
Efficient, Sensitivity Resistant Binary Instrumentation

Andrew R. Bernat, Kevin Roundy, and Barton P. Miller
Computer Sciences Department

University of Wisconsin
Madison, WI USA

{bernat,roundy,bart}@cs.wisc.edu

ABSTRACT
Binary instrumentation allows users to inject new code into
programs without requiring source code, symbols, or debug-
ging information. Instrumenting a binary requires struc-
tural modifications such as moving code, adding new code,
and overwriting existing code; these modifications may unin-
tentionally change the program’s semantics. Binary instru-
menters attempt to preserve the intended semantics of the
program by further transforming the code to compensate for
these structural modifications. Current instrumenters may
fail to correctly preserve program semantics or impose sig-
nificant unnecessary compensation cost because they lack
a formal model of the impact of their structural modifica-
tions on program semantics. These weaknesses are partic-
ularly acute when instrumenting highly optimized or mali-
cious code, making current instrumenters less useful as tools
in the security or high-performance domains. We present a
formal specification of how the structural modifications used
by instrumentation affect a binary’s visible behavior, and
have adapted the Dyninst binary instrumenter to use this
specification, thereby guaranteeing correct instrumentation
while greatly reducing compensation costs. When compared
against the fastest widely used instrumenters our technique
imposed 46% less overhead; furthermore, we can success-
fully instrument highly defensive binaries that are specifi-
cally looking for code patching and instrumentation.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Binary instrumentation

General Terms
Experimentation, Languages, Performance

Keywords
Binary instrumentation; Dynamic instrumentation; Binary
rewriting; Static analysis; Binary slicing; Malware analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’11, July 17-21, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0562-4/11/07 ...$10.00.

1. INTRODUCTION
Program instrumentation is a technique that injects new

code into a program while attempting to preserve the visible
behavior (that is, the output produced for a given input) of
the original code. Instrumentation is a fundamental moni-
toring technology for areas such as cyberforensics [22], pro-
gram auditing [23], precise behavior monitoring [16], attack
detection [21], and performance analysis [20]. We address
instrumentation of binaries, a program form that consists
of only the code and data necessary to execute the pro-
gram; binaries lack source code and often lack symbols and
debugging information. In the commercial computing and
security domains, the binary is frequently the only available
form of a given program. Even in other domains, binary
instrumentation may be necessary due to a lack of source
code, binary-only vendor-provided libraries, or the need to
instrument a program after it has been compiled and linked.
Binaries are challenging to instrument, as they rarely con-
tain sufficient space to insert instrumentation code directly.
Instead, binary instrumenters must modify the structure of
the binary to insert this new code.

Current binary instrumenters have two significant weak-
nesses. First, they do not guarantee the instrumented binary
will have the same visible behavior as the original [13]. Sec-
ond, in their efforts to preserve this original visible behavior
they may impose significant and unnecessary execution over-
head by preserving aspects of the original binary’s behavior
that do not impact its visible behavior. These two weak-
nesses have the same cause: the lack of a formal model of
how the techniques they use to insert instrumentation im-
pact the visible behavior of the original code. Instead, cur-
rent binary instrumenters rely on ad-hoc approximations of
this impact [2, 3, 11, 12, 15]. These weaknesses become par-
ticularly acute when instrumenting highly optimized code,
hand-written assembly, or tamper resistant code. Highly
optimized code or hand-written assembly may cause these
approximations to improperly identify the impact of instru-
mentation, causing instrumenters to fail to preserve visible
behavior. Tamper resistant code may attempt to purpose-
fully subvert these approximations to ensure that instru-
menting the tamper resistant binary will always affect its
visible behavior. For example, we wrote a short program
that determines the shape of its address space by identifying
allocated memory pages; this program detects modification
by widely used binary instrumenters.

In this paper, we present a formal specification of how
inserting instrumentation will affect the visible behavior of
the instrumented binary. This specification allows instru-

menters to precisely determine which aspects of the original
binary’s behavior they must preserve to ensure that its vis-
ible behavior is preserved. We formalize visible behavior as
an approximation of denotational semantics that allows in-
strumentation to produce its own output. We describe a
dataflow analysis that determines an overapproximation of
the impact of instrumenting a binary on its visible behav-
ior; this analysis can be used to replace the ad-hoc approx-
imations used by current binary instrumenters. In our ex-
periments, our approach imposed 46% lower overhead than
widely used binary instrumenters and successfully instru-
mented highly defensive program binaries that attempt to
detect any modifications of their code.

Binaries rarely include sufficient space to insert instru-
mentation without moving original code. Instead, instru-
menters create a copy of this code that is instrumented and
execute the copied code instead of the original. This code is
copied with a technique we call relocation that produces a
new version that preserves the behavior of the original code
but contains sufficient space to insert instrumentation. Relo-
cating code alters the location of code within the binary and,
as a side effect, alters the contents of registers and memory.
These alterations may affect the behavior of instructions
within the binary; we call such instructions sensitive. Ex-
amples of sensitive instructions include loads from modified
memory (which may produce a different value) and branches
that target the original location of moved code (which may
incorrectly change control flow). We further subdivide sen-
sitive instructions into two categories: externally sensitive
instructions whose affected behavior will also cause the visi-
ble behavior of the binary to change, and internally sensitive
instructions whose behavior will not. Whether an instruc-
tion is externally or internally sensitive cannot be derived
from how the behavior of the instruction was affected by
the code change; it also depends on how this behavior af-
fects the surrounding code.

For example, consider the effects of changing the location
of a function that contains a call instruction. A call instruc-
tion saves the address of its successor; calls are sensitive to
being moved because this address will change. Similarly, the
return instructions in the callee are sensitive if they reference
this address. If the only instructions that use the stored re-
turn address are these return instructions, then moving the
call will not change the program’s control flow (and its visi-
ble behavior will not change). In this case, both the call and
return instructions are internally sensitive. However, if this
return address is used for another purpose (e.g., as output or
as a pointer to data) then moving the call may affect visible
behavior, rendering the call externally sensitive.

Binary instrumenters strive to preserve the original vis-
ible behavior of the binary by identifying externally sensi-
tive instructions during relocation and replacing them with
sequences that compensate for any differences in visible be-
havior caused by these instructions. For example, an instru-
menter may emulate a moved call instruction by first saving
the original return address and then branching to the tar-
get of the call. This approach inposes overhead, which may
become significant if the emulation sequence is frequently
executed. For example, emulating all branches can impose
almost 200% overhead [11], while doing so for all memory
accesses as well can impose 2,915% overhead [6]. Therefore,
the instrumenter should only add compensation code where
necessary to preserve visible behavior from the effects of

externally sensitive instructions. In particular, overapprox-
imating internally sensitive instructions as externally sensi-
tive will impose unnecessary overhead, as these instructions
do not change visible behavior.

