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Abstract—Many high-performance tools, applications
and infrastructures, such as Paradyn, STAT, TAU, Ganglia,
SuperMon, Astrolabe, Borealis, and MRNet, use data ag-
gregation to synthesize large data sets and reduce data
volumes while retaining relevant information content.
Hierarchical or tree-based overlay networks (TBONs) are
often used to execute data aggregation operations in a
scalable, piecewise fashion. In this paper, we present state
compensation, a scalable failure recovery model for high-
bandwidth, low-latency TBON computations. By leverag-
ing inherently redundant state information found in many
TBON computations, state compensation avoids explicit
state replication (for example, process checkpoints and
message logging) and incurs no overhead in the absence
of failures. Further, when failures do occur, state compen-
sation uses a weak data consistency model and localized
protocols that allow processes to recover from failures
independently and responsively.

Based on a formal specification of our data aggregation
model, we have validated state compensation and identi-
fied its assumptions and limitations: state compensation
requires that data aggregation operations be associative,
commutative and idempotent. In this paper, we describe
the fundamental state compensation concepts and a pro-
totype implementation integrated into the MRNet TBON
infrastructure. Our experiments with this framework sug-
gest that for TBONs supporting up to millions of appli-
cation processes, state compensation can yield millisecond
failure recovery latencies and inconsequential application
perturbation.
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I. INTRODUCTION

Many high-performance computing (HPC) tools and
applications use data aggregation to synthesize mas-
sive data sets from many distributed sources. In these
contexts, data aggregation is used to reduce data vol-
umes without losing relevant information as well as
to reduce data analysis requirements. Hierarchical or
tree-based overlay networks (TBŌNs) that can aggre-
gate data in a piecewise fashion can easily achieve
large-scale parallelism making them popular for high-
bandwidth, low-latency data aggregation. Parallel pre-
fix computations [16] are an early example, and to-
day TBŌN-based aggregation can be found in general

aggregation services [5], [7], [11], [24], distributed de-
bugging, performance and monitoring tools [20], [25],
[26], [28]; information management systems [22], [29];
stream processing [6]; and mobile ad hoc networks
(MANETs) [17], [30]. The aggregation operations range
from sum, average, and upper/lower bound computations
to complex ones like clock synchronization, data classi-
fication, and data unification (e.g. subgraph merging).

Many applications of data aggregation require high
degrees of robustness. For example, data analysis
based on anomaly detection, as in tools for finding out-
liers in large scale computing simulations1 or detect-
ing anomalous traffic patterns in large data networks,
might fail to capture outlier behavior if only partial
data is aggregated. Additionally, the TBŌN data ag-
gregation model is generalized in stream programming
environments such as Borealis[6] and SDIMS [29],
which have shown how this computational model can
be used for applications like data-diffusion, publish-
subscribe systems, barrier synchronization and vot-
ing. Once again, these applications often require total
data aggregation. However, expected failure rates of
existing and imminent petascale systems have raised
serious concerns over current recovery models: at these
scales, checkpoint-based mechanisms will consume
most of the available computational resources allowing
little or no application work to be done [10], [12].
The scalability of checkpoint-based fault tolerance is
limited for two main reasons: (1) the time necessary to
checkpoint local process state increases linearly with
process size (which generally increases with memory
capacity) and (2) the worse case coordination time to
create a globally consistent set of checkpoints increases
quadratically with the number of processes.

In response to these concerns, we have developed
a technique called state compensation for robust, high-
performance data aggregation in the face of transient
or permanent fail-stop failures, detectable failures that
cause processes to cease output production. Our cen-

1In III-B we describe one such tool, STAT.



tral observation is that many TBŌN-based compu-
tations naturally maintain redundant state amongst
the processes in the system. Intuitively, as informa-
tion is propagated from the TBŌN leaves to its root,
aggregation state, which generally encapsulates the
history of processed information, is replicated at suc-
cessive levels in the tree. State compensation uses the
redundant state from processes that survive failures
to compensate for lost information, thereby avoiding
explicit data replication (like checkpointing or message
logs). State compensation’s general requirements are
that operations be associative and commutative.

