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Dyninst on the RISC-V: 

Binary Instrumentation in Support of Performance, 
Debugging, and Other Tools 

Abstract— Binary instrumentation provides the ability to 
instrument and modify a program after the compilation process 
has completed. Operating on the binary level allows 
instrumentation of the program as it was produced by the 
compiler. In addition, it can operate on programs or libraries for 
which you may not have the source code. Binary instrumentation 
is the foundation for a wide variety of tools, including those for 
performance profiling, debugging, tracing, architectural 
simulation, and digital forensics. Dyninst is a free and open-source 
suite of toolkits for building binary analysis and instrumentation 
tools for architectures that include the x86, ARM, and Power. It is 
used in tools produced by industry, academia and research labs. 
This paper describes our efforts to port Dyninst to the RISC-V 
architecture. We discuss the challenges presented by the RISC-V, 
our approaches to solving them, and the status of Dyninst on the 
RISC-V. 

Keywords—binary instrumentation, binary rewriting, dynamic 
instrumentation 

I. INTRODUCTION TO BINARY INSTRUMENTATION 
Binary instrumentation is a powerful technique that allows 

you to directly manipulate binary code by inserting, deleting or 
modifying instructions in the binary code. The advantage of 
binary instrumentation is that it operates directly on the binary. 
Operating directly on the binary does not require access to or 
even have access to the source and works on the executable as 
was generated by the compiler. Binary instrumentation has a 
long proven history in areas such as performance profiling [1], 
taint analysis [28], debugging [5], architectural simulation [9] 
and malware detection [15][19][24]. The usefulness of this 
approach has continued with the development of binary 
instrumentation and profiling tools for GPUs [32][34]. 

For example, if you wanted to trace every function entry and 
exit, or every memory access, or even every stack memory 
reference, you can easily create a modified version of your 
executable file that contains such instrumentation.  

There are two types of binary instrumentation based on when 
the instrumentation happens: (1) static instrumentation, called 
binary rewriting, meaning that the binary code is modified and 
a new executable or library file is created, and (2) dynamic 
instrumentation, where the modification of the binary happens 
while the program is running. Static and dynamic 

instrumentation are illustrated in Fig. 1. Binary instrumentation 
was launched in the early 1990’s, with ATOM [14] as the 
earliest tool to implement binary rewriting and Dyninst 
[8][17][22] as the earliest tool to support dynamic 
instrumentation. 

Over the years, there have been many tools that have been 
developed to do binary instrumentation, including DynamoRIO 
[7], EEL [20], Pin [21], Valgrind [23], angr.io [31], GTPin [32], 
and NVBit [34]. 

Binary instrumentation tools work in a variety of ways: 

Coding patching: Tools that use code patching directly 
instrument the existing binary. They do this by creating a new 
version of the block or whole function that contains the 
instrumentation and relocating this code, i.e., placing this 
instrumented code in a patch area called a trampoline. The 
original code is then overwritten to contain a branch to the 
instrumented version of the code, and the instrumented code is 
terminated by a branch back to the original code. The advantage 
of such tools is that they keep much of the original code intact 
and only change what will be instrumented. The disadvantage is 
that these tools incur some extra control flow transfers to and 
from the trampolines. These tools also need (and often benefit 
from) strong semantic analysis of the code to understand its 
structure.  Dyninst is an example of such a tool. 

Code caching: Tools that use code caching relocate every 
basic block before it is executed. If the block will have 
instrumentation, then the relocated version is modified before it 
is copied to the code cache. All code is copied and executed from 
the cache. The advantage of such tools is that they are 
structurally simpler to build. However, they have the overhead 
of relocating each block of code and do not benefit from code 
analysis. Valgrind and PIN are examples of such tools. 

Hoisting: Tools that use hoisting convert the binary to a 
common intermediate representation (IR) such as LLVM IR, 
modify the IR, and then regenerate the code to form a new 
binary. The advantage of such tools is that they do not require 
code generation or patching functionality. All that is done by the 
tools that supports the IR. However, such tools must completely 
understand every instruction in the binary so that it can be 
hoisted to the IR (which can often be complex or even 
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impossible to do). Tools that use hoisting include llvm-mctoll 
[35] and BinRec [3]. 

II. DYNINST 
Dyninst is a binary analysis and instrumentation toolkit that 

provides a machine independent interface to machine level 
binary (executable or library) analysis, instrumentation (code 
modification), and platform independent process control. The 
abstract interface allows Dyninst-based tools to operate without 
any specific knowledge of the structure of the ISA of the 
processor. 