This work makes the following contributions:
A model of instruction sensitivity: We describe a

novel model of how relocation affects the behavior of in-
structions in the modified binary. Current relocation meth-
ods can be described as a combination of three basic oper-
ations: moving original code to new locations, adding new
code to the moved code, and overwriting the original loca-
tions of moved code. We separate sensitive instructions into
four classes based on the effects of these operations. Three
of these categories represent instructions whose behavior is
affected because their inputs are affected by modification:
program counter (PC) sensitivity, code as data (CAD) sen-
sitivity, and allocated vs. unallocated (AVU) sensitivity. The
fourth category, control flow (CF) sensitivity, represents in-
structions whose control flow successors are moved. PC sen-
sitive instructions access the program counter and thus will
perceive a different value when they are moved. CAD sen-
sitive instructions treat code as data, and thus will perceive
different values if they access overwritten code. AVU sensi-
tive instructions attempt to determine what memory is al-
located by accessing unallocated memory and thus may be
affected when new memory is allocated to hold moved and
added code. CF sensitive instructions have had a control
flow successor moved and thus may transfer control to an
incorrect location. For each category of sensitivity we define
how the inputs and outputs of the sensitive instruction are
changed by modification.

A formalization of compatible visible behavior: We
define compatible visible behavior in terms of denotational
semantic equivalence. Three characteristics of binary in-
strumentation render this frequently-undecidable problem
tractable. First, since relocation only moves and adds but
never deletes code there is a correspondence between each
basic block in the original binary and a basic block in the in-
strumented binary. Second, we assume that executing added
code will not change the behavior of the original code be-
cause executing instrumentation has no cumulative semantic
effect on the surrounding code. Third, instrumentation does
not purposefully alter the control flow of the original code,
so the execution order of the instrumented binary will be
equivalent to the original when the new locations of moved
code are taken into account. We formalize these assump-
tions and define output flow compatibility, a stricter approx-
imation of denotational semantic equivalence based on these
characteristics.

An analysis for identifying externally sensitive in-
structions: An externally sensitive instruction affects the
behavior of the program in a way that causes the instru-
mented binary to fail output flow compatibility if the pro-
gram is modified. We present an analysis that determines
whether a sensitive instruction is internally or externally
sensitive. We use symbolic evaluation [5] to determine how
the sensitive instruction affects the output flow of the binary;
if the output flow may change we conclude the instruction
is externally sensitive.

A framework for low-overhead compensation: Cur-
rent instrumenters replace each instruction they believe to
be externally sensitive with code that emulates its original
behavior. This approach is straightforward but may miss

opportunities for greater efficiency. We describe an example
group transformation that replaces a sequence of affected
code as a single unit and results in a 23% decrease in over-
head when instrumenting position-independent code (e.g.,
shared libraries).

We have implemented the techniques described in this
paper in the Dyninst binary analysis and instrumentation
framework [3] and created a sensitivity-resistant prototype,
which we call SR-Dyninst. Our instrumentation techniques
will replace Dyninst’s instrumentation infrastructure in its
next public release; in the meantime our source code is avail-
able upon request.

This paper is organized as follows. We introduce our
program representation and abstractions in Section 2. We
present an overview of our instrumentation algorithm in Sec-
tion 3, introduce our external sensitivity analysis in Section
4, and present our compensatory transformation algorithms
in Section 5. We present performance results in Section 6,
related work in Section 7, and conclude.

2. NOTATION
We represent a binary program in terms of a process state,

control flow graph (CFG), and data dependence graph (DDG).
We use a conventional definition of a CFG as a collection of
basic blocks connected by control flow edges. We extend
the conventional definition of a process state to include in-
put and output spaces; this extension allows us to represent
an input operation as a read from an abstract input location
and an output operation as a write to an abstract output
location. Finally, the conventional definition of a DDG over
binaries [8] may overapproximate data dependences between
instructions that define multiple locations, as is common on
real machines (Figure 1a). We provide more precise depen-
dence information by splitting such instructions into sets
of single-definition operations and using these operations as
nodes in the DDG (Figure 1b).

Process states (or simply states) are represented in terms
of a set of abstract locations AbsLoc = Reg∪Mem∪In∪Out .
The registers Reg and memory Mem are defined convention-
ally; we assume the machine has a dedicated register pc that
represents the program counter. For purposes of this work
we refer to an IA-32 machine, though our approach is equally
applicable to all architectures. We represent input and out-
put with two sets of abstract locations In and Out . The
set In = {in0, . . . , inm} represents input to the program; we
model each execution of an input operation (e.g., scanf) as
an access of a unique input location. Output is similarly
represented as the set Out = {out0, . . . , outn}. A process
state is a mapping from abstract locations to values; we use
⊥ to represent an unallocated abstract location.

The input and output spaces of a program P are denoted
InP ⊆ In and OutP ⊆ Out , respectively. We define the
function Execute to relate program inputs and outputs as
follows. Let the map x : InP → Values⊥ represent an assign-
ment of values to all locations in InP ; we refer to the set of all
possible input assignments as InputsP . Then the output pro-
duced by executing P on x is denoted by y = Execute(P, x)
where the map y : OutP → Values⊥ represents an assign-
ment of values to all locations in OutP .

We represent the control flow of a program with a con-
trol flow graph (CFG) of basic blocks, which is derived with
current methods. We denote the CFG of a program P as
CFGP = (NP , EP) where NP represents the set of blocks

i0: pop r0

i1: pop r1

i2: add r0, r1, r2

i3: push r2

sp

sp

r0

sp

r1

r2

spMem[sp]

 Mem[sp]

(a) Instruction nodes

i0:r0

i1:r1

i2:r2

i3: Mem[sp]

sp

sp

r0
r1

r2

spMem[sp]

i0:sp

i1:sp

i3:sp

sp
sp

sp

Mem[sp]

(b) Operation nodes

Figure 1: Data dependency graphs. Figure (a) illus-
trates the problems of representing instructions as
single nodes. In this graph it is possible for paths to
“cross” definitions; for example, there is a path from
the definition of r0 by i0 to the definition of the stack
pointer sp by i3, when in the actual program there is
no such dependence. Our extended DDG, shown in
(b), makes the intra-instruction data dependencies
explicit and excludes erroneous paths. For clarity,
we omit the condition register cc and the program
counter pc.

and EP represents the set of edges. Executing a program
traverses a path of nodes through the CFG; we denote this
ExecPath(P, x) where x ∈ InputsP .

We represent the data flow of a program with a data
dependence graph (DDG). To provide more precise depen-
dence information, we split instructions into a set of single-
definition operations. These operations form the nodes of
our extended DDG. Formally, the DDG of a program P is
a digraph DDG = (V,E). We use a virtual operation called
initial to represent the initial assignment of abstract loca-
tions. A vertex in this graph is a pair of an instruction and
an abstract location defined by that instruction, and the
set of vertices is V = {(initial , a)|a ∈ AbsLoc} ∪ {(i, a)|i ∈
P ∧a ∈ defs(i)}, where defs(i) represents the set of abstract
locations defined by i. The set of edges E ⊆ V ×V represents
use-def chains between operations. We show an example of
our extended DDG in Figure 1b. We represent the DDG of
a particular program P as DDGP .

3. ALGORITHM OVERVIEW
This section presents our algorithm for sensitivity-resistant

binary instrumentation that preserves the original visible
behavior. To provide context, we compare our algorithm
to a generic algorithm representative of existing binary in-
strumenters [2, 3, 11, 15]. These algorithms are compared
and contrasted in Figure 2. Both our sensitivity-resistant
algorithm and the generic algorithm are divided into three
phases: preparation, code relocation, and program compen-
sation. The preparation phase selects which code to relo-
cate and allocates space for this code; this phase is the same
in both algorithms. The code relocation phase copies the
selected code, applies compensatory transformations to pre-
serve its original behavior, and writes the transformed code
into the program. The program compensation phase deter-
mines whether any non-selected instructions must also be
transformed and applies appropriate transformations.