In this paper, we focus primarily on one compensa-
tion mechanism, state composition. In state composition,
orphaned processes propagate their local aggregation
state, to their new parents to compensate for any
data lost in transit from the orphans to their failed
parent or from the failed parent to the failed parent’s
parent. State composition is appropriate for idempotent
operations for which re-processing some input ele-
ments does not change the computation’s output. We
also summarize the results from a preliminary study
of a second mechanism, state decomposition, that ac-
commodates non-idempotent operations by precisely
computing and compensating only for the lost state.
Both mechanisms use a weak data consistency model
and localized algorithms (for example, tree reconfigu-
ration) that allow processes to recover from failures
independently and responsively. Overall, this paper
describes the state compensation model, a working
implementation of state composition added to the
publicly available MRNet TBŌN prototype [24], and
an evaluation based on this prototype. This evaluation
shows that for TBŌNs supporting up to millions of
application processes, state composition can yield mil-
lisecond failure recovery latencies with unnoticeable
application perturbation.

After related work in Section II, we present the
TBŌN computational model and its key properties
in Section III. In Section IV, we describe the state
compensation mechanisms followed by our MRNet-
based prototype in Section V. After our empirical
performance evaluation in Section VI, we summarize
our contributions and discuss open issues.

II. RELATED WORK

Related recovery models can be categorized as fail-
over, rollback recovery, or reliable data aggregation. In
fail-over (or hot backup) protocols [1], [27], processes
periodically synchronize with backup replicas used to
replace failed primaries. This approach can be applied
generally to any computation and yields low recovery
latencies since backups are in (near) ready states. How-
ever, with only one backup per primary, the resource

overhead is 100%. Additionally, primary/backup syn-
chronization increases normal operational latencies.

In rollback recovery, processes periodically check-
point their state to persistent storage. Upon fail-
ures, the system recovers to the most recent check-
point [9]. In coordinated checkpointing, the common
distributed rollback recovery variant, processes coor-
dinate to record globally consistent checkpoints. Like
hot backups, rollback recovery is a well studied, gen-
eral fault tolerance mechanism. However, as previ-
ously discussed, recent studies conclude that for im-
minent petascale systems, checkpointing and recovery
resource demands will prevent applications from per-
forming useful work [10], [12].

Various recent studies specifically have targeted re-
liable data aggregation in domains including stream
processing engines (SPEs), distributed information
management systems (DIMS) and mobile ad hoc net-
works (MANETs). In SPEs, fail-over protocols have
been used to replicate query processing nodes [6], [14].
In Astrolabe [22] and Gupta et al.’s approach [13],
nodes are organized into disjoint clusters, and a hier-
archy is imposed by forming larger clusters of clusters.
Data are replicated within and across the clusters using
periodic, random gossiping [23]. SDIMS [29] also orga-
nizes nodes into a tree but uses an explicit replication
protocol in which nodes scatter attribute information
to their ascendants and descendants. These approaches
are general and can be used in any data aggrega-
tion context. Additionally, gossip protocols are scalable
with a configurable trade-off between overhead and ro-
bustness. However, gossip protocols are best suited for
applications with small data sets (hundreds of bytes)
that do not require low latency communication and
can tolerate partial, non-deterministic output. Further,
the explicit replication of the SDIMS approach has
potentially high space overhead as data are replicated
in multiple places.

Robust MANETs [15], [18], [19], [21], use unreliable
transport protocols periodically to disseminate locally
known attribute data. Nodes merge received attribute
data with their local data such that over time local
attribute estimates converge to their actual values.
These protocols generally exhibit good scalability and
convergence rates. However, proposed protocols are
specific to relatively simple aggregation operations like
sum, max and average.

Discussion: Other than MANET approach, these
related works can be applied generally to data aggrega-
tion operations. However, fail-over and rollback recov-
ery protocols are inherently non-scalable. In contrast,
the gossiping approaches are scalable, but not suited
for high-performance operation and yield partial, non-
deterministic output. Our recovery model requires as-
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Figure 1. TBŌN Model: back-ends stream data via communication
processes that aggregate and propagate the data to the front-end.

sociative, commutative (and idempotent) aggregation
operations. However, by leveraging information re-
dundancies inherent to the computation, state com-
pensation avoids explicit state replication bearing no
additional overhead during normal operation. We are
unaware of any other recovery model that does not
rely on explicit replication. Additionally, state compen-
sation features deterministic, high throughput delivery
without constraints on message sizes. Finally, recovery
is fast, involves a small subset of the TBŌN and yields
inconsequential application perturbation.

III. THE TBŌN MODEL

Generally, TBŌNs aggregate data in a piecewise
fashion by iteratively sub-dividing the input data.
As shown in Figure 1, application2 back-end processes
propagate continuous dataflows via the TBŌN to the
application front-end. Hierarchically organized commu-
nication processes implement the TBŌN’s communica-
tion and aggregation services. MRNet [24], our TBŌN
prototype, has two main components: libmrnet, a C++
library linked into the application processes and mr-
net commnode, the program for the communication pro-
cesses. While balanced trees are typical, MRNet sup-
ports any connected tree topology. Processes exchange
data via a reliable, order-preserving transmission; for
example, MRNet uses TCP. Applications use streams
to distinguish logical dataflows. Streams specify the
participating back-ends and the aggregation to apply
to the stream’s packets. MRNet supports simultaneous
streams each with potentially different filters.

