

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Dyninst on the RISC-V:

Binary Instrumentation in Support of Performance,
Debugging, and Other Tools

Abstract— Binary instrumentation provides the ability to
instrument and modify a program after the compilation process
has completed. Operating on the binary level allows
instrumentation of the program as it was produced by the
compiler. In addition, it can operate on programs or libraries for
which you may not have the source code. Binary instrumentation
is the foundation for a wide variety of tools, including those for
performance profiling, debugging, tracing, architectural
simulation, and digital forensics. Dyninst is a free and open-source
suite of toolkits for building binary analysis and instrumentation
tools for architectures that include the x86, ARM, and Power. It is
used in tools produced by industry, academia and research labs.
This paper describes our efforts to port Dyninst to the RISC-V
architecture. We discuss the challenges presented by the RISC-V,
our approaches to solving them, and the status of Dyninst on the
RISC-V.

Keywords—binary instrumentation, binary rewriting, dynamic
instrumentation

I. INTRODUCTION TO BINARY INSTRUMENTATION
Binary instrumentation is a powerful technique that allows

you to directly manipulate binary code by inserting, deleting or
modifying instructions in the binary code. The advantage of
binary instrumentation is that it operates directly on the binary.
Operating directly on the binary does not require access to or
even have access to the source and works on the executable as
was generated by the compiler. Binary instrumentation has a
long proven history in areas such as performance profiling [1],
taint analysis [28], debugging [5], architectural simulation [9]
and malware detection [15][19][24]. The usefulness of this
approach has continued with the development of binary
instrumentation and profiling tools for GPUs [32][34].

For example, if you wanted to trace every function entry and
exit, or every memory access, or even every stack memory
reference, you can easily create a modified version of your
executable file that contains such instrumentation.

There are two types of binary instrumentation based on when
the instrumentation happens: (1) static instrumentation, called
binary rewriting, meaning that the binary code is modified and
a new executable or library file is created, and (2) dynamic
instrumentation, where the modification of the binary happens
while the program is running. Static and dynamic

instrumentation are illustrated in Fig. 1. Binary instrumentation
was launched in the early 1990’s, with ATOM [14] as the
earliest tool to implement binary rewriting and Dyninst
[8][17][22] as the earliest tool to support dynamic
instrumentation.

Over the years, there have been many tools that have been
developed to do binary instrumentation, including DynamoRIO
[7], EEL [20], Pin [21], Valgrind [23], angr.io [31], GTPin [32],
and NVBit [34].

Binary instrumentation tools work in a variety of ways:

Coding patching: Tools that use code patching directly
instrument the existing binary. They do this by creating a new
version of the block or whole function that contains the
instrumentation and relocating this code, i.e., placing this
instrumented code in a patch area called a trampoline. The
original code is then overwritten to contain a branch to the
instrumented version of the code, and the instrumented code is
terminated by a branch back to the original code. The advantage
of such tools is that they keep much of the original code intact
and only change what will be instrumented. The disadvantage is
that these tools incur some extra control flow transfers to and
from the trampolines. These tools also need (and often benefit
from) strong semantic analysis of the code to understand its
structure. Dyninst is an example of such a tool.

Code caching: Tools that use code caching relocate every
basic block before it is executed. If the block will have
instrumentation, then the relocated version is modified before it
is copied to the code cache. All code is copied and executed from
the cache. The advantage of such tools is that they are
structurally simpler to build. However, they have the overhead
of relocating each block of code and do not benefit from code
analysis. Valgrind and PIN are examples of such tools.

Hoisting: Tools that use hoisting convert the binary to a
common intermediate representation (IR) such as LLVM IR,
modify the IR, and then regenerate the code to form a new
binary. The advantage of such tools is that they do not require
code generation or patching functionality. All that is done by the
tools that supports the IR. However, such tools must completely
understand every instruction in the binary so that it can be
hoisted to the IR (which can often be complex or even

Cheng-Hsun Angus He
cahe@wisc.edu

Ronak Chauhan
ronak@cs.wisc.edu

James A. Kupsch
kupsch@cs.wisc.edu

Hsuan-Heng Wu
hwu337@wisc.edu

Barton P. Miller
bart@cs.wisc.edu

Computer Sciences Department

University of Wisconsin-Madison
Madison, WI 53706

2

impossible to do). Tools that use hoisting include llvm-mctoll
[35] and BinRec [3].

II. DYNINST
Dyninst is a binary analysis and instrumentation toolkit that

provides a machine independent interface to machine level
binary (executable or library) analysis, instrumentation (code
modification), and platform independent process control. The
abstract interface allows Dyninst-based tools to operate without
any specific knowledge of the structure of the ISA of the
processor.

