
Binary Wrapping: A Technique for Instrumenting Object Code

Jon Cargille Barton P. Miller
jonOes.wise.edu bartOcs.wise.edu

Computer Sciences Department
University of Wisconsin-Madison

1210 W. Dayton Street
Madison, Wisconsin 53706

A b s t r a c t

We present a technique, called binary
wrapping, that allows object code routines to be
instrumented. Binary wrapping allows tracing to
be placed around (and sometimes within)
proprietary code, when source code access is
difficult or impossible. This technique is based
on wrapping user-written code around the object
code routine. No modifications are needed to the
programs that call the object code routine. Binary
wrapping has proven itself invaluable in instru-
menting proprietary libraries, and may well be
useful in other similar circumstances.

1. MOTIVATION

It is often useful to trace the activity of
system-provided library routines. This tracing
can be made difficult when only the binary code
is available. In the case of proprietary libraries,
source code is often not available, so the tracing
statements can not be inserted in source code
form. We were motivated by the need to instru-
ment code for a performance measurement tool;
the additional statements were used to generate
traces of the program execution.

One approach to inserting this extra func-
tionality might be to disassemble the object code
to be modified, and make changes at the assembly
level. However, deciding what to modify at the
assembly level can be a time-consuming and
complex task, particular when the assembly code

Research supported in part by National Science
Foundation grants CCR-8703373 and CCR-
8815928, Office of Naval Research grant
N00014-89-J-1222, and a Digital Equipment Cor-
poration External Research Grant.

in question is compiler-generated from a high-
level language. Instead, our scheme, called
binary wrapping, relies on our knowledge of the
symbol table format, and accomplishes our goal
by simple symbol table manipulation. We pro-
vide a tool that automatically modifies the symbol
table.

2. METHOD

Binary wrapping modifies the symbol table
of the object file to rename the routine that we
wish to trace. A new routine is created, and given
the name of the original routine. The new routine
performs the desired tracing, calls the (now
renamed) original routine to perform the original
operation, and then performs any desired final
tracing. The trace data generated for a particular
routine might indicate merely that the routine was
called, or it might generate more complex infor-
mation, such as the time spent waiting at a barrier
before it is released.

To help clarify this, consider a real exam-
ple. Suppose we want to instrument the UNIX
open system call. We first extract open from
the system libraries, and use our symbol table
massaging program to change its name to
_open. Then, we create our own open routine,
that generates trace information, and then calls
_open. In this way, we modify the behavior of
the open routine without the necessity of source
code access.

17
ACM SIGPLAN Notices, Volume 27, No. 6 June 1992

Program being
Analyzed

main()
(

;;;n(...) ;

}

Open routine
in Libc

open() I (

Program being
Analyzed

main()
{

open (...) ;

o..
}

IPS wrapper
routine

o p e n ()
{

m G e n e r a l e t r a c e

open ()
Generate trace

)

Original
Open routine
from Libe

- I I

Original call pattern Modified call pattern

This may at first glance seem to be
equivalent to another common technique; we
could merely call some routine myopen at each
point in the program being traced where open
would have been called. Myopen would con-
tain instrumentation code, and a call to open
However, it should be noted that binary wrapping
is superior in that it requires no changes to the
program being traced. This advantage is of criti-
cal concern to us, since we are using binary wrap-
ping to help instrument programs for the IPS-2
parallel program performance tools [1]. IPS-2 is
designed to allow analysis of unmodified pro-
grams; in fact, tracing is enabled with IPS-2
merely through the inclusion of a compiler flag.
So requiring the programmer to change the name
of the library routines that they call is unaccept-
able for our purposes.

One apparent limitation of our technique is
that it only allows the insertion of code at the
beginning or end of the proprietary object code
routine. No functionality of the object code can
be removed or changed. For our uses, this has not
beeen a problem. In performance analysis, we
generally only need to wrap the original operation
with additional instrumentation code.

In reality, binary wrapping can be per-
versely extended to allow limited access to the
internal operations of the object code. While we
do not directly change the object code itself,
unresolved external calls within the object
module can be changed using the same technique.
Instead of modifying the symbol table entry in the
Entry Point portion of the symbol table, the entry
in the External Reference section can be
changed. Thus, if we have only object code for
routine A, and A calls B, we can change the
symbol table of A so that A calls my_B. In this
way, we can perform more significant changes to
A than the simple insertion of additional code at
the beginning or end. We can change the inner
working, albeit in a rather limited way. In fact,
we have also used this variation in our IPS-2

performance tools; the sta~up code for an execut-
able program (often called c r t 0 . o) was
modified so that instead of calling ma in , it
instead calls our own initialization routine, which
then calls main .

3. EXPERIENCE

Binary wrapping has been used success-
fully to instrument proprietary code for which
source code was unavailable. The idea was
developed for IPS-2, a parallel program perfor-
mance measurement system. In the course of
porting the tool to a new architecture, we
requested access to the source code for certain
system libraries, so that instrumentation code
could be inserted. The nine month delay by the
computer manufacturer forced us to consider
other alternatives that could provide what we
needed within a reasonable time frame.

We have written a utility program that
automatically updates the symbol table of an
object (.o) file. This utility currendy works on the
Cray Y-MP under UNICOS. The UNICOS .o file
symbol table format is called "relo" format, and is
Cray proprietary. We will develop other versions
of this utility in the near future.

4. REFERENCES

[1] Barton P. Miller, Morgan Clark, Jeff Hol-
lingsworth, Steven Kierstead, Sek-See Lim,
and Timothy Torzewski, "IPS-2: The
Second Generation of a Parallel Program
Measurement System," IEEE Transactions
on Parallel and Distributed Systems
1(2) pp. 206-217 (April 1990).

18