A. Data Aggregation
TBŌN processes use filters to aggregate data from

their children. Our model is based on stateful filters

2“Application” refers to the system directly using the TBŌN,
whether it is a tool or application.

with time variant state size. Such filters use filter state to
carry side effects from one invocation to the next, and
over time state size can become large. Generally, this
filter state encapsulates previously filtered inputs and
is used to propagate incremental updates efficiently.
For example, consider the sub-graph folding filter [25],
which continuously merges input sub-graphs into a
single graph. Each communication process stores as
its state the current merged graph, which encapsulates
that process’ history of filtered sub-graphs. As new
data arrive, the filter outputs changes to its current
merged graph. MRNet filters input a packet vector and
output a packet vector (typically of a single packet):

void filter( vector<Packet> &inPackets,
vector<Packet> &outPackets,
void **inoutFilterState );

The filter also takes a filter state reference, inoutFilter-
State. MRNet maintains a unique reference for each fil-
ter instance. Filters can allocate memory for persistent
data and point the reference to this data. MRNet passes
the reference to the filter on each invocation.

MRNet’s load FilterFunction() routine dynamically
loads new filters into the TBŌN processes from shared
object files. MRNet supports various synchronization
modes to deal with asynchronous input packet arrival.
In this paper, we assume the common Wait For All
mode in which an input wave is comprised of a single
packet from every child process.

State join and difference: We further abstract the
filter function into join and difference operations. The
join operator, t, is used to merge input packets into
waves and to update the filter state with these input
waves. We assume that the join operator is associative
and commutative. The relevance of associativity has
been noted previously, for example, in parallel prefix
computations [16]. As detailed in Section IV-A, these
properties simplify our recovery mechanisms: since
correctness does not depend on the grouping and
ordering of input data, disconnected subtrees may
reconnect to any branch of the main tree. We assert that
these properties of associativity and commutativity
are not overly restrictive: in practice, we have not
observed a single filter for which the correctness of
its output data that was dependent upon the ordering
or grouping of the filter’s input data.

State composition assumes that joins are idempotent,
∀x, x t x = x. Many stateful aggregation operations,
including most MRNet-based data aggregation op-
erations [3], [4], [24], [25], are idempotent. Specific
algorithms classes include set union, graph folding,
equivalence class computations, and upper and lower
bounds computations. Variations of these operations
that include membership statistics, for example set



union with membership counts, are non-idempotent.
(State decomposition addresses non-idempotence (Sec-
tion IV-D).)

Filters use the difference operator, −, to compute
the incremental difference between their previous and
updated states. Filters based on idempotent joins may
output either incremental or complete updates. For
efficiency, we favor the latter. However, as we see in
Section IV-C, sending complete updates simplifies the
state composition protocol. The inability to do this in
non-idempotent operations encumbers state decompo-
sition.

B. An MRNet-based TBŌN Example

As an example, we describe the MRNet-based stack
trace analysis tool (STAT [3]), which aggregates call-
graphs sampled over time from large MPI applica-
tions to identify equivalence classes of process behav-
ior. STAT back-ends propagate callgraphs through the
TBŌN to the STAT front-end. Each MRNet process uses
a custom STAT filter to merge new stack traces with
those previously filtered and propagate the incremen-
tal callgraph changes. The persistent state at each pro-
cess is a callgraph prefix tree representing the history
of filtered callgraphs. The state of each channel is the
incident vector of pending updates from a child to its
parent. The final output at the application front-end
is a callgraph prefix tree representing a global profile
of the application process’ behavior. This example is
representative of many other types of data aggregation
operations, for example, sub-graph folding [25] in the
Paradyn tool and data equivalence classification [24].

IV. STATE COMPENSATION

State compensation works by merging states from
non-failed processes to compensate for lost state. Be-
fore describing the details, we discuss our failure and
consistency models and the fundamental TBŌN prop-
erties upon which state compensation depends.

A. Failure and Data Consistency Models

State compensation tolerates fail-stop failures in any
root, internal or leaf TBŌN process. These processes
may fail at any time, even simultaneously. Failed pro-
cesses need not be replaced: the TBŌN is reconfigured
to omit failed processes, but new processes may be
integrated dynamically. Should all TBŌN processes
fail, the system degenerates to a flat tree with the
front-end directly connected to the back-ends. Network
failures that cause permanent partitions are treated as
failures of the processes partitioned from the front-end.