The analysis and instrumentation capabilities of Dyninst are
used by tools such as Rice University’s HPCToolkit [1],
University of Oregon and ParaTools TAU [30], Barcelona
Supercomputing Center’s Paraver [25], Lawrence Livermore
National Labs Stack Trace Analysis Debugging Tool (STAT)
[5], AMD OmniTrace [2], and Red Hat SystemTap [18]. Note
that Dyninst is free and open source, based on an LGPL license
and hosted on GitHub [13].

Dyninst is unique among tools in that it does both analysis
and instrumentation. Dyninst uses a deep semantic analysis of
the code to allow a more complex understanding of the code to
be instrumented and to enable more efficient instrumentation. It
first performs control- and data-flow analysis on the binary (the
mutatee) to create a control flow graph (CFG) and dataflow
graph (DFG) of the mutatee; information in these graphs is used
during the instrumentation process. Dyninst’s code modification
is based on safe transformations of the program’s CFG so that
instrumented binary will have valid control flow transitions [6].
The dataflow information also plays important role in the
instrumentation process, including liveness analysis that finds
free registers, called dead registers, that can be used to create
efficient instrumentation that can avoid the need to save current

program values. Dyninst’s dataflow analysis is also used to
analyze pointer-based control flow (such as is used in jump
tables, virtual function tables, and function pointers) to generate
a more complete (and thus, more accurate) CFG. This unique
combination of binary analysis and instrumentation allows more
robust and sophisticated instrumentation to be crafted.

Currently Dyninst supports analysis and instrumentation of
the x86, ARM64, Power, and (in progress) AMD GPU
architectures. In the past Dyninst has supported many other
architectures such as Sun SPARC, DEC Alpha, HP PA-RISC,
MIPS, and Intel Itanium.

Dyninst is broken down into toolkits to allow the
functionality to be used separately or collectively. Some
components are specific to a particular ISA (such as the
InstructionAPI) or operating system (such as the

Fig. 1. The variants of binary instrumentation. Static binary instrumentation reads a binary, performs analysis and instrumentation and then creates a new
binary. Dynamic binary instrumentation has two forms that differ in when it occurs. In the first form the binary is analyzed and instrumented and the resulting
process is spawned. In the second form an already running process is attached to. In both case further process control, analysis and code modification may
occur.

Fig. 2. The components of Dyninst and the use relationships between the
components. The direction of the arrows indicates the flow of information.

3

ProcControlAPI), while others operate on platform independent
abstractions, such as the ParseAPI and DataflowAPI.

Dyninst analyzes the binary opportunistically in that it can
operate on a binary without symbols or debugging information
(a stripped binary) but will use information that is optionally
available in a binary, such as debugging symbols, to increase the
effectiveness and accuracy of its code analysis.

Instrumentation is performed based on code snippets and
instrumentation points. A snippet is an abstract representation
of the code to be inserted into the binary. This code is specified
by a machine independent abstract syntax tree (AST) [8]. The
AST types include operations for reading or writing memory,
registers or variables; performing basic logical and arithmetic
operations; calling functions; and branching, including
conditional branching.

A point is a location in the program where instrumentation
will be inserted. Points include

• Low level abstractions such as individual instructions.
• Function level abstractions such as call site, function entry,

and function exit.
• Control flow graph abstractions such as branch-taken and

branch-not-take edges, loop back edges.

Code snippet insertion is a basic Dyninst operation that takes
a tuple (P, AST), where P is a vector of instrumentation points
where the instrumentation will be inserted and AST is the root of
the tree that represents the code to be inserted. Dyninst will
convert the AST to native code, optimize the code when
possible, generate new versions of the blocks or functions that
have been modified, and patch a branch into the original code to
jump to the modified code.

Dyninst is organized as a library of toolkits. The toolkits and
their relationships are shown in Fig. 2. The rest of this section will
briefly describe the key functionality of each component.

A. Code Analysis Toolkits
The first four components perform analysis of the binary.

SymtabAPI provides an abstract representation of how a
binary program is structured and stored in a file. So Dyninst can
provide a platform independent interface to formats such as
ELF, DWARF, PE, and PDB. It provides access to symbol table
information, sections that contain the binary code and data,
relocation information, and debugging data.

InstructionAPI provides an abstract representation of
machine code instructions. It parses the instruction into an ISA
independent representation that includes the opcode; operands
including whether it is read or written and an AST that
represents the addressing calculation; abstract instruction types
such as call, branch, return, arithmetic; set of registers read and
written by the instruction.