The analysis and instrumentation capabilities of Dyninst are 
used by tools such as Rice University’s HPCToolkit [1], 
University of Oregon and ParaTools TAU [30], Barcelona 
Supercomputing Center’s Paraver [25], Lawrence Livermore 
National Labs Stack Trace Analysis Debugging Tool (STAT) 
[5], AMD OmniTrace [2], and Red Hat SystemTap [18]. Note 
that Dyninst is free and open source, based on an LGPL license 
and hosted on GitHub [13]. 

Dyninst is unique among tools in that it does both analysis 
and instrumentation. Dyninst uses a deep semantic analysis of 
the code to allow a more complex understanding of the code to 
be instrumented and to enable more efficient instrumentation. It 
first performs control- and data-flow analysis on the binary (the 
mutatee) to create a control flow graph (CFG) and dataflow 
graph (DFG) of the mutatee; information in these graphs is used 
during the instrumentation process. Dyninst’s code modification 
is based on safe transformations of the program’s CFG so that 
instrumented binary will have valid control flow transitions [6]. 
The dataflow information also plays important role in the 
instrumentation process, including liveness analysis that finds 
free registers, called dead registers, that can be used to create 
efficient instrumentation that can avoid the need to save current 

program values. Dyninst’s dataflow analysis is also used to 
analyze pointer-based control flow (such as is used in jump 
tables, virtual function tables, and function pointers) to generate 
a more complete (and thus, more accurate) CFG. This unique 
combination of binary analysis and instrumentation allows more 
robust and sophisticated instrumentation to be crafted. 

Currently Dyninst supports analysis and instrumentation of 
the x86, ARM64, Power, and (in progress) AMD GPU 
architectures. In the past Dyninst has supported many other 
architectures such as Sun SPARC, DEC Alpha, HP PA-RISC, 
MIPS, and Intel Itanium.  

Dyninst is broken down into toolkits to allow the 
functionality to be used separately or collectively. Some 
components are specific to a particular ISA (such as the 
InstructionAPI) or operating system (such as the 

 
Fig. 1.  The variants of binary instrumentation. Static binary instrumentation reads a binary, performs analysis and instrumentation and then creates a new 
binary. Dynamic binary instrumentation has two forms that differ in when it occurs. In the first form the binary is analyzed and instrumented and the resulting 
process is spawned. In the second form an already running process is attached to. In both case further process control, analysis and code modification may 
occur. 

Fig. 2. The components of Dyninst and the use relationships between the 
components. The direction of the arrows indicates the flow of information. 
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ProcControlAPI), while others operate on platform independent 
abstractions, such as the ParseAPI and DataflowAPI. 

Dyninst analyzes the binary opportunistically in that it can 
operate on a binary without symbols or debugging information 
(a stripped binary) but will use information that is optionally 
available in a binary, such as debugging symbols, to increase the 
effectiveness and accuracy of its code analysis. 

Instrumentation is performed based on code snippets and 
instrumentation points.  A snippet is an abstract representation 
of the code to be inserted into the binary. This code is specified 
by a machine independent abstract syntax tree (AST) [8]. The 
AST types include operations for reading or writing memory, 
registers or variables; performing basic logical and arithmetic 
operations;  calling functions; and branching, including 
conditional branching. 

A point is a location in the program where instrumentation 
will be inserted. Points include 

• Low level abstractions such as individual instructions. 
• Function level abstractions such as call site, function entry, 

and function exit. 
• Control flow graph abstractions such as branch-taken and 

branch-not-take edges, loop back edges. 

Code snippet insertion is a basic Dyninst operation that takes 
a tuple (P, AST), where P is a vector of instrumentation points 
where the instrumentation will be inserted and AST is the root of 
the tree that represents the code to be inserted. Dyninst will 
convert the AST to native code, optimize the code when 
possible, generate new versions of the blocks or functions that 
have been modified, and patch a branch into the original code to 
jump to the modified code. 

Dyninst is organized as a library of toolkits. The toolkits and 
their relationships are shown in Fig. 2. The rest of this section will 
briefly describe the key functionality of each component. 

A. Code Analysis Toolkits 
The first four components perform analysis of the binary. 

SymtabAPI provides an abstract representation of how a 
binary program is structured and stored in a file. So Dyninst can 
provide a platform independent interface to formats such as 
ELF, DWARF, PE, and PDB. It provides access to symbol table 
information, sections that contain the binary code and data, 
relocation information, and debugging data. 

