, the
filter will be assigned to all ranks that have alseady been assigned. If a rank wittbmmis
not assigned a filter, it will use the defaultdit SeeSMRNET_ROOT/Examples/Heteroge-

MRNet API Programmer’s Guide Release 5.0.0

Page 20

neousFilters for an example of usin@etwork::new_Stream to specify different filter
types to be used within the same stream.

us_filters specifies the transformation filters to apply tatadflowing upstream from the
application back-ends toward the front-end.

sync_filters specifies the synchronization filters to apply pstieam packets.

ds_filters allows the user to specify filters to apply to dsiveam data flows.

Note that more than one filter should not be agsigo a single rank in any of these strings.
Stream * Network::get_ Stream(unsigned int id);

Returns a pointer to thgream identified byid , orNULL on failure. Back-ends may pass their
local rank as thal to retrieve a singlecast stream that can be useabh-filtered communi-
cation directly with the front-end.

unsigned int Stream:get_Id();
Returns the integer identifier for trégeam .
const std::set< Rank > & Stream:get_ EndPoints();
Returns the set of end-point ranks for thigam .
unsigned int Stream:size();
Returns an integer indicating the number of enavgdor thisStream .
bool Stream:is_C osed();

When used by back-ends, this method rettutes if the front-end has closed ttégeam by
deleting the corresponding objefatse otherwise. On the front-end, this method can leelus
to determine if the stream has been disabled daentm-recoverable failure (e.g., a back-end
process has died or a sub-tree containing strednp@nts has become unreachable).

MRNet API Programmer’s Guide Release 5.0.0

i nt
i nt
i nt
i nt

Page 21

Stream :send(int tag, const char * format_string, ...);

Stream :send(const char * format_string, va_list list, int tag);
Stream :send(int tag, const void** data, const char * format_string);
Stream :send(PacketPtr & pkt);

Invokes a data send operation on the calingam . The first three interfaces construct a
packet from the passed operands, while the foulldlva for sending an already constructed
packet.

tag is an integer that identifies the data in the pack

format_string is a format string describing the data in the pa¢seeAppendix E: “For-
mat Strings” on page 43for a full description).

data is an array of pointers to individual data iterttee format string indicates the type of
data pointed to by each array index.

On successstream::send returns 0O; on failure -1.

NOTE:tag must have a value greather than or equal to thetaotrirstApplicationTag
defined by MRNet#include "mrnet/Types.h"). Tag values less thanstApplication-
Tag are reserved for internal MRNet use.

int Stream:flush();

Commits a flush of all packets currently buffergotiis Stream . A successful return value of

0 indicates that all buffered packets have beesqmhto the operating system for network
transmission. A return value of -1 indicates tihat $tream has experienced a terminal failure,
and further attempts to send or receive data ostteam will fail.

int Stream:recv(int * tag, PacketPtr & packet, bool blocking = true);

Invokes a stream receive operation. Packets retdiyehe callingstream will be returned
by this method, one-at-a-time, in FIFO order.

tag will be filled in with the integer tag value thatas passed by the corresponding
Stream::send operationpacket Is set to point to the received packet.

blocking determines whether the receive should block amrmeif data is not immediately
available; it defaults to a blocking call.

A return value of -1 indicates that the stream dvgserienced a terminal failure, and further
attempts to send or receive data on the streanfaaillA return value of O indicates no pack-
ets were available for a non-blocking receive herstream has been closed. The return value
1 indicates a packet has been received successfully

MRNet API Programmer’s Guide Release 5.0.0

Page 22

int Stream:get_DataNotificationFd();

Stream::get_DataNotificationFd returns a file descriptor that can be used watéct or
poll to receive notification that data has arrivedd@tream.

When the file descriptor has data available (foradimeg), you should call
Stream::clear_DataNotificationFd before taking action on the notification. Whenifiot
cations are no longer needed, 88eam::close_DataNotificationFd

NOTE: this functionality is not available on Windswlatforms.
void Stream:clear_DataNotificationFd();

This method resets the data notification file dgsor returned from
Stream::get_DataNotificationFd

NOTE: this functionality is not available on Windswlatforms.
void Stream:close_DataNotificationFd();

This method closes the data notification file dgdor returned from
Stream::get_DataNotificationFd

NOTE: this functionality is not available on Windswlatforms.

int Stream:set FilterParaneters(
FilterType ftype,
const char *format_str, ...) const;

Stream::set_FilterParameters allows users to dynamically configure the operaid a
stream transformation filter by passing arbitraggadin a similar fashion tetream::send
When the filter executes, the passed data is daikes ePacketPtr parameter to the filter,
and the filter can extract the configuration sein

ftype should be given asILTER_UPSTREAM_SYNdo configure the synchronization filter,
FILTER_UPSTREAM_TRANS$Or upstream transformation filter aRLTER_DOWNSTREAM_TRANS
for downstream transformation filter.

int Stream:set FilterParaneters(
const char *format_str,
va_list parans,
FilterType ftype) const;

This method is the same as the previous methogekaethe filter configuration parameters
are given in thea_list form.