ParseAPI creates and provides access to the CFG. It initiates
parsing of the machine code in the binary using a fast parallel
algorithm to create the annotated CFG that include functions,
loops, jump tables, and basic block structure of the binary. The
parallel algorithm has allowed Dyninst to efficiently parse
binaries that have more than a gigabyte of machine code. It uses
a traversal algorithm [29][33] to construct basic blocks and

determine function and loop boundaries. Parsing starts from
known entry points – such as the program entry point and
function entry points from symbol tables – and follows the
control flow transfers to build the CFG and identify more entry
points. Not all code will necessarily be found by traversal
parsing due to unresolvable pointers used in control flow
instructions. Thus, parsing may leave gaps [16] in the binary
where code may be present but has not yet been identified.
Dyninst attempts to resolve these gaps using advanced dataflow
analysis techniques such as slicing and jump table analysis, and
speculative parsing based on machine learning [27].

DataflowAPI annotates the CFG with dataflow information,
effectively creating a DFG. The dataflow information has two
general uses. First, Dyninst uses this information to increase the
accuracy of the control flow analysis. Second, these operations
are available to users of the DataflowAPI to build more
advanced tools and custom analyses. The supported analyses
include register liveness, stack height analysis, forward slicing
(instructions affected by data), backward slicing (instructions
that affected data), and loop analysis. Dataflow analysis requires
semantic information about what each instruction calculates,
currently sourced from ROSE [26], SAIL [4], and hand-crafted
semantic descriptions.

B. Instrumentation Toolkits
The next two components perform instrumentation. Since

snippets and points are architecture independent abstractions,
most tools that use these interfaces are architecture independent.

While it is also possible to specify instrumentation as raw
machine code in an array of bytes, this mechanism is rarely
needed in Dyninst so its use is discouraged.

CodeGenAPI transforms the machine independent AST
representation to architecture-specific instruction sequences.

PatchAPI does snippet insertion. It is responsible for
modifying the code so that space is allocated for the
instrumented code and that control is transferred to the
instrumented code and back.

The final two components are used only for dynamic
instrumentation, performing operations on processes (i.e.,
running programs).

ProcControlAPI is an operating system independent
interface to process control, providing debugger-like
functionality that is able to attach to a running process or start a
process; read and write the memory of the process; suspend or
resume a process and its threads; insert breakpoints; catch user
events like signals; and detect process and thread creation.

StackwalkerAPI allows users to collect a call stack (known
as walking the call stack) and access information about each
invoked function’s stack frames including return addresses.
Each stack frame is a record of an executing function (or
function-like object such as a signal handler or system call).
Stack walking can be quite tricky on code generated by modern
compilers, as stack frames can appear in a variety of forms or
even missing altogether due to code optimizations.

4

III. PORTING DYNINST TO RISC-V
RISC-V is an open standard ISA known for its simplicity and

extensibility. While RISC-V is widely used in embedded
systems and microcontrollers, it has also gained popularity in
high performance computing. Making Dyninst available on the
in RISC-V provides a wide variety of functionality, including a
pathway to port many types of tools, as mentioned in Section II.
We have ported Dyninst to RISC-V, allowing for binary analysis
and instrumentation on this architecture.

In this section, we start by discussing some characteristics of
RISC-V that affect the porting of Dyninst. We then describe the
RISC-V implementation of each Dyninst component, discussing
implementation details, issues we encountered, and solutions we
developed. Last, we outline the current status of the RISC-V port
as well as several directions for future work.

A. Characteristics of RISC-V that affect porting
The main difficulty in porting Dyninst to RISC-V lies in the

very reason that makes RISC-V appealing for hardware design:
extensibility and simplicity. While RISC-V’s extensibility
allows flexible hardware implementation, it provides challenges
for tools that have to generate and process the machine code.
While hardware designers can choose to implement only
extensions that are relevant to their hardware, Dyninst must
support a broad range of extensions to handle the wide variety
of real-world binaries.

In addition, RISC-V is a RISC architecture. While RISC
architectures simplifies the implementation of hardware, they
can increase the complexity of analyzing the code as some high-
level functionality requires more instructions than would be
needed on a CISC architecture. The simple instructions on a
RISC architecture are also likely to cause some instructions top
be used for multiple purposes. While this challenge also exists
in other RISC architectures such as ARM or Power (which are
also supported by Dyninst), RISC-V’s base instruction set is
significantly smaller than that of ARM or PowerPC, causing
these instruction sequences to appear more frequently.

1) Extension-based ISA

One of the most distinctive features of RISC-V is its modular
design. Unlike traditional ISAs that define a fixed, monolithic
instruction set, RISC-V defines minimal base ISAs and several
optional extensions. A base ISA defines the minimum set of
integer instructions required to implement a fully functional
RISC-V processor, so any RISC-V implementation must
implement a base ISA. Besides the base ISA, RISC-V offers a
wide range of extensions that allow hardware designers to
implement only the extensions necessary for their hardware.