InstructionAPI provides an abstract representation of 
machine code instructions. It parses the instruction into an ISA 
independent representation that includes the opcode; operands 
including whether it is read or written and an AST that 
represents the addressing calculation; abstract instruction types 
such as call, branch, return, arithmetic; set of registers read and 
written by the instruction. 

ParseAPI creates and provides access to the CFG. It initiates 
parsing of the machine code in the binary using a fast parallel 
algorithm to create the annotated CFG that include functions, 
loops, jump tables, and basic block structure of the binary. The 
parallel algorithm has allowed Dyninst to efficiently parse 
binaries that have more than a gigabyte of machine code. It uses 
a traversal algorithm [29][33] to construct basic blocks and 

determine function and loop boundaries. Parsing starts from 
known entry points – such as the program entry point and 
function entry points from symbol tables – and follows the 
control flow transfers to build the CFG and identify more entry 
points. Not all code will necessarily be found by traversal 
parsing due to unresolvable pointers used in control flow 
instructions. Thus, parsing may leave gaps [16] in the binary 
where code may be present but has not yet been identified. 
Dyninst attempts to resolve these gaps using advanced dataflow 
analysis techniques such as slicing and jump table analysis, and 
speculative parsing based on machine learning [27]. 

DataflowAPI annotates the CFG with dataflow information, 
effectively creating a DFG. The dataflow information has two 
general uses. First, Dyninst uses this information to increase the 
accuracy of the control flow analysis. Second, these operations 
are available to users of the DataflowAPI to build more 
advanced tools and custom analyses. The supported analyses 
include register liveness, stack height analysis, forward slicing 
(instructions affected by data), backward slicing (instructions 
that affected data), and loop analysis. Dataflow analysis requires 
semantic information about what each instruction calculates, 
currently sourced from ROSE [26], SAIL [4], and hand-crafted 
semantic descriptions. 

B. Instrumentation Toolkits 
The next two components perform instrumentation. Since 

snippets and points are architecture independent abstractions, 
most tools that use these interfaces are architecture independent. 

While it is also possible to specify instrumentation as raw 
machine code in an array of bytes, this mechanism is rarely 
needed in Dyninst so its use is discouraged. 

CodeGenAPI transforms the machine independent AST 
representation to architecture-specific instruction sequences.  

PatchAPI does snippet insertion. It is responsible for 
modifying the code so that space is allocated for the 
instrumented code and that control is transferred to the 
instrumented code and back.  

The final two components are used only for dynamic 
instrumentation, performing operations on processes (i.e., 
running programs). 

ProcControlAPI is an operating system independent 
interface to process control, providing debugger-like 
functionality that is able to attach to a running process or start a 
process; read and write the memory of the process; suspend or 
resume a process and its threads; insert breakpoints; catch user 
events like signals; and detect process and thread creation. 

StackwalkerAPI allows users to collect a call stack (known 
as walking the call stack) and access information about each 
invoked function’s stack frames including return addresses. 
Each stack frame is a record of an executing function (or 
function-like object such as a signal handler or system call). 
Stack walking can be quite tricky on code generated by modern 
compilers, as stack frames can appear in a variety of forms or 
even missing altogether due to code optimizations. 
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III. PORTING DYNINST TO RISC-V 
RISC-V is an open standard ISA known for its simplicity and 

extensibility. While RISC-V is widely used in embedded 
systems and microcontrollers, it has also gained popularity in 
high performance computing. Making Dyninst available on the 
in RISC-V provides a wide variety of functionality, including a 
pathway to port many types of tools, as mentioned in Section II. 
We have ported Dyninst to RISC-V, allowing for binary analysis 
and instrumentation on this architecture. 

In this section, we start by discussing some characteristics of 
RISC-V that affect the porting of Dyninst. We then describe the 
RISC-V implementation of each Dyninst component, discussing 
implementation details, issues we encountered, and solutions we 
developed. Last, we outline the current status of the RISC-V port 
as well as several directions for future work. 

A. Characteristics of RISC-V that affect porting 
The main difficulty in porting Dyninst to RISC-V lies in the 

very reason that makes RISC-V appealing for hardware design: 
extensibility and simplicity. While RISC-V’s extensibility 
allows flexible hardware implementation, it provides challenges 
for tools that have to generate and process the machine code. 
While hardware designers can choose to implement only 
extensions that are relevant to their hardware, Dyninst must 
support a broad range of extensions to handle the wide variety 
of real-world binaries. 