Generic Instrumentation Algorithm Sensitivity Resistant Algorithm
1: Instrument(program, instCode, instPoint) SR Instrument(program, instCode, instPoint)
2: // Preparation Phase // Preparation Phase
3: codeToRelocate = SelectCode(program, instPoint) codeToRelocate = SelectCode(program, instPoint)
4: newAddr = AllocateSpace(codeToRelocate+instCode) newAddr = AllocateSpace(codeToRelocate+instCode)
5: // Code Relocation Phase // Code Relocation Phase
6: relocCode = RelocateCode(codeToRelocate) relocCode = SR RelocateCode(codeToRelocate)
7: program.Write(relocCode ∪ instCode, newAddr) program.Write(relocCode ∪ instCode, newAddr)
8: // Program Compensation Phase // Program Compensation Phase
9: transferCode = TransferToInstrumentation(instPoint) SR TransformExistingCode(program)

10: RelocateCode(codeToRelocate) SR RelocateCode(codeToRelocate)
11: foreach insn in codeToRelocate foreach insn in codeToRelocate
12: if IsPCorCFSensitive(insn) if IsExternallySensitive(insn)
13: relocCode.insert(Emulate(insn)) relocCode.insert(SelectEfficientCompensation(insn))
14: else relocCode.insert(insn) else relocCode.insert(insn)
15: return relocCode return relocCode

16: TransferToInstrumentation(relocCode) SR TransformExistingCode(program)
17: foreach insn in codeToRelocate foreach insn in program
18: branch = GenerateBranch(insn.origAddr, insn.relocAddr) if IsExternallySensitive(insn)
19: program.Write(insn.origAddr, branch) program.Write(SelectEfficientCompensation(insn), insn.addr)

Figure 2: An overview of previous instrumentation techniques and our contributions. The left column shows
a simplified view of the generic algorithm used by previous binary instrumenters. The right column show
our sensitivity-resistant algorithm, with changes from the left column highlighted in bold.

Our work addresses two weaknesses in the generic algo-
rithm. First, it may fail to correctly identify and transform
externally sensitive instructions, thus failing to preserve the
original visible behavior. Second, it may apply compen-
sation transformations to instructions that are not exter-
nally sensitive, thus incurring unnecessary runtime over-
head. These weaknesses are due to the use of ad-hoc sen-
sitivity identification techniques, and we address them by
using analysis to identify which instructions are externally
sensitive and transforming only these instructions.

Preparation phase.
Instrumenting a sequence of code requires expanding the

sequence to create sufficient space to insert instrumentation.
Since this frequently can not be done in place, the code
is instead relocated to newly allocated memory. We select
which code will be relocated with a function SelectCode and
allocate memory with a function AllocateSpace:
SelectCode: This function identifies a region of code

(e.g., a basic block or function) to be relocated. This region
must cover at least the location being instrumented. Pre-
vious instrumenters have selected regions of varying sizes:
a single instruction, basic block, group of basic blocks, or
function. Our algorithm will successfully operate on any of
these region sizes.
AllocateSpace: This function allocates space to con-

tain the combination of relocated code and instrumentation
(e.g., by expanding the binary on disk or mapping additional
memory at runtime). Previous instrumenters have assumed
that allocating memory has no effect on the behavior of the
program, which may not be the case if the program includes
AVU-sensitive instructions. Our algorithm addresses this
possibility by explicitly detecting AVU-sensitive instructions
in its code relocation and program compensation phases.

Code Relocation Phase.
This phase relocates the selected code to the memory al-

located in the preparation phase, creating a sequence that
should preserve the behavior of the original code. Previous
instrumenters have done so with a function RelocateCode

that identifies and compensates for PC- and CF-sensitive
instructions, but that does not consider instructions to be
CAD or AVU-sensitive. The assumption that instructions
are not CAD sensitive may be safe if the instrumenter en-
sures that original code is never modified [2, 11, 15]; how-
ever, assuming there are no AVU-sensitive instructions is not
safe. Our analysis-driven algorithm instead uses a function
SR_RelocateCode that uses analysis to identify all sensitive in-
structions, including CAD- and AVU-sensitive instructions.
RelocateCode: This function examines each selected in-

struction (line 11), determines which instructions are PC-
and CF-sensitive (line 12), and replaces them with code that
emulates their original behavior (line 13). All instructions
that are not sensitive are copied without modification (line
14). This function produces a code sequence that will have
the same behavior as the original when executed at the new
address if all sensitive instructions were properly identified.
RelocateCode also creates the appropriate space between re-
located instructions to make room for instrumentation; this
is not shown. For clarity, we describe this function in terms
of a single pass; however, some instrumenters use a fix-point
iteration to further optimize the relocated code.
SR_RelocateCode: Our work improves RelocateCode by

using analysis (represented by IsExternallySensitive, line
12) to identify externally sensitive instructions, as presented
in Section 4. We also look for more efficient compensation
transformations than separately emulating each original in-
struction (represented by SelectEfficientCompensation, line
13), as presented in Section 5.

Program Compensation Phase.
This phase attempts to preserve the original behavior of

sensitive instructions that were not relocated, and has no
effect if all code is relocated [2, 11, 15]. Previous patch-
based instrumenters have used it to insert jumps to relocated
code with a TransferToInstrumentation function [3, 14]. This
function does not consider the possibility of CAD- or AVU-
sensitive instructions in non-relocated code. We address this
by instead using SR_TransformExistingCode, which uses our
analysis to identify all externally sensitive instructions.

TransferToInstrumentation: This function overwrites
original code with branches to the corresponding locations
of relocated code (lines 18 and 19). This approach ensures
that CF sensitive instructions do not affect the program’s
behavior, but overwrites original code and thus may trigger
CAD sensitivity.
SR_TransformExistingCode: This function is similar in

structure to SR_TransformRelocatedCode and shares many el-
ements of its analysis. We examine each instruction (line 17)
to identify the externally sensitive ones (line 18). We then
apply an efficient compensatory transformation and write
the transformed code to the program (line 19). For clar-
ity, our description of this algorithm has assumed that the
compensatory transformation does not increase the size of
the code or affect the sensitivity of additional instructions.
As these assumptions may not hold, we use a fix-point al-
gorithm that adds any additional affected instructions and
converges when no additional code must be relocated.

Before we define our external sensitivity analysis and com-
pensatory transformations we define the assumptions made
by our analysis. First, by definition, instrumenting a pro-
gram does not explicitly change the original code’s behavior.
We assume that executing instrumentation has no cumula-
tive semantic effect on the original code; thus, we model in-
strumentation code as a sequence of null operations. Second,
we assume that instrumenting a program follows the algo-
rithm described above and thus no original code is deleted
or overwritten without being relocated first. As a result,
there is a correspondence between each instruction in the
original program and a code sequence in the instrumented
program. Third, we assume that for the instrumented and
original programs to have the same visible behavior, they
must have equivalent control flow; we formalize this require-
ment in the appendix. By constraining instrumentation to
not change the control flow of the original code we simplify
our dataflow analysis by avoiding the state explosion that
changed control flow paths would introduce.