The extensibility of RISC-V, however, means that Dyninst
needs to be aware of the extensions supported by the mutatee. If
the mutatee does not support a specific extension, Dyninst
should not generate instrumentation code using any instructions
from that specific extension.

Additionally, new extensions are introduced and ratified
every year [12]. To keep up with the fast paced change,
Dyninst’s RISC-V port needs to be written with extensibility in
mind. Components that are ISA-dependent, including
instruction parsing and code generation, need to be modular so

that adding a RISC-V extension into Dyninst does not require
manually changing multiple parts of the source code.

2) The C Extension (Compressed Instructions)

The C Extension is a widely used extension that offers 2-
byte versions of several commonly used 4-byte standard
instructions. The goal of compressed instructions is to reduce
code size and improve memory usage and efficiency.

Despite the benefit of reduced code size, compressed
instructions sometimes create space issues for binary
instrumentation. For example, Dyninst needs to insert jump
instructions to redirect control flow to instrumented code.
However, Dyninst sometimes cannot use the compressed jump
instruction c.j for this purpose because its target offset range is
limited to [-212, 212) bytes. If the target offset exceeds this limit,
Dyninst needs to fall back to a standard 4-byte jump instruction.
In exceptional cases, such as functions that are shorter than four
bytes, these longer jumps cannot be used. Dyninst will try to
choose the most efficient jump sequence in each case, ultimately
resorting to the inefficient 2-byte trap instructions in the worst
case (which, fortunately, does not occur often).

3) Multi-use Control Flow Instructions

Another challenge we have faced is the multiple uses of
control flow instructions in RISC-V. RISC-V defines only two
instructions for unconditional branches, jal and jalr, different
from instruction sets like x86 that have different instructions for
unconditional jumps, function calls, and function returns. As a
result, a single RISC-V branch instruction serves multiple
purposes. For example, the jalr (jump and link register)
instruction is used for unconditional jumps, function calls,
function returns, and jump tables. Therefore, Dyninst needs to
detect the context in which the jump instruction is being used to
correctly determine its higher level purpose.

B. Toolkit-by-toolkit discussion
In this section, we provide a detailed walkthrough of the

RISC-V implementation component by component, focusing on
how Dyninst addresses RISC-V’s wide variety of extensions and
instructions.

1) SymtabAPI

SymtabAPI is responsible for parsing symbol tables and
object file headers of ELF (Executable and Linkable Format)
binaries. The RISC-V ABI specifies some definitions that are
unique to RISC-V ELF that require special handling.

The first important field is e_flags, which is used to
describe processor-specific properties of an ELF binary. This
includes

• EF_RISCV_RVC: Defines whether compressed instructions
are present

• EF_RISCV_FLOAT_ABI_SINGLE: Defines whether single-
precision floating points are present

• EF_RISCV_FLOAT_ABI_DOUBLE: Defines whether double-
precision floating points are present

The original usage of e_flags is to allow the linker to
prevent linking ELF files with incompatible ABIs. From
Dyninst’s point of view, e_flags provide information about

5

whether the binary is compiled for a processor that supports the
compressed instruction, single-precision floating point, and
double-precision floating point extensions. Thus, this field is
extracted by SymtabAPI to determine whether these extensions
are supported.

In addition, the ABI defines a custom section named
.riscv.attributes. This section contains compatibility
information that a linker or runtime loader needs to correctly
execute RISC-V binaries, such as the target architecture string,
which contains information about what extensions the binary
supports. SymtabAPI will parse the .riscv.attributes
section and obtain the value of the target architecture string to
determine all the extensions that the binary uses.

While .riscv.attributes can be found in most binaries
compiled by GCC or LLVM, it is not a mandatory section. If an
ELF binary lacks this section, SymtabAPI obtains extension
information from e_flags, as e_flags is present in all ELF
files.

2) InstructionAPI

We base our RISC-V instruction parsing on the Capstone
library [10]. Capstone is widely used and supports architectures
such as x86, ARM, PowerPC, and RISC-V. There are several
reasons why Capstone is ideal for instruction parsing. First,
Capstone is fast and efficient: it can parse a large amount of
assembly code efficiently due to its optimized disassembly
engine. Second, Capstone provides detailed information about
instruction operands, including whether an operand is a register,
immediate value, or memory, whether an operand is read or
written, whether the operand is implicit, and the memory access
size for memory operands. Third, Capstone is actively
maintained and updated, so when new instructions are
introduced, Capstone will be promptly updated.

The version of Capstone required by InstructionAPI is
v6.0.0-Alpha or above. Prior to this version, Capstone lacked
support for operand read and write information. We extended
Capstone’s RISC-V capabilities to address this problem, and our
pull request was accepted and merged into Capstone as part of
the v6.0.0-Alpha release.