In addition, RISC-V is a RISC architecture. While RISC 
architectures simplifies the implementation of hardware, they 
can increase the complexity of analyzing the code as some high-
level functionality requires more instructions than would be 
needed on a CISC architecture. The simple instructions on a 
RISC architecture are also likely to cause some instructions top 
be used for multiple purposes. While this challenge also exists 
in other RISC architectures such as ARM or Power (which are 
also supported by Dyninst), RISC-V’s base instruction set is 
significantly smaller than that of ARM or PowerPC, causing 
these instruction sequences to appear more frequently. 

1) Extension-based ISA 

One of the most distinctive features of RISC-V is its modular 
design. Unlike traditional ISAs that define a fixed, monolithic 
instruction set, RISC-V defines minimal base ISAs and several 
optional extensions. A base ISA defines the minimum set of 
integer instructions required to implement a fully functional 
RISC-V processor, so any RISC-V implementation must 
implement a base ISA. Besides the base ISA, RISC-V offers a 
wide range of extensions that allow hardware designers to 
implement only the extensions necessary for their hardware.  

The extensibility of RISC-V, however, means that Dyninst 
needs to be aware of the extensions supported by the mutatee. If 
the mutatee does not support a specific extension, Dyninst 
should not generate instrumentation code using any instructions 
from that specific extension. 

Additionally, new extensions are introduced and ratified 
every year [12]. To keep up with the fast paced change, 
Dyninst’s RISC-V port needs to be written with extensibility in 
mind. Components that are ISA-dependent, including 
instruction parsing and code generation, need to be modular so 

that adding a RISC-V extension into Dyninst does not require 
manually changing multiple parts of the source code. 

2) The C Extension (Compressed Instructions) 

The C Extension is a widely used extension that offers 2-
byte versions of several commonly used 4-byte standard 
instructions. The goal of compressed instructions is to reduce 
code size and improve memory usage and efficiency. 

Despite the benefit of reduced code size, compressed 
instructions sometimes create space issues for binary 
instrumentation. For example, Dyninst needs to insert jump 
instructions to redirect control flow to instrumented code. 
However, Dyninst sometimes cannot use the compressed jump 
instruction c.j for this purpose because its target offset range is 
limited to [-212, 212) bytes. If the target offset exceeds this limit, 
Dyninst needs to fall back to a standard 4-byte jump instruction. 
In exceptional cases, such as functions that are shorter than four 
bytes, these longer jumps cannot be used. Dyninst will try to 
choose the most efficient jump sequence in each case, ultimately 
resorting to the inefficient 2-byte trap instructions in the worst 
case (which, fortunately, does not occur often). 

3) Multi-use Control Flow Instructions 

Another challenge we have faced is the multiple uses of 
control flow instructions in RISC-V. RISC-V defines only two 
instructions for unconditional branches, jal and jalr, different 
from instruction sets like x86 that have different instructions for 
unconditional jumps, function calls, and function returns. As a 
result, a single RISC-V branch instruction serves multiple 
purposes. For example, the jalr (jump and link register) 
instruction is used for unconditional jumps, function calls, 
function returns, and jump tables. Therefore, Dyninst needs to 
detect the context in which the jump instruction is being used to 
correctly determine its higher level purpose. 

B. Toolkit-by-toolkit discussion 
In this section, we provide a detailed walkthrough of the 

RISC-V implementation component by component, focusing on 
how Dyninst addresses RISC-V’s wide variety of extensions and 
instructions. 

1) SymtabAPI 

SymtabAPI is responsible for parsing symbol tables and 
object file headers of ELF (Executable and Linkable Format) 
binaries. The RISC-V ABI specifies some definitions that are 
unique to RISC-V ELF that require special handling. 

The first important field is e_flags, which is used to 
describe processor-specific properties of an ELF binary. This 
includes 

• EF_RISCV_RVC: Defines whether compressed instructions 
are present 

• EF_RISCV_FLOAT_ABI_SINGLE: Defines whether single-
precision floating points are present 

• EF_RISCV_FLOAT_ABI_DOUBLE: Defines whether double-
precision floating points are present 

The original usage of e_flags is to allow the linker to 
prevent linking ELF files with incompatible ABIs. From 
Dyninst’s point of view, e_flags provide information about 
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whether the binary is compiled for a processor that supports the 
compressed instruction, single-precision floating point, and 
double-precision floating point extensions. Thus, this field is 
extracted by SymtabAPI to determine whether these extensions 
are supported. 