State compensation does not address failures in
application processes; such processes may be viewed

as sequential data sources and sinks amenable to se-
quential checkpointing, which avoids the non-scalable
coordination complexities of distributed checkpoint-
ing. This solution does not work if the application
uses non-TBŌN communication channels, but we have
not yet seen this case in practice. We might expect
failures to be more common in back-end processes,
which outnumber communication processes. However,
a planned MRNet extension will support a process
separation between the MRNet functionality now im-
plemented in the back-end library and the back-end
process. This will allow a dedicated process to respon-
sively attend to high speed data transmissions without
adding MRNet threads that may erroneously interfere
with already multithreaded back-ends. The collocated
communication process and back-end will communi-
cate efficiently via shared memory. This extension will
result in a one-to-one mapping of leaf communication
processes to back-ends rendering TBŌN processes as
failure prone as back-ends.

Normal: 7 11 27 35 35
Failure: 7 8 15 35 35

t0 t1 t2 t3 Maximum

Figure 2. Convergent Recovery: A failure at t0 causes a divergence
at t1 and t2. The output re-converges at t3.

State compensation guarantees weak data consis-
tency, called convergent output recovery [14], in which
failures may cause intermediate TBŌN output data to
diverge from the output produced by an equivalent
computation with no failures. Relying on associativity,
commutativity and idempotence, our recovery mech-
anisms may cause the associations and commutations
of input data that have been re-routed due to failure(s)
to differ from that of the non-failed execution, or there
may be some duplicate input processing. These phe-
nomena cause the output divergence. Eventually, the
output stream converges back to that of the non-failed
computation after all input affected by the failures are
propagated to the root and it starts to process input not
impacted by the failures. Figure 2 shows the output
streams of two originally identical TBŌNs executing
an integer maximum aggregation: the front-end contin-
uously outputs new maxima as they are filtered. A
failure at t0 causes a divergence in the output at t1
and t2. At t3, the output re-converges to that of the
non-failed execution. Convergent recovery preserves
all output information and produces no extraneous
output.



B. Fundamental TBŌN Properties
To guarantee the correctness of our recovery mecha-

nisms, state compensation relies on three TBŌN prop-
erties: (A full theoretical discussion is attached as an
appendix.)

fs(CPi) � cs(CPj , CPi) � cs(CPk , CPi) = f s(CPj) � f s(CPk)

cs(CPj , CPi) cs(CPi, CPk)

fs(CPi)

fs(CPj) f s(CPk )

Figure 3. Inherent Redundancy: a parent’s filter and pending
channel states equals its children’s states.

Inherent Redundancy: Inherent information redun-
dancies exist in stateful TBŌN-based data aggrega-
tions. Intuitively, as data is propagated from the leaves
toward the root, filter state is replicated at successive
levels in the tree. Formally, our Inherent Redundancy
Lemma states: “the join of a parent’s filter and pending
channel states equals the join of its children’s states”.
This is shown in Figure 3, where CPi represents the
ith communication process, f s(CPi) represents CPi’s
filter state, and cs(CPi, CPj) represents the pending
updates from CPi to CPj. Once a parent, in this case
CPi, has filtered all the updates from its children, the
parent’s filter state will be equal to the result of joining
its children’s filters state – they would have filtered
precisely the same history of information.

All-encompassing Leaf States: The All-encompassing
Leaf States Lemma states “the join of a subtree’s leaf
states equals the join of the state at the subtree’s
root process and the TBŌN in-flight data”. Since the
state of a TBŌN process encapsulates its history of
filtered inputs and since leaf processes filter data before
any other TBŌN process, the leaves’ input histories
necessarily subsume the state and updates throughout
the rest of the TBŌN.

TBŌN Output Dependence: Finally, the TBŌN Out-
put Dependence Lemma states: “the output of a TBŌN
computation is solely a function of the root’s state and
the TBŌN channel states.” Intuitively, in-flight data
triggers the execution of data aggregations, the output
of which depends upon this data and the current state
of the filtering process.