The set of extensions supported by a processor is called a
profile. Currently, Capstone supports the RV64GC profile, one
of the most commonly used profiles for general-purpose
computing. RV64GC stands for 64-bit RISC-V architecture with
support for the G (Generic) and C (compressed instruction)
extensions, where the G extension is a set of base and standard
extensions necessary for general-purpose computing, including
the I (integer), M (integer multiplication and division), A
(atomic), F (single-precision floating point), D (double-
precision floating point), Zicsr (control and status register
instructions), and Zifencei (instruction-fetch fence) extensions.

Capstone is planning to support new extensions such as
vector instructions, which will be required by the RVA23
profile, the future ISA that most processors will support.

3) ParseAPI

ParseAPI is responsible for constructing CFGs with basic
blocks, loops, and functions. While most parts of ParseAPI are

platform agnostic, it still needs to recognize specific instruction
sequences from different architectures to construct correct
CFGs. For example, ParseAPI needs to identify function
prologues and epilogues to correctly define function boundaries.
Similarly, ParseAPI needs to correctly identify branch
instructions to recognize basic blocks and control flow.

For RISC-V, the most challenging part is recognizing what
high-level operation is represented by the jal and jalr
instructions. RISC-V uses these two instructions for the
following purposes:

• Function returns: Function return in RISC-V is equivalent to
an unconditional jump to the return address stored in a link
register, the register that contains the return address. The link
register is x1 by convention, though other registers may be
(and are) used.

• Function calls: Like unconditional jumps, if the relative
offset fits within the range supported by jal, compilers
generate jal for function calls. Otherwise, compilers load
the jump target to a register and generate a jalr.

• Unconditional jumps: If the relative offset fits within the
range supported by jal, compilers generate jal for
unconditional jumps with the link register of x0, a special
register whose value is always zero. Otherwise, compilers
load the jump target to a register and generate a jalr, again
with the link register of x0.

• Tail calls [11]: A tail call is a function call-return
optimization that uses a jump instruction instead of a call
instruction to avoid stack frame setup and tear-down when a
call instruction is the last operation in a function. In this case,
a simple jump actually represents a function call.

• Jump tables: Compilers typically implement jump tables
using jalr, where the target address is computed at runtime
based on an index and loaded into a register.

Thus, given a jal or jalr instruction without any context,
ParseAPI cannot determine what types high-level operation it
represents only by the instruction opcode.

In addition, the valid target offset range of jal is limited.
When the target offset exceeds jal’s limit, compilers will
generate multi-instruction code sequences instead. For instance,
compilers might generate an instruction sequence using the
auipc (add upper immediate to PC) instruction that first loads
the upper 20 bits of the jump target from the current PC to the
register, followed by a jalr instruction that handles the lower
12 bits of the jump target:

Assign t0 to PC + the upper 20 bits of offset
auipc t0, offset1
Jump to t0 + the lower 12 bits of offset
jalr x0, offset2(t0)

If we only focus on the jalr instruction without considering
the previous auipc, this instruction appears to be an indirect
jump to t0 + offset2. However, t0 can in fact be determined
because it is loaded by the preceding auipc instruction.
ParseAPI needs to examine the whole instruction sequence to
correctly identify it as an unconditional jump. Note that the
above sequence is only one of the possible sequences that the
compiler might generate for multi-instruction jumps or calls.
Different compilers may generate these sequences in different

6

ways, which makes reliably recognizing these instruction
sequences challenging.

Due to the above reasons, ParseAPI analyzes the link register
and the target address to correctly identify what kind of branch
the current jal or jalr represents. Obtaining the link register of
jal and jalr, and the target address of jal can simply be done
by examining its instruction operands. However, obtaining the
target address of jalr is more challenging: ParseAPI tries to
determine the exact value of the target register by performing a
backward slice on it. If the result of the slicing yields a constant,
ParseAPI will first check whether the constant (i.e., the target
address) lies in a valid code region. If so, ParseAPI checks:

• If the target address lies within the same function, and the
link register of the current instruction is x0, ParseAPI
identifies it as an unconditional jump.

• If the target address points to other functions, and the link
register of the current instruction is x0, ParseAPI identifies
it as a tail call.

• If the target address points to the entry point of a function,
and the link register of the current instruction is not x0,
ParseAPI identifies it as a function call.

• If the target address is in a valid code region, and the
previous instruction is a function call, and the link register
of the function call is the same as the target register,
ParseAPI identifies it as a function return.

• If none of the above cases are valid, ParseAPI performs jump
table analysis [22] on the current jalr instruction. If it
succeeds, ParseAPI identifies it as a jump table.