MRNet API Programmer’s Guide Release 5.0.0

Page 23

bool Stream : enabl e_Perfor manceDat a(

perfdata_netric_t netric,

perfdata_context t context);
Stream::enable_PerformanceData starts recording performance data for the spehbiie-

ric type for the givertontext . Returnstrue on succesdalse otherwise Appendix F:
“MRNet Stream Performance Data” on page 44describes the metric and context types.

bool Stream :di sabl e_Perf or manceDat a(

perfdata_netric_t netric,

perfdata_context t context);

Stream::disable_PerformanceData stops recording performance data for the specified
metric type for the givemontext . Previously recorded data is not discarded, satthan be
retrieved withStream::collect_PerformanceData . Users can enable/disable recording for

a particularmetric andcontext any number of times before collecting the resiRisturns
true 0N succesSalse otherwise.

bool Stream:coll ect PerfornmanceDat a(

voi

rank_perfdata map & results,

perfdata netric_t netric,

perfdata_context _t context,

int aggr _filter_id = TFI LTER_ARRAY_CONCAT);

Stream::collect_PerformanceData collects the recorded performance data for theispe
fied metric type for the givencontext . The collected data is returned in a
rank_perfdata_map , Wwhich associates individual node ranks to sa@::vector<

perf_data_t > containing the recorded data instances. Afteectthn, the recorded data at
each nodeis discarded. Retutns on successalse otherwise.

Users can aggregate the recorded data across Impdegcifying a transformation filter with
aggr_filter_id . Note that only the built-in filter types afFILTER_SUM TFILTER_MIN,
TFILTER_MAX, TFILTER_AVG andTFILTER_ARRAY_CONCA®re supported. By default, perfor-
mance data from each node is concatenated, anltsresntains every recorded data instance
for each node. If the summary aggregation filteesused, results will contain a single associ-
ated pair. The rank for this pair is equalite(number of aggregated ranks) , and the vec-
tor contains one or more aggregated instances.

d Stream : print_PerformanceDat a(
perfdata_context t metric,

perfdata_context t context);

Stream::print_PerformanceData prints recorded performance data of the specitfiecc
type for the givertontext . At each rank, the data is printed to the MRNgtfites and then
discarded.

MRNet API Programmer’s Guide Release 5.0.0

Page 24

4.1.5 Class Packet

A Packet encapsulates a set of formatted data elementsoseatstream. Packets are created
using a format string (e.g 0% %d" describes a null-terminated string followed by2abit integer,
and the packet is said to contain tdata elemen)s MRNet front-end and back-end processes
typically do not creat@acket instances, as they are automatically produced treformatted
data passed t®tream::send Or Network::send . EachPacket is allocated usingnhalloc of the

C standard library, and therefore has the sameddggement guarantee8ppendix E: “Format
Strings” on page 43contains the full listing of data types that canslent in @acket .

When receiving a packet vétream:recv , Network:recv , or in a filter’s input vector, the
Packet instance is stored within RacketPtr object.PacketPtr is a class based on the Boost
shared_ptr class, and helps with memory management of packetscketPtr can be assumed
to be equivalent toPacket * ", and all operations on packets require useaoketPtr . Packets
can be created explicitly using the constructorswsh below, using the following method to
instantiate @acketPtr

PacketPtr new_pkt(new Packet(...));

The corresponding lightweight backend API clas€isss Packet” on page 30

Packet : : Packet (
unsigned int streamid,
int tag,
const char* format_str, ...);

Constructs @acket that can be sent on the stream with the gsseam_id . The packet is
associated with g that can be used by receivers to identify the etstformat_str is a
format string describing the data elements in thekpt. The variable arguments following
format_str ~ should have the appropriate types for each dataesit. Note that for array data
elements, an extra argument must be passed toehold array’s length. (Sefppendix E:
“Format Strings” on page 43for a full description.)