C. State Composition
State composition uses TBŌN state from processes

below failure zones to compensate for lost state.
This strategy is motivated primarily by the All-
encompassing Leaf State Lemma, which states that

for any subtree, the state at the leaves of the subtree
subsume the rest of the TBŌN state. As shown in
Figure 4, when a TBŌN process fails, the filter and
channel’s states associated with that process are lost.
State composition compensates for this lost state using
state from orphaned processes. Specifically, after the
orphans are re-adopted into the tree, they propagate
their filter state as output to their new parent. We call
this state composition because the compensating states
form a composite equivalent to the state that has been
lost. Formally, our State Composition Theorem states: “A
TBŌN can tolerate failures without changing the com-
putation’s semantics by re-introducing filter state from
the orphaned processes as channel state.” A sketch of
the proof (attached in the appendix) follows: Again
considering the TBŌN in Figure 4, from the TBŌN
Output Dependence Lemma, we know that the output
of CPi, the root, only depends upon its state and the
subtree’s channel states. Since the All-encompassing Leaf
States Lemma tells us that all the states in this subtree
are subsumed by the states at the leaves, CPm and CPn,
then re-introducing these states (after reconfiguration)
as channel state compensates for all the lost state. Since
CPm and CPn’s states may contain information already
filtered by CPi, the aggregation operation must be
idempotent, that is, resilient to re-filtering some input
data elements.

fs(CPj)

fs(CPi)

fs(CPk)

fs(CPm) fs(CPn)

Lost TBŌN State

cs(CPk, CPi)cs(CPj , CPi)

cs(CPm, CPj) cs(CPn, CPj)

Figure 4. State Composition: When CPj fails, f s(CPj), cs(CPj, CPi),
cs(CPm, CPj), and cs(CPn, CPj) are lost. f s(CPm) and f s(CPn) com-
pensate for the loss.

The result of the State Composition Theorem is
that for TBŌNs executing idempotent data aggregation
operations, we can recover all information lost due to
process failures simply by having orphaned processes
transmit their filter state to their new parents. Gener-
ally, the time to filter the aggregated states used for
compensation is less than the time to filter the original
data items that constitute the aggregate.

If the TBŌN root fails, we do not know what output



has already been received by the application front-end
and must act conservatively. We regenerate the entire
TBŌN output stream. When the root process fails, one
of its children is promoted to the root position, and
the remaining orphans become the new root’s descen-
dants. In this case, the orphaned processes transmit
their filter state directly to the new root, not (necessar-
ily) their new parent. The new root merges these filter
states with its own resulting in a composite of the input
history of the original root’s children. In other words,
the composition output subsumes all output (missing
or otherwise) that the failed root process could have
propagated to the front-end. This output is propagated
to the front-end process.

In many situations, application back-ends also ag-
gregate data from multiple sources. For example, in
the stack trace analysis tool [3], each tool back-end
collects and aggregates stack traces from all collocated
application processes. Therefore, filters are executed
in the application back-ends to aggregate local data.
As a result, the back-ends also maintain persistent
filter state, which encapsulates the history of inputs
propagated by that back-end. Should a TBŌN leaf
process fail, we compose the filter states from the
orphaned back-end processes once they reconnect to
the TBŌN.

When multiple unrelated failures occur, the orphans
from these failures simply propagate their compensat-
ing filter state to their new parent upon reintegration
into the TBŌN. If the adopting parent fails as the
orphan attempts reintegration, the orphan finds a new
adopter for reintegration. If the orphan fails before
it is reintegrated, the orphan’s children now become
orphaned and initiate their own failure recovery.

D. State Decomposition

We also have done a preliminary study of a sec-
ond mechanism, state decomposition, to address non-
idempotent computations. State decomposition pre-
cisely calculates lost information and compensates for
only that information thereby removing any poten-
tial for re-processing the same input data multiple
times. Intuitively, the failed process’ parent (eventu-
ally) should filter the same input information as the
surviving processes directly below it, namely, the chil-
dren and siblings of the failed process. Using the filter
states of the failed process’ parent and the failed pro-
cess’ siblings’ and children, decomposition precisely
computes what input information from the orphans
had been filtered by the parent of the failed process.
In other words, after accounting for data the failed
process’ parent has filtered from its non-failed children,
the difference between the orphans’ filter states and
the state at the failed process’ parent reflects the lost

state. After reconfiguration, decomposition can pre-
cisely compensate for this lost state. A more detailed
discussion of decomposition is beyond the scope of this
paper.

V. NEW MRNET FAULT-TOLERANCE EXTENSIONS

The major components of state composition are
failure detection, tree reconfiguration, and lost state
recovery. Accordingly, the major MRNet extensions are
an event detection service for failures and other events,
a protocol for dynamic topology (re-)configuration and
an implementation of the state composition compensa-
tion mechanism.