In addition, the ABI defines a custom section named 
.riscv.attributes. This section contains compatibility 
information that a linker or runtime loader needs to correctly 
execute RISC-V binaries, such as the target architecture string, 
which contains information about what extensions the binary 
supports. SymtabAPI will parse the .riscv.attributes 
section and obtain the value of the target architecture string to 
determine all the extensions that the binary uses. 

While .riscv.attributes can be found in most binaries 
compiled by GCC or LLVM, it is not a mandatory section. If an 
ELF binary lacks this section, SymtabAPI obtains extension 
information from e_flags, as e_flags is present in all ELF 
files. 

2) InstructionAPI 

We base our RISC-V instruction parsing on the Capstone 
library [10]. Capstone is widely used and supports architectures 
such as x86, ARM, PowerPC, and RISC-V. There are several 
reasons why Capstone is ideal for instruction parsing. First, 
Capstone is fast and efficient: it can parse a large amount of 
assembly code efficiently due to its optimized disassembly 
engine. Second, Capstone provides detailed information about 
instruction operands, including whether an operand is a register, 
immediate value, or memory, whether an operand is read or 
written, whether the operand is implicit, and the memory access 
size for memory operands. Third, Capstone is actively 
maintained and updated, so when new instructions are 
introduced, Capstone will be promptly updated. 

The version of Capstone required by InstructionAPI is 
v6.0.0-Alpha or above. Prior to this version, Capstone lacked 
support for operand read and write information. We extended 
Capstone’s RISC-V capabilities to address this problem, and our 
pull request was accepted and merged into Capstone as part of 
the v6.0.0-Alpha release. 

The set of extensions supported by a processor is called a 
profile. Currently, Capstone supports the RV64GC profile, one 
of the most commonly used profiles for general-purpose 
computing. RV64GC stands for 64-bit RISC-V architecture with 
support for the G (Generic) and C (compressed instruction) 
extensions, where the G extension is a set of base and standard 
extensions necessary for general-purpose computing, including 
the I (integer), M (integer multiplication and division), A 
(atomic), F (single-precision floating point), D (double-
precision floating point), Zicsr (control and status register 
instructions), and Zifencei (instruction-fetch fence) extensions. 

Capstone is planning to support new extensions such as 
vector instructions, which will be required by the RVA23 
profile, the future ISA that most processors will support. 

3) ParseAPI 

ParseAPI is responsible for constructing CFGs with basic 
blocks, loops, and functions. While most parts of ParseAPI are 

platform agnostic, it still needs to recognize specific instruction 
sequences from different architectures to construct correct 
CFGs. For example, ParseAPI needs to identify function 
prologues and epilogues to correctly define function boundaries. 
Similarly, ParseAPI needs to correctly identify branch 
instructions to recognize basic blocks and control flow. 

For RISC-V, the most challenging part is recognizing what 
high-level operation is represented by the jal and jalr 
instructions. RISC-V uses these two instructions for the 
following purposes: 

• Function returns: Function return in RISC-V is equivalent to 
an unconditional jump to the return address stored in a link 
register, the register that contains the return address. The link 
register is x1 by convention, though other registers may be 
(and are) used. 

• Function calls: Like unconditional jumps, if the relative 
offset fits within the range supported by jal, compilers 
generate jal for function calls. Otherwise, compilers load 
the jump target to a register and generate a jalr. 

• Unconditional jumps: If the relative offset fits within the 
range supported by jal, compilers generate jal for 
unconditional jumps with the link register of x0, a special 
register whose value is always zero. Otherwise, compilers 
load the jump target to a register and generate a jalr, again 
with the link register of x0.  

• Tail calls [11]: A tail call is a function call-return 
optimization that uses a jump instruction instead of a call 
instruction to avoid stack frame setup and tear-down when a 
call instruction is the last operation in a function. In this case, 
a simple jump actually represents a function call.  

• Jump tables: Compilers typically implement jump tables 
using jalr, where the target address is computed at runtime 
based on an index and loaded into a register. 

Thus, given a jal or jalr instruction without any context, 
ParseAPI cannot determine what types high-level operation it 
represents only by the instruction opcode. 