4. EXTERNAL SENSITIVITY ANALYSIS
We next present an analysis for identifying whether an

instruction is externally sensitive to the program being in-
strumented. We formalize our intuition of visible behavior
in terms of denotational semantics. Two programs have the
same denotational semantics if, for the same input, they
produce the same output. Requiring strict semantic equiv-
alence would not allow instrumentation to consume input
or produce output; we address this limitation by assuming
instrumentation code has its own input and output spaces
and defining compatible visible behavior as denotational se-
mantic equivalence over the input and output spaces of only
the original program. We assume that the original and in-
strumented programs must have equivalent control flow in
addition to compatible visible behavior. We formalize this in
terms of a stricter approximation of visible behavior called
output flow compatibility, which we define in the appendix.

We determine whether an instruction is externally sensi-
tive with the algorithm in Figure 3. This algorithm iterates
over each operation making up an instruction (line 3). First,
we identify whether an operation is sensitive and skip those
that are not (line 5). For each sensitive operation, we deter-
mine its forward slice (line 7); this slice includes the set of
operations whose behavior may be affected by the sensitive
operation [8]. We then examine each operation in the slice

1: IsExternallySensitive(instruction)
2: // Decompose into operations and iterate over these
3: foreach op in instruction.operations
4: // Identify sensitive operations
5: if (!IsSensitive(op)) continue
6: // Identify the operations affected by op
7: slice = ForwardSlice(op)
8: // Determine visible behavior is altered
9: foreach depOp in slice

10: // Identify candidates
11: if (!IsVisible(depOp)) continue
12: // Determine change in result
13: changeInResult = ChangedResult(depOp)
14: // Does it change visible behavior
15: if (ChangesOutputFlow(changeInResult)) return true
16: return false

Figure 3: An overview of our external sensitivity
analysis with function calls shown in bold.

1: IsSensitive(op)
2: // PC sensitive?
3: if (wasMoved(op.insn) && op.uses(pc)) return true
4: // CF sensitive?
5: if (op.defines(pc))
6: foreach insn in op.insn.successors
7: if wasMoved(insn) return true
8: // AVU sensitive?
9: if (op.uses(addedMemory)) return true

10: // CAD sensitive?
11: if (op.uses(overwrittenMemory)) return true
12: return false

Figure 4: An algorithm for identifying operation
sensitivity to instrumentation.

to determine whether it can affect output flow equivalence,
either by changing control flow or an output value (line 11);
we call these operations visible operations. For each visible
operation, we determine how instrumentation would change
its results (line 13) and identify whether the change in result
(if any) might break output flow equivalence (line 15); in this
case we conclude the original instruction is externally sen-
sitive. We describe each of the major component functions
below.
IsSensitive: We determine whether an operation is sen-

sitive to instrumentation using the algorithm shown in Fig-
ure 4. We consider two general types of sensitivity: the
operation’s (i.e., its containing instruction’s) sensitivity to
being moved and the sensitivity of the remainder of the pro-
gram to being modified. Moving an instruction changes its
address but does not modify the instruction in any other
way. All inputs to the instruction will be unaffected with
the exception of the pc, which contains the address of the
instruction and thus will change. We define an operation
to be PC-sensitive if it uses the program counter and its
containing instruction will be moved (line 3).

The second type of sensitivity is sensitivity to the pro-
gram being modified. The sensitivity resistant algorithm
described in Section 3 relies on three basic forms of modifica-
tion: moving code to a new address, allocating new memory
(and writing code to that memory), and overwriting origi-
nal code with new code. Moving an instruction also affects
its immediate control flow predecessors. We also define this
sensitivity in terms of operations, in this case, the operation
that writes pc. We define an operation to be CF-sensitive if
it writes pc and one or more of its successors will be moved
(lines 5-7), since executing the CF-sensitive instruction may

cause the control flow of the instrumented program to di-
verge from that of the original.

Allocating new memory or overwriting existing memory
changes the contents of the corresponding abstract locations.
This will affect all operations that use these abstract loca-
tions. We define an operation to be AVU-sensitive if it uses
an abstract location that represents added memory (Fig-
ure 4, line 9); similarly, an operation is CAD-sensitive if it
uses an abstract location that represents overwritten mem-
ory (line 11).
ForwardSlice: Our analysis operates over the set of op-

erations whose execution may be affected by the sensitive
operation. Any operation that is not affected by the sensi-
tive operation will not have its behavior changed and thus
can not change the program’s visible behavior. We define the
affected set of operations affected by a sensitive operation o
as the forward slice from o, terminating at operations that
may affect output flow. We assume that a compensatory
transformation will ensure that the effects of instrumenta-
tion will not propagate past these points. As a result of this
termination, we do not include control dependence edges in
the slice. We discuss why this approximation is valid at the
end of this section.
IsVisible: An operation is visible if it can directly affect

control flow or output. All other operations can only affect
internal elements of data flow and thus will not directly cause
output flow equivalence to fail. We identify visible opera-
tions as follows. An operation affects control flow if it writes
to pc; we call such operations CF-visible. Similarly, an op-
eration affects output if it writes to an abstract location in
OutP ; we call such operations output-visible. These are the
only operations whose changed behavior we must model to
determine whether output flow equivalence is affected by
instrumentation.
ChangedResult: Our analysis models how instrumenta-

tion would change the output of each visible operation us-
ing symbolic execution. We do this as follows. First, we
calculate the chop chop(os, ov) from the sensitive operation
os to the visible operation ov. Second, we use symbolic exe-
cution to derive a symbolic representation of the chop. We
represent the result as follows:

Symbolic Representation: The symbolic representation of
a chop chop(os, ov) is a function Symos,ov

(x0, . . . , xn) where
(x0, . . . , xn) represent inputs to operations in the chop; the
result of this function is the value produced by ov.

Third, we derive an expression of how instrumentation
would change the output of ov as follows. We determine the
input difference for each input xi:

Input Difference: We represent how instrumentation will
change the value of xi with a function fi; these functions
are defined below.

The new output of ov will be Symos,ov
(f0(x0), . . . , fn(xn)).

Fourth, we determine if there exists a binding of values to
inputs that will cause ov to break output flow equivalence;
if this is true then we conclude os is externally sensitive. We
describe each of these steps below.

We derive the chop chop(os, ov) with a forward traversal of
the DDG and use symbolic evaluation to derive Symos,ov

[5].
We determine how instrumentation will change the inputs to
the chop as follows. For each xi ∈ {x0, . . . , xn} we define the
mapping function fi as follows. If instrumentation will not
change the value of xi then fi is the identity; this is the case

with any input to an operation other than os. Otherwise, fi
depends on what class of sensitivity os belongs to:

PC-sensitive: If os is PC-sensitive then xi represents the
pc. Let i represent the moved instruction, a its original
address, and a′ its new address. Then xi must equal a, and
fi(xi) = a′.

AVU-sensitive: If os is AVU-sensitive then xi represents
an abstract location a in memory that was added by instru-
mentation. In this case xi = ⊥, as this memory originally
was unallocated, and fi(xi) = v′ where v′ represents the
new value written into a by instrumentation.