• If the jump table analysis fails, ParseAPI treats the jalr as
unresolvable, meaning that the jump or call target cannot be
determined symbolically.

4) DataflowAPI

The DataflowAPI provides common types of dataflow
analysis such as register liveness, slicing, and loop analysis.
While most parts of the DataflowAPI are platform agnostic,
slicing requires instruction semantics that are architecture
dependent. For x86, ARM, and PowerPC, instruction semantics
are obtained from C++ classes derived from the ROSE project.
While ROSE provides instruction semantic support for several
architectures, it lacks support for RISC-V.

To support RISC-V, we derived the instruction semantics
from the official formal specification of the RISC-V
architecture, which is written in SAIL. SAIL is a language that
provides a high-level executable model of instruction set
architectures. Its design involves rigorous formal analysis, so it
is suitable for generating emulators and theorem-prover
definitions. From the perspective of binary analysis tools, this
kind of formal semantic information is precisely what is needed
for dataflow analysis that relies on rigorous instruction
semantics to track how values propagate through the code.

However, SAIL presented some practical challenges for
Dyninst. First, the SAIL language is designed to be easily parsed
and executed within the OCaml ecosystem, but it limits
interoperability with tools developed in other languages. In
addition, the SAIL language is designed for formal verification,
so the formal RISC-V SAIL definition contains many details
related to error handling, such as memory alignment checks and

jump target validation logic. These checks are important for
formal verification or emulators, but not for dataflow analysis.

To address these issues, we developed a pipeline that acts as
a source-to-source compiler from SAIL to the C++ instruction
semantic classes used in DataflowAPI. The first stage of this
pipeline is an OCaml script that parses the SAIL semantics and
generates a simplified JSON representation of the instruction
semantics. This JSON format serves as an intermediate
representation that contains essential semantics of each
instruction without extraneous error-handling code. The second
stage of the pipeline is a script that reads the simplified JSON
representation and generates C++ instruction semantic classes.

The main advantage of this pipeline design is that if new
RISC-V extensions are proposed and later added to RISC-V
SAIL, we only need to rerun the whole pipeline again to generate
the updated C++ instruction semantic classes.

5) CodeGenAPI

CodeGenAPI is responsible for generating instrumentation
code, making use of the extension information obtained from the
SymtabAPI to make sure that only compatible instructions are
generated.

RISC-V lacks basic instructions for some common
operations, such as loading an immediate value into a register.
For example, to load a 64-bit immediate value into a register, we
need to generate the lui instruction first to load a value into the
upper 20 bits of the register. Then, a sequence of addi (add
immediate) and slli (shift logic left immediate) is generated to
construct the immediate value.

In addition, RISC-V instructions often handle immediate
values in ways that are not straightforward, such as being shifted
or encoded. As a result, these nuances make generating
immediate value handling one of the more error-prone aspects
of code generation.

6) ProcControlAPI

The purpose of ProcControlAPI is to provide an OS
independent interfaces to common process control operations,
typical based on the debugging system call interface. On Linux,
ProcControlAPI is implemented using the ptrace system call
and /proc file system.

We have begun working on ProcControlAPI and
encountered the issue that the ptrace system call
implementation is relatively primitive in RISC-V compared to
other architectures. For example, the single-stepping
functionality is not implemented for RISC-V, meaning that
ProcControlAPI needs to emulate single-stepping on the
software level: single-stepping must be emulated by a series of
breakpoints created by ProcControlAPI, which decreases
performance.

7) StackwalkerAPI

While we have not started porting StackwalkerAPI to RISC-
V, we anticipate several challenges due to how RISC-V handles
the stack frame register. Although the RISC-V ABI designates
register x8 as the frame pointer register, many compilers choose
to use x8 as a general purpose register. That is, most compilers

7

handle stack frames using only the stack pointer register. The
StackwalkerAPI has a plugin-based architecture so that it can
support multiple types of frame structures. The instruction set
and compilers for RISC-V will require new “frame steppers” to
be designed for the RISC-V platform.

C. Current status
Dyninst fully supports binary analysis for the RV64GC

profile. While static instrumentation is a work in progress, it is
largely functional.

For RISC-V binary analysis, Dyninst can parse the
.riscv.attributes section, parse and analyze instructions,
analyze control flow and construct CFGs, and perform jump
table analysis, forward slicing, backward slicing, and loop
analysis.

For RISC-V instrumentation, many features of the
CodeGenAPI are fully functional. For example, Dyninst can
create variables, arithmetic operation snippets, memory
operation snippets, function snippets, and insert instrumentation
code at the entry or exit points of functions, branches, and loops.