Packet : : Packet (
const char* format_str,
va_|list data_el ens,
unsi gned int stream.id,
int tag);

Works the same as the firscket constructor, but allows for passingalist in place of
the variable arguments. This constructor is uskfullibraries built on top of MRNet that
allow users to specify packet format strings.

MRNet API Programmer’s Guide Release 5.0.0

Page 25

Packet : : Packet (
unsigned int stream.id,
int tag,
const void** data_el ens,

const char* fornmat_str);

Works the same as the fisdcket constructor, but allows for passing an array dhdgde-
ment pointers instead of the variable argumentsdaia_elems array must contain the same
number of elements as indicatedfwynat_str

i nt Packet::get_Tag();
Returns the integer tag associated with paisket .
voi d Packet::set _Tag(int tag);
Sets the integdng associated with thiBacket .
unsi gned int Packet::get_Stream d();
Returns the stream id associated with Haisket .
voi d Packet::set _Stream d(unsigned int strmid);
Sets the stream id associated with Haisket tostrm_id
const char * Packet::get FormatString();
Returns the character string specifying the datadb of thisPacket .

i nt Packet::unpack(const char * format_str, ...);

i nt Packet::unpack(va_list list, const char * format_str, bool);

Extracts data contained within tiRacket according to théormat_str , which must match
that of the packetiormat_str is a format string describing the data in the padiSee
Appendix E: “Format Strings” on page 43for a full description).

For the first version, the function arguments fafilog format_str ~ should be pointers to the
appropriate types of each data item. For stringanaly data types, new memory buffers to
hold the data will be allocated usinglloc , and it is the user’s responsibility iee these
strings and arrays. Note that for array data eléspam extra argument must be passed to hold
each array’s length.

For the second version, the va_list list shouldt@ionthe arguments corresponding to the
varargs from the first version. The third parameétea dummy parameter required by some
compilers to distinguish the second version fromftrst version, and its value is ignored.

The return value 0 indicates success; -1 indidae$ormat string supplied did not match the
packet or a failure in unpacking.

MRNet API Programmer’s Guide Release 5.0.0

Page 26

voi d Packet::set_Tag(int tag);
This method can be used to set the packet’s tag \adter it has been created.
voi d Packet::set Destinations(const Rank * bes, unsigned int numbes);

This method can be used to tell MRNet to deliver placket to a specific set of back-ends,
rather than all the back-ends addressed by thanstom which the packet is sebés should
point to an array of back-end ranks, aneh_bes is the number of entries in the array.

voi d Packet::set_DestroyData(bool destroy);

This method can be used to tell MRNet whether etmaleallocate the string and array data
members of @acket . If destroy iStrue , string and array data members will be deallocated
usingfree when thePacket destructor is executed - this assumes they wéryeadéd using
malloc . The default behavior for user-generated packeatsi to deallocatéafse). Turning

on deallocation is useful in filter code that malibcate strings or arrays for output packets,
which cannot be freed before the filter functioturas.

4.2 C API Reference

In the MRNet lightweight back-end library, the MRiN&t++ classes are mimicked for ease of use.
With the exception of constructors/destructors, A#&lls in standard MRNet can be translated to
their lightweight versions according to the follogipattern:

return_type class::function_name(paraml_type paranml, ...);

translates to:

return_type class_function_nange(
cl ass cl ass_obj ect,

paranl_type paraml, ...);

4.2.1 Class Network
Network t * Network CreateNetworkBE(int argc, char ** argv);

The back-end constructor method. MRNet automayiqadisses the necessary information to
the back-end process using the program argumetdrnfagyc/argv) by inserting it after the
user specified arguments. S&&etwork * Network::CreateNetworkBE(int argc, char **
argv);” on page 9for more information on the required arguments.

void delete Network t(Network t * network);

delete_Network_t acts as a destructor for tketwork_t object and cleans up internal struc-
tures before freeing theetwork_t pointer.

voi d Network _waitfor_Shut Down(Network t * network);

Network_waitfor_ShutDown blocks until the network has been shut down.

MRNet API Programmer’s Guide Release 5.0.0

Page 27

char Network_is_Shut Down(Network_ t * network);

Returnsrue if the network has been shut down.

char* Network get Local Host Nane(Network t * network);

Network_get_LocalHostName returns the name of the host where the processisng.

Port Network get Local Port(Network t * network);

Network_get_LocalPort returns the listening port of the local process.