In addition, the valid target offset range of jal is limited. 
When the target offset exceeds jal’s limit, compilers will 
generate multi-instruction code sequences instead. For instance, 
compilers might generate an instruction sequence using the 
auipc (add upper immediate to PC) instruction that first loads 
the upper 20 bits of the jump target from the current PC to the 
register, followed by a jalr instruction that handles the lower 
12 bits of the jump target: 

# Assign t0 to PC + the upper 20 bits of offset 
auipc t0, offset1 
# Jump to t0 + the lower 12 bits of offset 
jalr x0, offset2(t0) 

If we only focus on the jalr instruction without considering 
the previous auipc, this instruction appears to be an indirect 
jump to t0 + offset2. However, t0 can in fact be determined 
because it is loaded by the preceding auipc instruction. 
ParseAPI needs to examine the whole instruction sequence to 
correctly identify it as an unconditional jump. Note that the 
above sequence is only one of the possible sequences that the 
compiler might generate for multi-instruction jumps or calls. 
Different compilers may generate these sequences in different 
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ways, which makes reliably recognizing these instruction 
sequences challenging.  

Due to the above reasons, ParseAPI analyzes the link register 
and the target address to correctly identify what kind of branch 
the current jal or jalr represents. Obtaining the link register of 
jal and jalr, and the target address of jal can simply be done 
by examining its instruction operands. However, obtaining the 
target address of jalr is more challenging: ParseAPI tries to 
determine the exact value of the target register by performing a 
backward slice on it. If the result of the slicing yields a constant, 
ParseAPI will first check whether the constant (i.e., the target 
address) lies in a valid code region. If so, ParseAPI checks: 

• If the target address lies within the same function, and the 
link register of the current instruction is x0, ParseAPI 
identifies it as an unconditional jump. 

• If the target address points to other functions, and the link 
register of the current instruction is x0, ParseAPI identifies 
it as a tail call. 

• If the target address points to the entry point of a function, 
and the link register of the current instruction is not x0, 
ParseAPI identifies it as a function call. 

• If the target address is in a valid code region, and the 
previous instruction is a function call, and the link register 
of the function call is the same as the target register, 
ParseAPI identifies it as a function return. 

• If none of the above cases are valid, ParseAPI performs jump 
table analysis [22] on the current jalr instruction. If it 
succeeds, ParseAPI identifies it as a jump table. 

• If the jump table analysis fails, ParseAPI treats the jalr as 
unresolvable, meaning that the jump or call target cannot be 
determined symbolically.  

4) DataflowAPI 

The DataflowAPI provides common types of dataflow 
analysis such as register liveness, slicing, and loop analysis. 
While most parts of the DataflowAPI are platform agnostic, 
slicing requires instruction semantics that are architecture 
dependent. For x86, ARM, and PowerPC, instruction semantics 
are obtained from C++ classes derived from the ROSE project. 
While ROSE provides instruction semantic support for several 
architectures, it lacks support for RISC-V. 

To support RISC-V, we derived the instruction semantics 
from the official formal specification of the RISC-V 
architecture, which is written in SAIL. SAIL is a language that 
provides a high-level executable model of instruction set 
architectures. Its design involves rigorous formal analysis, so it 
is suitable for generating emulators and theorem-prover 
definitions. From the perspective of binary analysis tools, this 
kind of formal semantic information is precisely what is needed 
for dataflow analysis that relies on rigorous instruction 
semantics to track how values propagate through the code. 

However, SAIL presented some practical challenges for 
Dyninst. First, the SAIL language is designed to be easily parsed 
and executed within the OCaml ecosystem, but it limits 
interoperability with tools developed in other languages. In 
addition, the SAIL language is designed for formal verification, 
so the formal RISC-V SAIL definition contains many details 
related to error handling, such as memory alignment checks and 

jump target validation logic. These checks are important for 
formal verification or emulators, but not for dataflow analysis. 

To address these issues, we developed a pipeline that acts as 
a source-to-source compiler from SAIL to the C++ instruction 
semantic classes used in DataflowAPI. The first stage of this 
pipeline is an OCaml script that parses the SAIL semantics and 
generates a simplified JSON representation of the instruction 
semantics. This JSON format serves as an intermediate 
representation that contains essential semantics of each 
instruction without extraneous error-handling code. The second 
stage of the pipeline is a script that reads the simplified JSON 
representation and generates C++ instruction semantic classes.  