CAD-sensitive: If os is CAD-sensitive then xi represents
an abstract location a in memory that was overwritten by
instrumentation. In this case xi = v, where v represents the
original contents of a; we assume that such memory is read-
only and thus v is known. Instrumentation would overwrite
a new value v′ into a; thus fi(xi) = v′.

CF-sensitive: Unlike the previous three cases, the inputs
to a CF-sensitive operation will not be changed by instru-
mentation unless the operation also depends on a PC, AVU,
or CAD sensitive operation. Thus fi(xi) = xi for all inputs.
ChangesOutputFlow: The final step in our external sen-

sitivity analysis determines whether instrumentation would
cause a visible operation to change the program’s control
flow or output. Clearly, changing the value produced by
an output-visible operation breaks output flow equivalence.
However, this is not necessarily the case for CF-visible op-
erations. The values written to pc by these control flow
operations may change without changing the control flow of
the program (and thus breaking output flow equivalence) so
long as any changes precisely correspond with the movement
of a control flow successor. Consider the call example from
the introduction. In this example, the return address stored
by the call would be changed by instrumentation since the
call is moved; this change will cause the corresponding re-
turn instruction to write a different value to pc. However,
since this new value is the new address of the call’s succes-
sor, the control flow of the instrumented program would not
be changed and thus the call is not externally sensitive.

We consider the following two cases:
Output-visible: As we mention above, any change in out-

put will break output flow equivalence. Therefore, if there
exists an assignment of values to x0, . . . , xn such that
Symos,oc

(f0(x0), . . . , fn(xn)) 6= Symos,oc
(x0, . . . , xn) then

oc is output flow breaking, and thus we would conclude that
os is externally sensitive.

CF-visible: This case is more complex as we must account
for the movement of instructions. Let Move be a mapping
function from the original address of an instruction to its
moved address. For example, if an instruction i was moved
from an address a to an address a′ then Move(a) = a′;
if i was not moved then Move is the identity. Then oc is
output flow breaking if there exists an assignment of val-
ues to x0, . . . , xn such that Symos,oc

(f0(x0), . . . , fn(xn)) 6=
Move(Symos,oc

(x0, . . . , xn)).
Our external sensitivity analysis relies on static slicing and

symbolic evaluation; both of these techniques are notori-
ously imprecise and expensive when applied to binaries. We
handle imprecision by being overly conservative; it is always
safe to falsely assume an operation is externally sensitive.
We reduce the expense of slicing by sharply limiting the size
of the slice, since we terminate slices at any visible opera-
tion. Since control flow instructions are by definition visible

1: TransformRegion(codeRegion)
2: newRegion = EMPTY REGION
3: foreach ESInsn in codeRegion.extSensInsns
4: // See if ESInsn is part of a transformable group
5: if (ExistsGroupTrans(ESInsn, codeRegion))
6: // Apply the group transformation
7: newRegion.insert(GroupTrans(ESInsn, codeRegion))
8: markGroupAsTransformed(ESInsn, codeRegion)
9: else

10: // Fall back to instruction transformation
11: newRegion.insert(InstructionTrans(ESInsn))
12: return newRegion

Figure 5: An overview of our transformation algo-
rithm with functions highlighted in bold. Section
5.1 describes instruction transformations and Sec-
tion 5.2 describes group transformations.

Sensitivity Original Instruction Transformed Instruction
PC-sensitive call foo push $orig

jmp foo
CAD-sensitive mov (%eax), %ebx cmp %eax, $textEnd

jge L1
mov $offset(%eax), %ebx
jmp L2
L1: mov (%eax), %ebx
L2: . . .

CF-sensitive jmp %eax push %eax
call AddressTranslate
jmp %eax

Figure 6: Examples of instruction transformations
for PC, CAD, and CF sensitive instructions. The
PC and CF transformations are derived from cur-
rent instrumenters [2, 11]. The PC sensitive call
instruction is transformed by splitting it into two
operations that piecewise emulate the call. The
CAD sensitive move instruction is transformed by
redirecting memory accesses to overwritten code
(bounded above by $textEnd) to a copy of the code
by adding $offset. For simplicity, this example as-
sumes no data resides at a lower address than mod-
ified code. The CF sensitive indirect jump is trans-
formed by inserting a call to a function AddressTrans-

late that is logically equivalent to the Move function
introduced in Section 4.

operations, this ensures the slice will contain no control-
dependence edges. By eliminating control-dependence edges
we greatly reduce the cost of symbolic evaluation, as we do
not have to consider the effects of multiple possible execu-
tion paths.

5. EFFICIENT COMPENSATION
The final step in our sensitivity-resistant instrumentation

algorithm is to transform the instrumented program to pre-
serve its original visible behavior. We do this by applying
a compensatory transformation to code affected by instru-
mentation. This transformation must preserve the original
visible behavior of the transformed code and avoid impos-
ing unnecessary overhead. We describe three transforma-
tion strategies, instruction transformation, group transfor-
mation, and control flow interception. Instruction transfor-
mation replaces each externally sensitive instruction with
code that emulates its original behavior; all other instruc-
tions are left unchanged. This strategy is derived from the

ad-hoc transformations used by previous work [2, 3, 11, 12,
15], and is described in Section 5.1.

Group transformation preserves the behavior of a group
of instructions rather than each instruction individually. We
describe an overview and proof of concept of this approach
in Section 5.2. This strategy is a generalization of the ap-
proach used by Dyninst [3], which recognizes and transforms
pre-defined patterns of instructions. Our algorithm instead
uses our symbolic representation of the code to determine a
correct and efficient transformation. In addition to the lower
overhead offered by transforming a group of instructions, we
can further reduce overhead by applying code optimization
techniques such as constant propagation (e.g., of pc), func-
tion inlining, or partial evaluation.

Control flow interception is used by patch-based instru-
mentation approaches [3, 9]. This control flow interception
strategy handles CF sensitive instructions by overwriting the
original locations of moved code with branches to their new
locations. Thus, during execution, the instruction will trans-
fer control to the original address of a moved instruction
and the branch will redirect execution to its moved loca-
tion. Since this strategy overwrites original code it may
affect the behavior of CAD sensitive instructions. However,
it results in significantly lower overhead than an instruction
transformation of the CF sensitive instruction. We use this
approach if the instrumenter is patch-based.

Our compensatory transformation algorithm is shown in
Figure 5. We iterate over each externally sensitive instruc-
tion in the region. We first determine whether it has a known
group transformation; if so we apply the appropriate trans-
formation (lines 5 through 7) and mark all other instructions
in the group as transformed (line 8). Otherwise, we apply
the appropriate instruction transformation (line 11). We do
not show the use of the control flow interception strategy to
handle CF sensitive instructions since it may modify code
outside the provided region.

These transformations may further modify the program.
For example, these transformations frequently increase the
size of the input code and thus may require that the trans-
formed code be moved. This movement, in turn, may in-
crease the number of sensitive instructions. We handle this
problem by iterating until the set of moved code converges.

5.1 Instruction Transformations
Instruction transformation replaces each externally sensi-

tive instruction i with a new sequence that emulates its orig-
inal behavior; all other instructions are left untransformed.
We implement this strategy with a translation table that
maps from an input externally sensitive instruction to a re-
placement code sequence. Examples of such transformations
for PC, CAD, and CF sensitive instructions are shown in
Figure 6. We discuss the transformation of these and AVU
sensitive instructions below.