D. Future work
Our immediate future work will focus on completing the

CodeGenAPI and do more testing to make it robust. Our first
release is planned for 4Q2025 with the static (binary rewriting)
instrumentation features. In 1Q2026, we will complete porting
ProcControlAPI and StackwalkerAPI to complete support for
dynamic binary instrumentation.

In the future, we will extend Dyninst to support the RVA23
profile, which is a new profile on which new RISC-V systems
are standardizing as a minimal set of features. This profile
includes many new extensions, such as the vector extension and
integer conditional extension. Supporting new extensions
should be straightforward once Capstone adds support for it. We
can generate the C++ semantic classes that we need to interpret
new instruction semantics using the SAIL data the same way we
did for other extensions.

IV. CONCLUSION
In this paper, we presented our work on porting Dyninst to

RISC-V. We addressed the challenges posed by RISC-V’s
simple and extensible design, including its modular ISA design,
compressed instructions, and multi-use control flow
instructions. We described changes made to each Dyninst
component to support parsing, analysis, and code generation for
RISC-V binaries. Our RISC-V port adopts a modular design,
making it easier to add support for new RISC-V extensions.

For the RV64GC profile, the binary analysis features of
Dyninst are complete. The static binary instrumentation is
feature complete, and it is undergoing testing. The dynamic
binary instrumentation is a work in progress as we need to
complete the process toolkits, including ProcControlAPI and
StackwalkerAPI. Once they are complete, Dyninst will provide
full binary analysis and both static and dynamic instrumentation
for the growing RISC-V ecosystem.

REFERENCES
[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-

Crummey and N. R. Talent, “HPCToolkit: Tools for Performance
Analysis of Optimized Parallel Programs”, Concurrency and
Computation: Practice and Experience 22, 6, April 2010.

[2] Advanced Micro Devices, Inc, “Omnitrace: Application Profiling,
Tracing, and Analysis”, Retrieved August 10, 2025, from
https://rocm.docs.amd.com/projects/omnitrace/en/latest/doxygen/html/i
ndex.html

[3] A. Altinay, J. Nash, T. Kroes, P. Rajasekaran, D. Zhou, A. Dabrowski,
D. Gens, Y. Na, S. Volckaert, C. Giuffrida, H. Bos and M. Franz,
“BinRec: Dynamic Binary Lifting and Recompilation”, 15th European
Conference on Computer Systems (EuroSys), online, April 2020.

[4] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray, R. M.
Norton, P. Mundkur, M. Wassell, J. French, C. Pulte, S. Flur, I. Stark,
N. Krishnaswami and P. Sewell, “ISA Semantics for ARMv8-A, RISC-
V, and CHERI-MIPS”, 46th ACM SIGPLAN Symposium on Principles
of Programming Languages (POPL), Cascais, Portugal, January 2019.

[5] D.C. Arnold, D.H. Ahn, B.R. de Supinski, G.L. Lee, B.P. Miller and
M. Schulz, “Stack Trace Analysis for Large Scale Debugging”, 21st
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), Long Beach, California, March 2007.

[6] A. R. Bernat and B. P. Miller, "Structured Binary Editing with a CFG
Transformation Algebra", 19th Working Conference on Reverse
Engineering, Kingston, ON, Canada, October 2012.

[7] D. L. Brening, “Efficient, Transparent, and Comprehensive Runtime
Code Manipulation”, Ph.D. Dissertation, Massachusetts Institute of
Technology, Cambridge, MA, Order Number AAI0807735, September
2004.

[8] B. Buck and J. K. Hollingsworth, “An API for Runtime Code
Patching”, International Journal of High Performance Computing
Applications 14, 4, November 2000.

[9] H.W. Cain, K.M. Lepak, and M.H. Lipasti, “A Dynamic Binary
Translation Approach to Architectural Simulation, Workshop on Binary
Translation (WBT), Philadelphia, Pennsylvania, October 2000.

[10] Capstone Project, “Capstone The Ultimate Disassembler”, Retrieved
August 2025, from https://www.capstone-engine.org/

[11] W. D. Clinger, “Proper Tail Recursion and Space Efficiency”, ACM
Conference on Programming Language Design and Implementation
(PLDI), Montreal, Canada, June 1998.

[12] E. Cui, T. Li, and Q. Wei, “RISC-V Instruction Set Architecture
Extensions: A Survey,” IEEE Access, February 2023.

[13] Dyninst Project, “Dyninst source code GitHub repository”,
https://github.com/dyninst/dyninst

[14] A. Eustace and A. Srivastava, “ATOM: a Flexible Interface for
Building High performance Program Analysis Tools”, USENIX 1995
Technical Conference, New Orleans, Louisiana, January 1995.