A. The MRNet Event Detection Service

We implemented a passive, connection-based mech-
anism to detect important asynchronous system events
like process failures or adoption requests. This avoids
the overhead associated with active probes. The new
MRNet event detection service (EDS) runs as a thread
within each process and primarily monitors a watch list
of designated event sockets. The EDS passively monitors
these sockets using the select system call to wait until
a specified event occurs on at least one monitored
socket. These sockets include a listening socket to which
other TBŌN processes can connect. The two primary
protocol messages delivered to an EDS are the New
Failure Detection Connection protocol message, used
to establish event sockets for failure detection, and
the New Data Connection protocol message, used by
orphans to request adoptions.

Failure Detection: For component failure detection,
centralized approaches and approaches that require
coordination amongst many processes do not scale.
Therefore, we leverage the TBŌN structure to establish
small groups of processes that monitor each other.
Each MRNet process monitors its parent and children.
Therefore, the number of peers each process monitors
is determined by its fan-out. A newly adopted process
sends its parent the New Failure Detection Connection
protocol message. Both the child and parent add the
sockets used to send and receive this message to their
watch lists as failure detection event sockets. When a
process fails, its host’s kernel abort its connections, and
these connection abortions are detected immediately
by the process’ remote peers. User-level heartbeat pro-
tocols [2] could be used for responsive, user-controlled
host and link failure detection.

Dynamic Topology Configuration: We needed to
extend MRNet with support for dynamic topology
configurations to accommodate tree reconfigurations
after process failures. While the complete details of
our tree reconfiguration study will be the topic of



a future paper, we describe the highlights. We de-
sired an algorithm that could execute quickly, have
manageable data requirements, execute at orphans
without coordination and still yield well-performing
tree configurations. Not surprisingly, our analysis of
TBŌN data aggregation performance suggested that
balanced, shallow topologies yield the best perfor-
mance. After comparing several strategies of varying
complexities, we chose one that required each orphan
to maintain the entire topology. At startup, each TBŌN
process receives the entire topology, a set of nodes
and edges. A tree with a fan-out of 32 and a height
of 4 supports 1,048,576 back-ends and requires 323

communication processes. Representing a communica-
tion process requires 10 bytes of data (4-byte rank, 4-
byte IP address, 2-byte port) and representing edges
requires 8 bytes (2 4-byte ranks). The broadcast of this
600 kilobytes of data is a manageable one time cost
at TBŌN startup, and more compact graph represen-
tations could further decrease communication costs.
Topology updates, described below, are small and
expected to be infrequent.

When a failure occurs, an orphan generates a list
of potential adopters such that if any member of that
list were to adopt that orphan, the depth of the tree
would not increase. That is, the depth of each potential
adopter’s subtree must be equal or greater than that
of the orphan’s failed parent. Each potential adopter
is sorted by a weight based on its fan-out and sub-
tree height. Then to mitigate the pathological cases
where most orphans prefer the same adopter, orphans
independently use their rank to effect a round-robin
adopter selection. Preferred adopters still adopt the
most orphans, but this guarantees that the maximum
difference between the number of adoptions by any
two adopters is one. The runtime latency of this al-
gorithm for our TBŌN that supports 324 back-ends
is on the order of hundreds of milliseconds. Orphans
connect to its chosen adopter’s EDS and send the
New Data Connection protocol; the adopter and adoptee
establish a socket for application data transmission.

Topology Updates: Topology modifications due to
failures and adoptions must be broadcast to all TBŌN
processes. Just as for application data, we use the tree
structure for efficient, scalable dissemination. Propa-
gation of failure reports with the failed process’ rank
is initiated by detecting EDSes. Adoption reports with
the adopter’s and adoptee’s ranks are initiated by the
adopting and adopted processes. Upon receiving a
report, a process propagates it to all its peers other
than the one from which it received the report.

Reconfigurations and propagation delays can lead
to duplicate, late, missing or out-of-order topology
update reports. For example, a process adopted mul-

tiple times can receive the same report multiple times
from different branches. Applying duplicate failure or
adoption reports result in the same updated topology.

Untimely failure reports lead to stale topology infor-
mation. Our reconfiguration algorithms tolerate this by
iteratively connecting to potential adopters, which may
have failed, until an adoption succeeds. A missing fail-
ure report is infinitely late. Untimely adoption reports
can lead to erroneous cycles if an orphan is adopted
by a process in the orphan’s subtree. Our current
prototype does not include the transaction mechanisms
necessary to avoid such cycle formation, though or-
phans perform a topology validation that can avoid
some instances. Late adoption reports may also lead
to functionally correct but sub-optimal topologies, for
example, if a process using a stale topology computes
that an adoption would not lead to an increased tree
height when, in fact, it would.