Rank Network_get Local Rank(Network t * network);

Network_get_LocalRank returns the rank of the local process.

int Network recv(

Network t * network,
i nt otag,
Packet _t * packet,

Streamt * stream);

Network_recv is used to invoke a blocking stream-anonymousiveageration. Any packet
available (i.e., addressed to any stream) willdterned in roughly FIFO order.

otag Wwill be filled in with the integer tag value thatas passed by the corresponding
Stream_send oOperationpacket is the packet that was received. A pointer toStheam_t to
which the packet was addressed will be returnetgdam .

A return value of -1 indicates an error and 1 iteBca success.

int Network recv_nonbl ock(

Network t * network,
i nt otag,
Packet _t * packet,

Streamt * stream);

Network_recv_nonblock is used to invoke a non-blocking stream-anonyrnmeasive opera-
tion. Any packet available (i.e., addressed to stngam) will be returned in roughly FIFO
order.

otag Wwill be filled in with the integer tag value thatas passed by the corresponding
Stream_send operationpacket is the packet that was received. A pointer tostheam_t to
which the packet was addressed will be returnetgdam .

A return value of -1 indicates an error, 0 indisate packets were available, and 1 indicates a
success.

MRNet API Programmer’s Guide Release 5.0.0

Page 28

4.2.2 Class NetworkTopology

Net wor kTopol ogy_t * Network _get Networ kTopol ogy(Network t * network);

Network_get_NetworkTopology is used to retrieve a pointer to the underlying
NetworkTopology_t instance withimetwork . Note that in the lightweight back-end library,
the information available in theetworkTopology_t ~ may be a subset of the full topology.

Node t * Networ kTopol ogy_ fi nd_Node(
Net wor kTopol ogy_t * net _top,
Rank node_rank);

This method returns a pointer to the topology neidh rank equal tmode_rank , or NULL if
no match is found.

Node t * Networ kTopol ogy _get Root (Networ kTopology t * net _top);
This method returns a pointer to the root nodénefttee, oNULL if not found.
char * Networ kTopol ogy_Node_get Host Nane(Node_t * node);
This method returns a string identifying the hosteaf thenode .
Port Networ kTopol ogy_Node get Port(Node_ t * node);
This method returns the listening port of toee .
Rank Networ kTopol ogy_Node _get Rank(Node_ t * node);
This method returns the rank of thele .
Rank Networ kTopol ogy_Node_get Parent (Node_t * node);
This method returns the rank of the node’s parent.
unsi gned i nt Networ kTopol ogy Node find_SubTreeHei ght(Node t * node);

This method returns the height of the sub-treeeat thenode .

4.2.3 Class Stream

Streamt * Network get Streanm(Network t * network, unsigned int id);

Network_get_Stream returns a pointer to stream_t identified byid , or NULL on failure.
Back-ends may pass their local rank asidhéo retrieve a singlecast stream that can be used
for non-filtered communication directly with theofrt-end.

void delete_Streamt(Streamt * stream);

delete_Stream_t acts as a destructor for teeeam_t object and cleans up internal struc-
tures before freeing th&ream_t pointer.

MRNet API Programmer’s Guide Release 5.0.0

Page 29

unsigned int Streamget ld(Streamt * stream);
This method returns the integer identifier for thigam_t .

int Stream send(
Streamt * stream
int tag,

const char * format_string, ...);

This method sends data stream . tag is an integer that identifies the data to be bgrthe
stream.format_string is a format string describing the types of theadelements (see
Appendix E: “Format Strings” on page 43for a full description.) On successieam_send
returns O; on failure, -1.

NOTE: tag must have a value greater than or equal to thetaptFirstApplicationTag
defined by MRNet#include "mrnet_lightweight/Types.h"). Tag values less thami-
stApplicationTag are reserved for internal MRNet use.

int Stream send_packet (
Streamt * stream
Packet t * packet);

This method sendsacket onstream . On successstream_send _packet returns O; on fail-
ure, -1.

int Streamflush(Streamt * stream);

This operation is currently not required in lightglg MRNet, asstream_send will deliver
the data for network transmission. This method ahilays return the value 0O for success.

int Streamrecv(
Streamt * stream
int * tag,
Packet t * packet,
bool t bl ocking);

Stream_recv invokes a stream-specific receive operation. Rac&ddressed to the passed
stream Will be returned, one-at-a-time, in FIFO orderblidcking istrue , the operation
will block until a packet is available for thisesam; iffalse , the operation will return imme-
diately.

tag will be filled in with the integer tag value thatas passed by the corresponding
Stream::send ~ Operationpacket IS the receive@acket_t

A return value of -1 indicates an error, O indisate® packet available for a non-blocking
receieve, and 1 indicates a packet was found.