[15] W. Fang, B.P. Miller and J.A. Kupsch, “Automated Tracing and
Visualization of Software Security Structure and Properties”, 9th
International Symposium on Visualization for Cyber Security (VizSec),
Seattle, Washington, October 2012.

[16] L.C. Harris and B.P. Miller, “Practical Analysis of Stripped Binary
Code”, Workshop on Binary Instrumentation and Applications (WBIA),
St. Louis, Missouri, September 2005.

[17] J. K. Hollingsworth, B. P. Miller, J. Cargille, “Dynamic Program
Instrumentation for Scalable Performance Tools”, Scalable High-
Performance Computing Conference (SHPCC), Knoxville, Tennessee,
May 1994.

[18] B. Jacob, P. Larson, B. H. Leitao and S. A. M. M. da Silva,
“SystemTap: Instrumenting the Linux Kernel for Analyzing
Performance and Functional Problems”, IBM Redbooks, January 2009.

[19] E. R. Jacobson, A. R. Bernat, W. R. Williams and B. P. Miller,
“Detecting Code Reuse Attacks with a Model of Conformant Program

8

Execution”, International Symposium on Engineering Secure Software
and Systems (ESSoS), Munich, Germany, February 2014.

[20] J. R. Larus and E. Schnarr, “EEL: Machine-Independent Executable
Editing”, 17th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), La Jolla, California, June 1995.

[21] C-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V. J. Reddi and K. Hazelwood, “PIN: Building Customized
Program Analysis Tools with Dynamic Instrumentation”, 26th, ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Chicago, Illinois, June 2005.

[22] X. Meng and B.P. Miller, “Binary Code is Not Easy”, 25th
International Symposium on Software Testing and Analysis (ISSTA),
Saarbrucken, Germany, July 2016.

[23] N. Nethercote and J. Seward, “Valgrind: a Framework for
Heavyweight Dynamic Binary Instrumentation”, 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), San Diego, California, June 2007.

[24] P. O’Sullivan, K. Anand, A. Kotha, M. Smithson, R. Barua and A. D.
Keromytis, “Retrofitting Security in COTS Software with Binary
Rewriting”, 26th IFIP TC-11 International Information Security
Conference (IFIP SEC), Hamburg, Germany, June 2011.

[25] V. Pillet, J. Labarta, T. Cortes and S. Girona, “PARAVER: A tool to
Visualize and Analyze Parallel Code”, 18th World Occam and
Transputer User Group Conference (WoTUG-18), Manchester,
England, 1995.

[26] D. Quinlan, “Rose Compiler Support for Object-Oriented
Frameworks”, Parallel Processing Letters, 10, 2-3, September 2000.

[27] N. E. Rosenblum, X. Zhu, B. P. Miller and K. Hunt, "Learning to
Analyze Binary Computer Code", 23rd AAAI Conference on Artificial
Intelligence (AAAI), Chicago, Illinois, July 2008.

[28] E. J. Schwartz, T. Avgerinos and D. Brumley, "All You Ever Wanted
to Know about Dynamic Taint Analysis and Forward Symbolic
Execution (but Might Have Been Afraid to Ask)", 32nd IEEE
Symposium on Security and Privacy, Oakland, California, May 2010.

[29] B. Schwarz, S. Debray, and G. Andrews, “Disassembly of Executable
Code revisited”, 9th IEEE Working Conference on Reverse
Engineering (WCRE), Richmond, Virginia, October 2002.

[30] S. S. Shende and A. D. Malony, “The Tau Parallel Performance
System”, International Journal of High Performance Computing
Applications 20, 2, May 2006.

[31] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A.
Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel and G. Vigna,
“SOK: (State of) The Art of War: Offensive Techniques in Binary
Analysis”, 37th IEEE Symposium on Security and Privacy. San Jose,
California, May 2016.

[32] A. Skaletsky, K. Levit-Gurevich, M. Berezalsky, Y. Kuznetcova and
H. Yakov, “Flexible Binary Instrumentation Framework to Profile
Code Running on Intel GPUs”, 28th IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), Singapore,
May 2022.

[33] H. Theiling, “Extracting Safe and Precise Control Flow from Binaries”,
7th International Conference on Real-time Systems and Appplications
(RTCSA), Cheju Island, South Korea, December 2000.

[34] O. Villa, M. Stephenson, D. Nellans and S. W. Keckler. “NVBit: A
Dynamic Binary Instrumentation Framework for NVIDIA GPUs”,
52nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Columbus, Ohio, October 2019.

[35] S. B. Yadavalli and A. Smith, “Raising Binaries to LLVM IR with
MCTOLL (WIP paper)”, 20th ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools and Theory of
Embedded Systems (LCTES), Phoenix, Arizona, June 2019.