Different failure reports cannot conflict, so out-of-
order failure reports are acceptable. However, recon-
figuration reports of different adoptions regarding
the same orphan are conflicting. If processed in the
wrong order, topology information will become incor-
rect. Each process maintains an incarnation number [8]
incremented every time the process is adopted and
propagated with the adoption report. Processes disre-
gard adoption reports of orphans for which they have
received a report with a higher incarnation number.

B. State Composition Implementation

Our state composition theory leads to a straightfor-
ward implementation in which orphaned processes are
the primary actors. When a child detects its parent’s
failure, the orphaned child must re-establish a path
to the application front-end and compensate for any
lost state. In the current implementation, an orphan
pauses input data processing until it is adopted by a
new parent. Alternatively, an orphan could continue
to fetch and filter new input and buffer its output
until it has been adopted. In fact, since aggregation is
assumed commutative and associative, upon adoption
it would be sufficient for an orphan to propagate the
aggregate of its pending output instead of individual
output packets. After input data processing is paused,
the orphan initiates a TBŌN reconfiguration by iter-
atively probing for non-failed adopters, as previously
described. After the reconfiguration, the adoptee com-
pensates for any lost state by propagating its filter
states to its adopter.

A parent process that detects a child’s failure sim-
ply deletes the failed process from its topology data
structure. After the recovery is completed, failure and
adoption reports are disseminated.



1) MRNet Interface Extensions: We added to MRNet
a get FilterState routine to distinguish filter functions
that comply with state composition and to extract the
compensating filter state during recovery:

outPacket get_FilterState(void **inFilterState);

The get FilterState routine, also implemented by the
filter implementor, is passed an inFilterState pointer
that references the filter state that MRNet manages for
each filter instance and returns a packet that contains
the filter state’s data. During state composition, the
returned outPacket is sent to an adopted process’ new
parent. We augmented the new load FilterFunction rou-
tine to query its input shared object for a get FilterState
routine for the loaded filter function. If a get FilterState
routine is found, the filter function is designated as
state recoverable. MRNet does not attempt to compen-
sate for lost state in operations not designated as state
recoverable.

VI. EVALUATION

In the absence of failures, state compensation con-
sumes no computational resources beyond those of
normal operation. Therefore, we only evaluated failure
recovery performance and the impact of failures on
application performance. Our experiments were run on
the Lawrence Livermore National Laboratory’s Atlas
Cluster of 1,024 2.4 GHz 8-CPU AMD Opteron nodes
linked by a double data rate InfiniBand network.

A. The Experimental Framework

We implemented a failure injection and management
service (FIMS) that injected process failures and col-
lected recovery performance data. After failure recov-
ery, each formerly orphaned process notified the FIMS
that its recovery was complete. The FIMS conserva-
tively estimated the overall TBŌN recovery latency us-
ing the time of failure injection and the time of receipt
of the last recovery completion message. The estimate
was conservative since it includes transmission and
serialization delays.

B. The Application

We test failure recovery with our integer union com-
putation introduced in Section IV-A, which computes
the set of unique integers in the TBŌN’s input stream
by filtering out duplicates. This computation has easily
verifiable output, and executes an equivalence classifi-
cation similar to many useful, more complex aggrega-
tions. The application back-ends propagate randomly
generated integers at a ten hertz, the default sampling
rate of the STAT tool [3]. After each experiment, we
compare the input from the back-ends with the output

at the front-end; the output set must be equal to the
union of the input sets.

C. Recovery Latency
When failures occur, the duration of the temporary

TBŌN output divergences output can be estimated by:

MAXnorphans
i=0 ( t(recovery(oi)) − t( f ailure) ) +

( l(oparent(oi), root ) − l( nparent(oi), root) )

where t(e) is the time that event e occurs, recovery(oi)
is the recovery completion of orphan i, l(src, dst) is
the propagation latency (possibly over multiple hops)
from src to dst, oparent(oi) is orphan i’s old parent,
and nparent(oi) is orphan i’s new parent. This formula
computes the maximum across all orphans of an or-
phan’s recovery latency and difference in propagation
latencies between the orphan’s old path to the root and
the new path after reconfiguration. Our evaluation is
focused on the orphans’ recovery latencies, compensa-
tion is completed once each orphan has introduced its
compensating state as channel state to its new parent.
Under our eventual consistency model, diverged out-
put is correct, just not up-to-date. Further, propagation
latencies may be shorter after failure, for example, if
a failure occurs deep in the tree, and orphans are
adopted by the root.

Each orphan’s individual failure recovery latency is
the sum:

l(new parent)+ l(connect)+ l(compensate)+ l(cleanup)

where l(new parent) is the time to compute the new
parent, l(connect) is the time to connect to the new
parent, l(compensate) is the time to send the filter
state, and l(cleanup) is the time to update local data
structures and propagate topology updates.