The main advantage of this pipeline design is that if new 
RISC-V extensions are proposed and later added to RISC-V 
SAIL, we only need to rerun the whole pipeline again to generate 
the updated C++ instruction semantic classes. 

5) CodeGenAPI 

CodeGenAPI is responsible for generating instrumentation 
code, making use of the extension information obtained from the 
SymtabAPI to make sure that only compatible instructions are 
generated. 

RISC-V lacks basic instructions for some common 
operations, such as loading an immediate value into a register. 
For example, to load a 64-bit immediate value into a register, we 
need to generate the lui instruction first to load a value into the 
upper 20 bits of the register. Then, a sequence of addi (add 
immediate) and slli (shift logic left immediate) is generated to 
construct the immediate value.  

In addition, RISC-V instructions often handle immediate 
values in ways that are not straightforward, such as being shifted 
or encoded. As a result, these nuances make generating 
immediate value handling one of the more error-prone aspects 
of code generation. 

6) ProcControlAPI 

The purpose of ProcControlAPI is to provide an OS 
independent interfaces to common process control operations, 
typical based on the debugging system call interface. On Linux, 
ProcControlAPI is implemented using the ptrace system call 
and /proc file system. 

We have begun working on ProcControlAPI and 
encountered the issue that the ptrace system call 
implementation is relatively primitive in RISC-V compared to 
other architectures. For example, the single-stepping 
functionality is not implemented for RISC-V, meaning that 
ProcControlAPI needs to emulate single-stepping on the 
software level: single-stepping must be emulated by a series of 
breakpoints created by ProcControlAPI, which decreases 
performance. 

7) StackwalkerAPI 

While we have not started porting StackwalkerAPI to RISC-
V, we anticipate several challenges due to how RISC-V handles 
the stack frame register. Although the RISC-V ABI designates 
register x8 as the frame pointer register, many compilers choose 
to use x8 as a general purpose register. That is, most compilers 
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handle stack frames using only the stack pointer register. The 
StackwalkerAPI has a plugin-based architecture so that it can 
support multiple types of frame structures. The instruction set 
and compilers for RISC-V will require new “frame steppers” to 
be designed for the RISC-V platform.  

C. Current status 
Dyninst fully supports binary analysis for the RV64GC 

profile. While static instrumentation is a work in progress, it is 
largely functional. 

For RISC-V binary analysis, Dyninst can parse the 
.riscv.attributes section, parse and analyze instructions, 
analyze control flow and construct CFGs, and perform jump 
table analysis, forward slicing, backward slicing, and loop 
analysis. 

For RISC-V instrumentation, many features of the 
CodeGenAPI are fully functional. For example, Dyninst can 
create variables, arithmetic operation snippets, memory 
operation snippets, function snippets, and insert instrumentation 
code at the entry or exit points of functions, branches, and loops. 

D. Future work 
Our immediate future work will focus on completing the 

CodeGenAPI and do more testing to make it robust. Our first 
release is planned for 4Q2025 with the static (binary rewriting) 
instrumentation features. In 1Q2026, we will complete porting 
ProcControlAPI and StackwalkerAPI to complete support for 
dynamic binary instrumentation. 

In the future, we will extend Dyninst to support the RVA23 
profile, which is a new profile on which new RISC-V systems 
are standardizing as a minimal set of features. This profile 
includes many new extensions, such as the vector extension and 
integer conditional extension. Supporting new extensions 
should be straightforward once Capstone adds support for it. We 
can generate the C++ semantic classes that we need to interpret 
new instruction semantics using the SAIL data the same way we 
did for other extensions.  

IV. CONCLUSION 
In this paper, we presented our work on porting Dyninst to 

RISC-V. We addressed the challenges posed by RISC-V’s 
simple and extensible design, including its modular ISA design, 
compressed instructions, and multi-use control flow 
instructions. We described changes made to each Dyninst 
component to support parsing, analysis, and code generation for 
RISC-V binaries. Our RISC-V port adopts a modular design, 
making it easier to add support for new RISC-V extensions. 

For the RV64GC profile, the binary analysis features of 
Dyninst are complete. The static binary instrumentation is 
feature complete, and it is undergoing testing. The dynamic 
binary instrumentation is a work in progress as we need to 
complete the process toolkits, including ProcControlAPI and 
StackwalkerAPI. Once they are complete, Dyninst will provide 
full binary analysis and both static and dynamic instrumentation 
for the growing RISC-V ecosystem.
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