PC sensitive instructions have the original and changed
values of pc differ by a constant. If the value of pc is known
when the code is transformed (e.g., at runtime) we simply
replace the new value with the original (as shown). Other-
wise, we subtract the distance the instruction was moved to
recover the original value.

We transform CAD sensitive instructions by making a
copy of the modified regions of code; accesses to these ad-
dresses are redirected to the copy while accesses of other
addresses are not modified.

Original Code Instruction Transformation Code Group Transformation Code
main:
i1: call thunk i1a:push $(orig) i1: call thunk

i1b:jmp thunk
i2: add $(tOff), %ebx i2: add $(tOff), %ebx i2: add $(tOff - delta), %ebx

thunk:
i3: mov (%esp), %ebx i3: mov (%esp), %ebx i3: mov (%esp), %ebx
i4: ret i4a: call AddressTranslate i4: ret

i4b: jmp *eax

Figure 7: Example of a thunk group transformation applied to an IA-32 jump table fragment. Transformed
code is shown in bold. The original code calculates a pointer by using thunk to access the current PC and
adding an offset. Instruction transformation will emulate the call i1 as shown in Figure 6; orig represents
the original return value. This will cause i4 to also require transformation as shown. Group transformation
results in only i2 being transformed; delta represents the distance i1 was moved.

call thunk

mov (%esp), %ebx

add $tOff, %ebx

ret

pc (%esp)

pc

%ebx

(%esp)

pc

Figure 8: The group of instructions for the exam-
ple in Figure 7. The shaded nodes are included for
clarity but are not included in the group as they
may be called from other locations as well. The ex-
ternally sensitive call instruction has three outputs
that must be preserved. Defining these instructions
as a group reduces this to a single output.

CF sensitive instructions must be transformed to account
for movement of their successors and not necessarily changes
in their inputs. The distance each successor has been moved
is frequently different due to the presence of inserted instru-
mentation. Therefore there is no linear function that can be
used to convert from original to moved addresses. As with
previous tools, we use a hash table to perform this conver-
sion [2, 11, 12, 15].

Transforming AVU instructions is more complex. At-
tempting to access unallocated memory will cause a fault.
We need to emulate this fault instead of emulating the orig-
inal output of the instruction, which we do by using a fault
handler interposition approach similar to that of DIOTA
[12]. We redirect the memory access to read from an ille-
gal address (typically 0); this causes the operating system
to report a fault to the process. However, the reported ad-
dress will be incorrect. We address this by interposing our
own fault handler. This replacement handler intercepts the
fault, emulates the original fault information (e.g., faulting
instruction address and accessed memory address), and calls
the original fault handler.

5.2 Group Transformations
Group transformation preserves the overall behavior of a

group of instructions rather than that of each instruction
in the group. As we show in Figure 7, instruction transfor-
mation may unnecessarily emulate instructions, resulting in
unnecessary overhead. This is due to that strategy’s limited
scope; it considers transforming only externally sensitive in-

structions. Group transformation addresses this problem by
considering instructions that are not externally sensitive for
transformation. In this work we characterize group trans-
formation and provide a motivating example; in future work
we intend to implement and test this concept.

A group transformation algorithm has two requirements:
selecting each group G of instructions to transform and gen-
erating the replacement group G′. Selecting groups rather
than individual instructions is key to improving performance.

We first define a group. Intuitively, a group containing an
externally sensitive instruction i consists of all instructions
that can be modified to compensate for the changed behavior
of i, but whose modification will not affect the instructions
outside of the group. Such instructions can be transformed
without causing unintended side-effects. We formalize this
intuition in terms of the DDG. A set of operations O is an
op-group of an externally sensitive operation s if all oper-
ations t ∈ O are dominated by s (if s is data sensitive) or
post-dominated by s (if s is control sensitive), and the cor-
responding instruction group G consists of all instructions
that contain an operation in O. We show the group for the
code of Figure 7 in Figure 8.

A group transformation algorithm must select a group G
for each externally sensitive instruction i and construct a
replacement group G′ that has the same behavior as G. Se-
lection is done as described above. Our proof of concept
implementation constructs G′ from G using a set of tem-
plates. In future work we will develop an algorithm that
constructs G′ by modifying the DDG of G and using this
modified DDG to generate the new code. This approach
also provides a natural way to take advantage of code opti-
mization techniques to further improve the efficiency of G′.

6. RESULTS
Our analysis and instrumentation algorithm properly pre-

serves the semantics of the instrumented program while fre-
quently reducing the overhead imposed by instrumentation.
We verified these characteristics with the following exper-
iments. First, we instrumented the SPECint 2006 bench-
marks, Apache, and MySQL to show that our algorithm
results in lower average overhead than either the Dyninst
or PIN binary instrumenters. Second, we instrumented sev-
eral tamper-resistant malware programs to show that we
properly compensate for attempts by a program to detect
modification to the contents or shape of its address space.

We implemented our algorithm in the Dyninst binary anal-
ysis and instrumentation toolkit, creating the SR-Dyninst

0%

100%

200%

300%

400%

pe
rl

bz
ip gc

c
mcf

go
bm

k
hm

mer
sje

ng

lib
qu

an
tum h2

64
om

ne
t

ast
ar

xa
lan

ap
ach

e
mysq

l

av
era

ge

PIN (%) Dyninst (%) SR-Dyninst (insn) (%) SR-Dyninst (group) (%)

Figure 9: Performance of our approach compared to Dyninst and PIN. We show two sets of results for
our approach. The first uses only instruction transformations, while the second includes the thunk group
transformation of Section 5.2. The y-axis is execution time normalized to the unmodified execution time.

research prototype. We identify sensitive instructions us-
ing information provided by the InstructionAPI component
of Dyninst, and built a new symbolic evaluation and slic-
ing component to assist in our identification of externally
sensitive instructions. This component uses a semantic in-
struction model provided by the ROSE compiler suite [17].
While these experiments were done in the context of the
Dyninst, the techniques and software we built can be used
to extend other instrumentation tools, such as PIN, to have
the same capabilities as those we added to Dyninst.

6.1 Performance Results
We measured the performance impact of our new instru-

mentation technique on the execution time of instrumented
programs. Our scenario includes the cost of the code trans-
formation necessary to insert instrumentation but not the
cost of executing user instrumentation code itself. We wished
to measure the efficiency improvements resulting from trans-
forming sensitive instructions and applying our group trans-
formation. In addition, we compared the overhead of SR-
Dyninst to other instrumentation approaches.

Our performance experiments were run on an input set
of binaries consisting of the SPECint 2006 benchmark suite,
Apache, and MySQL. Each of these programs was built from
source with default arguments. We instrumented both the
program binary and any libraries it depended on. We ran
the SPECint suite using reference inputs and tested Apache
and MySQL with their provided benchmarking tools. These
experiments were run on a 2.27 GHz Intel quad-core Xeon
machine with 6GB of memory.

We measured the execution overhead caused by executing
moved and transformed code instead of original code. We
did not want our measurements to include the cost of any
user-specified instrumentation code that would be added,
or the cost to save and restore the program’s state around
such user code. In our experiments, we instrumented ev-
ery basic block in the program. For SR-Dyninst (and orig-
inal Dyninst) we instrumented each binary with Dyninst’s
static binary rewriter. PIN does not provide an equivalent
static rewriting capability, and thus our performance num-
bers for PIN include their dynamic translation cost as well as
the cost for executing transformed program code. However,
from their previously published results [11], this dynamic
translation cost is small for long-running benchmarks and
thus we do not believe it significantly impacts our results.