For state composition, only orphaned processes (and
adopting parents) participate in failure recovery. There-
fore, the failure recovery performance is a function of
the tree’s fan-out, not total size. Our first experiments
evaluated the impact that the number of orphans
caused by a failure has on failure recovery latencies.
Our MRNet experiences suggested that typical fan-
outs range from 16 to 32; however, we tested extreme
fan-outs up to 128 since hardware constraints can force
such situations. For instance, LLNL’s BlueGene/L en-
forces a 1:128 fan-out from its I/O nodes to its compute
nodes. To test such large fan-outs, we organized the
micro-benchmark topologies such that only the des-
ignated victim processes had the large test fan-out, as
shown in Figure 5. We added 16 additional processes to
distribute the orphan adoptions; this reflects practical
TBŌN topologies in which orphans have multiple
potential adopters from which to choose.
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Figure 5. Micro-benchmark Topology: The victim has the fan-out
being evaluated, and 16 internal processes are added to distribute
orphan adoptions.

For each experiment, we report the FIMS’ conserva-
tive estimate of the overall TBŌN recovery latency, the
maximum individual orphan recovery latency and the
average recovery latencies for all orphans. The results
are shown in Figure 6. l(new parent) and l(connect)
dominate the orphans’ individual failure recovery la-
tencies. As the number of orphans increases, an in-
crease in the connection time causes the individual
orphan recovery latencies to increase. The increase in
connection time can be attributed to serialization at the
adopters, since more orphans are being adopted by the
same number of adopters. In practical scenarios with
more balanced topologies, better adopter/adoptee ra-
tios would mitigate this contention. l(new parent) re-
mains relatively constant – the peak in l(new parent)
for the slowest orphan in the “64 orphans” experiment
is an outlier, since the average across the 64 orphans
matches those of the other experiments. For larger trees
with more processes, l(new parent) will increase, but
based on additional tree reconfiguration experiments,
we have determined that even for a tree of over 106

processes, the time to compute a new parent should
remain in the hundreds of milliseconds. The major ob-
servation is that even considering the FIMS’ estimate of
overall recovery latency, the latency for our largest fan-
out of 128 is less than 80 milliseconds – insignificant
considering that a 1283 tree has over 2 million leaves.

D. Application Perturbation

We evaluated the impact of failures on application
performance by dynamically monitoring the through-
put of the integer union computation as we injected
TBŌN failures. The experiment started with a 2-level
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Figure 6. Recovery Latencies: l(overall) is overall TBŌN recovery
estimate, l(new parent), l(connect), l(compensate) and l(cleanup) are
the times to choose parent, connect, send filter state, and do cleanup.

topology and a uniform fan-out of 32. We injected a
random failure every 30 seconds killing four of the
32 internal processes. At the application front-end, we
tracked the application’s throughput reported as the
average throughput over the ten most recent output
packets. The results in Figure 7 show some occasional
dips (and proceeding bursts) in packet arrival rates.
There are several dips that do not coincide with the 30,
60, 90 and 120 second marks (indicated by the arrows)
at which failure were injected, and some even occur
before the first failure was injected. We conclude that
these are due to other artifacts, like operating system
thread scheduling, and that there is no perceivable
change in application’s performance due to the injected
failures. For increased data rates, with millisecond
recovery latencies we still expect little performance
perturbation.

VII. CONCLUSION

State compensation is a scalable recovery model
for high performance data aggregation that exploits
the inherent information redundancies found in many
TBŌN computations. To the best of our knowledge,
this is the first fault-tolerance research to leverage
implicit state replication and avoid the overhead of
explicit replication. Our state composition mechanism
requires only that data aggregations are commutative,
associative and idempotent and is suitable for many
useful algorithms and promises to scale to TBŌNs that
can support millions of processes. As HPC system sizes
and failure rates continue to increase, no (and low)
overhead recovery models like state compensation are
essential. We plan to extend this work by studying
compositions of heterogeneous filter functions, and
completing the implementation and empirical evalu-



Figure 7. Application Perturbation: Failures (indicated by arrows)
are injected every 30 seconds into a TBŌN with an initial 323

topology.

ation of state decomposition and fault-tolerance for
application back-end failures. Also, many of our cur-
rent aggregations are motivated by the analysis re-
quirements of parallel and distributed system tools.
Open questions are how will new TBŌN applications
map to the requirements of our failure recovery model
and how can we extend the failure recovery model to
accommodate applications that do not comply with the
model’s current requirements.
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