MRNet API Programmer’s Guide Release 5.0.0

Page 30

char Stream.is_Cl osed(Streamt * stream);

This method returns the value 1 if the stream le&lzlosed by the front-end, O otherwise.

4.2 .4 Class Packet

When receiving a packet, it is stored withirPaxket_t object. Note that standard MRNet
makes use of theacketPtr object, which is based on the Boost librstigred_ptr class. How-
ever, in the lightweight back-end library, pointevy®acket_t objects are used instead.

i nt Packet get Tag(Packet t * packet);
This method returns the integer tag associated patitet .
voi d Packet set Tag(Packet t * packet, int tag);
This method sets the integer tag associated paittet .
unsi gned int Packet get_ Stream d(Packet t * packet);
This method returns the stream id associated paitket
voi d Packet _set Stream d(Packet t * packet, unsigned int strmid);
This method sets the stream id associated pattket
char* Packet get FormatString(Packet t * packet);
This method returns the character string specifyiregdata format gfacket .

voi d Packet _unpack(
Packet _t * packet,

const char * format_string, ...);

This method extracts data elements contained witpaéigket according to the
format_string , which must match that gfacket . The function arguments following
format_string should be pointers to the appropriate types ol eta element. For string
and array data types, new memory buffers to hadltta will be allocated usimgnlloc , and

it is the user’s responsibility tbee these strings and arrays. Note that for array dbga

ments, an extra argument must be passed to hdidaeesy’s length.

The return value 0 indicates success; -1 indidae$ormat string supplied did not match the
packet or a failure in unpacking.
voi d Packet unpack vali st (
Packet t * packet,
va_list arg_list,

const char * format_string);

This method extracts data elements contained withicket according to the
format_string , which must match that @hcket . The function arguments contained in the

MRNet API Programmer’s Guide Release 5.0.0

Page 31

va_list arg_list should be pointers to the appropriate types oh edata element. For
string and array data types, new memory buffetsotd the data will be allocated usingl-

loc , and it is the user’s responsibilityftee these strings and arrays. Note that for array data
elements, an extra argument must be passed teholdarray’s length. The fourth parameter

The return value 0 indicates success; -1 indidae$ormat string supplied did not match the
packet or a failure in unpacking.

MRNet API Programmer’s Guide Release 5.0.0

APPENDIX A: BUILDING AND TESTING MRNET

For this discussiorsMRNET_ROOIB the location of the top-level directory of thi&Net distribu-
tion and$MRNET_ARCIHs a string describing the platform (OS and agthiire) as discovered by
the configure process.

A.1l: Supported Platforms and Compilers

MRNet has been developed to be highly portablepweect it to run properly on all common
Unix-based as well as Windows platforms. Pleaser tefthe README document included with
the MRNet distribution for the list of currentlygaorted platforms.

MRNet requires GNU make for building on Unix/Lingystems. Our build system attempts to
use native system compilers where available. Fitdibg on Windows systems, Visual Studio
2010 solution/project files are available, as aesluilt libraries and binaries.

A.2: Configuration, Compilation, and Installation

Please refer to the INSTALL document included viite MRNet distribution for configuration,
compilation, and installation instructions.

A.3: Testing the Code

The shell scriptmrnet_tests.sh is placed in the build/installation directory foinaries along
with the other executables. This script can be usedin the MRNet test programs and check
their output for errors. The script is used asoiol:

UNIX> mrnet_tests.sh { -1 | -r hostfile | -a hostfi le}
[-f1[-lightweight]

One of thel , -r , or-a flags is required. The flag is used to run all tests using only topolsgie
that create processes on the local machine (nateing the tests locally can take quite a while,
up to 15 minutes depending on machine capabiliti€ge -r flag runs tests using remote
machines specified in the file whose name immebljidedows this flag. To run tests both locally
and remotely, use the flag and provide a hostfile.

To test MRNet’s ability to dynamically load shaiddataries containing filter functions, you must
specify thef flag. The-lightweight flag is used to run the tests using lightweightibands in
addition to the standard back-ends.

A.4: Bugs, Questions, and Comments

MRNet is maintained by the Paradyn Tools ProjethatUniversity of Wisconsin-Madison.
Comments and feedback whether positive or negate@ncouraged; please send to
mrnet@cs.wisc.edu. Bug fixes as patches are alkmme.