The performance results are shown in Figure 9. The y-
axis is the execution time normalized to the uninstrumented
run time (100%). SR-Dyninst results in an average overhead
of 36%, which is lower than both Dyninst (66%) and PIN
(90%). The group transformation results in a distinct im-
provement in the Apache (12% to 0.4%) and MySQL (66%
to 51%) benchmarks, but does not have a significant im-
pact on the SPECint benchmarks. This is not surprising,
since only position independent code (e.g., library code) in-
cludes the thunk functions targeted by the group transfor-
mation. The Apache and MySQL benchmarks execute a sig-
nificant amount of library code, but the SPEC benchmarks
do not. Our poorer performance on two benchmarks (hm-
mer and h264) is due to the cost of compensating for AVU
and CAD sensitivity. Our current implementation uses a
simple pointer analysis that overapproximates many pointer
accesses as AVU and CAD sensitive; this could be greatly re-
duced with a more sensitive analysis. This cost is not shared
by Dyninst or PIN, which do not use such analysis. Dyninst
does not compensate for either AVU or CAD sensitivity, and
PIN does not compensate for AVU sensitivity (as PIN does
not modify the original code, there will be no CAD sensitive
instructions). As we describe in Section 1, this lack of com-
pensation can be exploited by tamper-resistant programs to
detect instrumentation and is therefore dangerous. Finally,
Dyninst failed to correctly run the omnetpp benchmark due
to an incorrect handling of exceptions; our approach trans-
parently handled this problem.

6.2 Tamper-Resistant Binaries
To demonstrate that we can safely instrument CAD and

AVU-sensitive programs, we incorporated the SD-Dyninst
research prototype [18] into SR-Dyninst. Malware typically
uses three categories of anti-analysis techniques: attempts
to hinder static analysis (e.g., control flow obfuscation and
runtime code modification), attempts to resist tampering
with the binary code by adding CAD sensitivities (e.g., self
checksumming), and attempts to detect the presence of an
analysis tool (e.g., detecting the presence of a debugger).
SD-Dyninst is focused on defeating packers that resist static
analysis or use anti-debugging techniques and does not cor-
rectly instrument binaries that employ CAD sensitivity; SR-
Dyninst overcomes this limitation.

We generated synthetic samples that exhibit the same de-
fensive techniques used by malware by applying the packer
tools that are most popular with malware authors to a sam-

Packer Tool Market CAD Anti- Success
Share Sensitive Debug

UPX 9.45% yes
PolyEnE CAD 6.21% yes yes
EXECryptor 4.06% yes yes
Themida 2.95% yes yes
PECompact CAD 2.59% yes yes
UPack 2.08% yes
nPack 1.74% yes
ASPack 1.29% yes
FSG 1.26% yes
Nspack 0.89% yes
ASProtect 0.43% yes yes
Armadillo 0.37% yes yes
Yoda’s Protector 0.33% yes yes yes
WinUPack 0.17% yes
MEW 0.13% yes

Figure 10: SR-Dyninst applied to the binary protec-
tion tools that are most prevalent in malware, with
optional CAD features (e.g., self-checksumming,
data masquerading as code) enabled for PolyEnE
and PECompact. Packers successfully instrumented
by SR-Dyninst are labeled in bold. Gaps in the
table represent packers with anti-debugging tech-
niques that are unrelated to sensitivity analysis and
that we have yet to defeat.

ple program. SD-Dyninst’s evaluation used the default set-
tings of the packer tools. To demonstrate that our approach
would successfully handle CAD-sensitive binaries, we en-
abled all features in the packer tools that would add CAD
sensitivity to the packed binaries. The results listed in Fig-
ure 10 show that SR-Dyninst successfully instrumented four
of seven packed binaries that had defeated SD-Dyninst with
CAD sensitivity. We believe our failure to instrument the
remaining three debuggers is due to their anti-debugging
features rather than their CAD sensitivity, and are working
to overcome these features.

7. RELATED WORK
Binary instrumentation research has primarily focused on

methods of handling PC and CF sensitivity; CAD and AVU
sensitivity has been of secondary interest. We divide current
methods into three categories based on their preservation
techniques of PC and CF sensitive instructions. The first
category assumes that each sensitive instruction requires
preservation; thus, any instruction that uses the program
counter is emulated [2, 9, 11, 12, 15]. This approach pre-
serves semantics but imposes unnecessary execution over-
head on the instrumented binary. The second category as-
sumes that particular instructions (e.g., calls) are safe to
move without transformation [3, 10]. While this approach
results in lower overhead than the conservative approach, it
is dangerous. The third category relies on external informa-
tion derived from the compiler (e.g., linker relocations) to
identify which instructions require preservation of their orig-
inal behavior [6, 7, 19]. Since this information is typically
removed during linking, binary instrumenters in this cate-
gory cannot be applied to many binaries. CAD sensitivity
has been addressed either by assuming no such instructions
existed in the binary [3, 6, 7, 9, 19] or using an instrumen-
tation technique that does not modify the original program
code [2, 11, 12, 15]. Ours is the first work, to our knowledge,
to identify and address AVU sensitivity.

Program slicing and symbolic evaluation have long been
used as techniques to assist in understanding program be-
havior. Slicing was first defined over source code [1] and
extended to binaries [4, 8]. Unlike a true program slice,
which includes both data and control dependence, our slicer
only considers data dependence. Since our definition of visi-
ble compatibility requires the original and instrumented bi-
naries to have compatible control flow, this approximation
does not affect the accuracy of our program slices. Symbolic
evaluation [5] attempts to derive a mathematical function
that describes the effect of executing a region of code (e.g.,
a program or subset of a program).

8. CONCLUSION
We have presented an efficient sensitivity-resistant instru-

mentation algorithm that maintains compatible visual be-
havior between the instrumented binary and original bi-
nary. This algorithm uses a sensitivity analysis to precisely
identify which instructions are sensitive to instrumentation;
these instructions are then transformed to compensate for
their change in behavior. By maintaining only visible com-
patibility and allowing the internal execution of the instru-
mented program to diverge from the original, we signifi-
cantly reduce the overhead caused by unnecessary compen-
satory transformations. However, we still ensure that the
control flow and output of the instrumented binary is equiv-
alent with the original. As a result, we can successfully in-
strument a wider range of binaries than previous approaches,
particularly tamper resistant binaries such as malware. Our
approach results in a 46% decrease in instrumentation over-
head when instrumenting conventional binaries, and allows
us to successfully instrument tamper-resistant binaries that
previously could not be safely instrumented.

The SR-Dyninst prototype will be incorporated in the
next public Dyninst release, and is available upon request.
Ongoing research in the Dyninst project will address two
new questions posed by this work. First, we aim to bet-
ter characterize the relationship between moved code and
external sensitivity. We have seen examples where moving
more code as part of instrumentation reduces the number
of externally sensitive instructions contained in that code
and thus reduces overhead. Second, we intend to further
develop the concept of group transformations. Our example
thunk group transformation provides a significant 23% de-
crease in overhead when instrumenting shared libraries, and
we believe that additional group transformations may result
in a similar improvement in program binaries as well. Fi-
nally, our work depends on pointer analysis to identify CAD
and AVU sensitive instructions. Our current implementa-
tion overapproximates these categories of instructions, re-
sulting in overhead due to unnecessary memory emulation.
Improving our pointer analysis will reduce this overhead.

9. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their insightful

comments and suggestions. This research funded in part
by Department of Homeland Security grant FA8750-10-2-
0030 (funded through AFRL), National Science Foundation
grants CNS-0716460 OCI-1032341, and Department of En-
ergy grants DE-SC0004061, DE-SC0003922, and
DE-SC0002154.

References
[1] D. Binkley and K. Gallagher. Program slicing. Advances in

Computers, 43, 1996.

[2] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastruc-
ture for adaptive dynamic optimization. In First Annual In-
ternational Symposium on Code Generation and Optimiza-
tion, San Francisco, CA, USA, March 2003.

[3] B. Buck and J. Hollingsworth. An API for runtime code
patching. Journal of High Performance Computing Appli-
cations, 14(4):317–329, Winter 2000.

[4] C. Cifuentes and A. Fraboulet. Intraprocedural static slicing
of binary executables. In Proc. International Conference on
Software Maintenance, pages 188–195, October 1997.

[5] P. Coward. Symbolic execution systems-a review. Software
Engineering Journal, 3(6):229–239, November 1988.

[6] B. De Bus, D. Chanet, B. De Sutter, L. Van Put, and
K. De Bosschere. The design and implementation of FIT:
a flexible instrumentation toolkit. In Program Analysis for
Software Tools and Engineering (PASTE), Washington, DC,
USA, June 2004.

[7] A. Eustace and A. Srivastava. ATOM: A flexible interface for
building high performance program analysis tools. In Winter
1995 USENIX Conference, New Orleans, LA, USA, January
1995.

[8] A. Kiss, J. Jasz, G. Lehotai, and T. Gyimothy. Interpro-
cedural static slicing of binary executables. In Source Code
Analysis and Manipulation, Amsterdam, The Netherlands,
September 2003.

[9] J. Larus and E. Schnarr. EEL: Machine independent exe-
cutable editing. In Programming Language Design and Im-
plementation (PLDI), La Jolla, CA, USA, June 1995.

[10] M. Laurenzano, M. Tikir, L. Carrington, and A. Snavely.
PEBIL: Efficient static binary instrumentation for linux. In
IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), White Plains, NY, USA,
March 2010.

[11] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
PIN: building customized program analysis tools with dy-
namic instrumentation. In Programming Language Design
and Implementation (PLDI), Chicago, IL, USA, June 2005.

[12] J. Maebe, M. Ronsse, and K. De Bosschere. DIOTA: Dy-
namic instrumentation, optimization and transformation of
applications. In PACT‘02: International Conference on
Parallel Architectures and Compilation Techniques, Min-
neapolis, MN, USA, September 2002.

[13] P. Moseley, S. Debray, and G. Andrews. Checking pro-
gram profiles. In Source Code Analysis and Manipulation
(SCAM), Amsterdam, The Netherlands, September 2003.

[14] S. Nanda, W. Li, L.-C. Lam, and T. Chiueh. Bird: binary
interpretation using runtime disassembly. In International
Symposium on Code Generation and Optimization (CGO),
New York, NY, USA, March 2006.

[15] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In Program-
ming Language Design and Implementation (PLDI), San
Diego, CA, USA, June 2007.

[16] S. Peiser, M. Bishop, S. Karin, and K. Marzullo. Analysis of
computer intrusions using sequences of function calls. IEEE
Trans. Dependable Secur. Comput., 4(2):137–150, 2007.

[17] ROSE Compiler Project.

[18] K. A. Roundy and B. Miller. Hybrid analysis and control of
malware binaries. In Recent Advances in Intrusion Detection
(RAID), Ottawa, Canada, September 2010.

[19] B. Schwarz, S. Debray, and G. Andrews. PLTO: A link-time
optimizer for the intel IA-32 architecture. In Workshop on
Binary Translation, Barcelona, Spain, September 2001.

[20] S. Shende and A. D. Malony. The tau parallel performance
system. International Journal of High Performance Com-
puting Applications, 20(2):287–311, Summer 2006.

[21] J. Tucek, J. Newsome, S. Lu, C. Huang, S. Xanthos,
D. Brumley, Y. Zhou, and D. Song. Sweeper: A lightweight
end-to-end system for defending against fast worms. In Eu-
roSys, Lisbon, Portugal, March 2007.

[22] C. Willems, T. Holz, and F. Freiling. Toward automated
dynamic malware analysis using cwsandbox. In Security and
Privacy (SP), Oakland, CA, USA, March 2007.

[23] J. Zhou and G. Vigna. Detecting attacks that exploit
application-logic errors through application-level auditing.
In 20th Annual Computer Security Applications Conference
(ACSAC), Tucson, AZ, USA, December 2004.

APPENDIX
Output Flow Compatibility
We define the original program P and instrumented P ′ to
be visibly compatible, written P ′ w P , if the following
three conditions hold. First, InP ′ ⊇ InP , and all input
locations in InP ′ \ InP are only read by instrumentation
code. Second, OutP ′ ⊇ OutP , and all output locations in
OutP ′ \ OutP are only written by instrumentation code.
Third, for compatible inputs, P and P ′ produce compati-
ble outputs. We define input compatibility as follows. Let
x ∈ InputsP ; then x′ ∈ InputsP′ is compatible with x, writ-
ten x′ w x, if ∀l ∈ InP , x(l) = x′(l). We define output com-
patibility in a similar way. Therefore ∀x ∈ InputsP ∧ ∀x′ ∈
InputsP′ s.t. x′ w x,Execute(P ′, x′) w Execute(P, x).

We define output flow compatibility as follows:
Control flow constraint: The instrumented and original

programs must, when executed on compatible inputs, tra-
verse equivalent paths through the CFG (disregarding in-
strumentation). For simplicity, we assume that instrumen-
tation is only inserted on a basic block boundary; we can
always split blocks to ensure this is the case. Since instru-
menting a program does not delete original code, there is a
natural correspondence between each original basic block bi
and a basic block b′i in the instrumented program. We do not
consider the execution of instrumentation in our definition of
control flow equivalence; we represent this with a function
Filt that removes all blocks representing instrumentation
from a path p′ through CFGP ′ . P and P ′ have equivalent
control flow if ∀x ∈ InputsP and ∀x′ ∈ InputsP′ s.t. x′ w
x,Filt(ExecPath(P ′, x′)) = ExecPath(P, x).

Output constraint: The control flow constraint means P ′

and P will write to all output locations in OutP in the same
order. In addition, they must both write the same values.
P ′ satisfies this constraint if the following holds for all inputs
x to P and compatible inputs x′ to P ′. Let 〈b0, . . . , bm〉 =
ExecPath(P, x) and 〈b′0, . . . , b′n〉 = FiltInst(ExecPath(P ′, x′));
by the above constraint m = n. Then for each block pair
bi, b

′
i, 0 ≤ i ≤ n, each output operation in bi and b′i must

produce the same values.

