
Group Fi le Operations for Scalable Tools and Middleware

Michael J. Brim and Barton P. Miller
Computer Sciences Department

University of Wisconsin
Madison, Wisconsin, U.S.A.
{mjbrim,bart}@cs.wisc.edu

Abstract. Group file operations are a new, intuitive idiom
for tools and middleware - including parallel debuggers
and runtimes, performance measurement and steering,
and distributed resource management - that require scal-
able operations on large groups of distributed files. The id-
iom provides new semantics for using file groups in stan-
dard file operations to eliminate costly iteration. A file-
based idiom promotes conciseness and portability, and eas-
es adoption. With explicit semantics for aggregation of
group results, the idiom addresses a key scalability barrier.
We have designed TBON-FS, a new distributed file system
that provides scalable group file operations by leveraging
tree-based overlay networks (TBONs) for scalable commu-
nication and data aggregation. We integrated group file
operations into several tools: parallel versions of common
utilities including cp, grep, rsync, tail, and top, and
the Ganglia Distributed Monitoring System. Our experi-
ence verifies the group file operation idiom is intuitive, eas-
ily adopted, and enables a wide variety of tools to run effi-
ciently at scale.

Keywords: group file; tools; distributed; scalable, aggregation

1. INTRODUCTION

Distributed systems for high-performance comput-
ing (HPC), corporate intranets, and cloud computing can
contain tens of thousands of hosts. HPC systems on the
horizon are expected to contain millions. Developers of
tools and middleware for distributed systems face the
daunting task of changing their software to operate at
ever-increasing scale. Our work introduces a new idiom,
group file operations, which provides a simple, intuitive
interface that tools and middleware can use for scalable
operations on large groups of distributed files. We pro-
vide solutions targeted at the largest current systems,
and scalable techniques for continued future use.

Several classes of tools and middleware operate on
groups of distributed files. Distributed system manage-
ment tools control software and configuration files on
many hosts, and distributed monitoring uses process and
host information found in files on each monitored sys-
tem. Distributed computing middleware may distribute
applications or data as files to groups of hosts, and col-
lect groups of result files for analysis. On systems using
a file abstraction for processes (e.g., the /proc file sys-
tem on Plan 9, UNIX, and Linux), file operations are
used for process control and inspection. Application

run-time environments control distributed process
groups, performance monitors use group process or host
inspection, and distributed debuggers and computation-
al steering systems require both group control and in-
spection.

Little attention has been paid to supporting group
operations on distributed files in a scalable manner.
Each tool is forced to support the required group opera-
tions, leading to redundant effort and limiting the gener-
ality of the solutions and adoption by others. In defining
the group file operation idiom, we provide a common,
reusable abstraction that lends itself to scalable solu-
tions.

The cornerstone of the group file operation idiom is
a new gopen operation that returns a group file descrip-
tor for use with existing file system operations (e.g.,
read and write). The key benefit of the group file ab-
straction is eliminating explicit iteration that forces seri-
al behavior when applying the same operation to a group
of files. Other benefits include program conciseness and
familiarity. File operations are well-understood and uni-
versally supported in programming languages and oper-
ating systems. However, introducing group semantics
for file operations presents several challenges. In partic-
ular, we address the interface and scalability issues asso-
ciated with group status and data results. Our approach
is to define intuitive group semantics for existing file op-
erations and extend the file system interface when nec-
essary.

The group file operation idiom alone cannot provide
scalable operations on large groups of distributed files.
The mechanisms underlying group file operations must
be scalable. We have designed TBON-FS, a new distrib-
uted file system that provides scalable group file opera-
tions by leveraging tree-based overlay networks
(TBONs) for scalable distribution of group file opera-
tion requests and aggregation of group status and data
results. Distributed aggregation is a powerful technique
for managing large-scale data processing and analysis.

Using newly defined group file operation semantics,
file system interface extensions, and a TBON-FS proto-
type system, we integrated group file operations into
several tools: parallel versions of common utilities in-
cluding cp, grep, rsync, tail, and top, and the

Ganglia Distributed Monitoring System [15]. Our expe-
rience has validated our assumptions on the expressive
power of the group file operation idiom, and our evalu-
ation shows the scalability benefits for tools and middle-
ware.

2. GROUP FILE OPERATIONS

The group file operation idiom provides an intuitive
interface for operating on groups of distributed files in a
manner that eliminates explicit iteration. This section
describes the group abstractions and operational seman-
tics for our new idiom. First, we examine the creation of
file groups using directories and the new gopen opera-
tion that enables group file operations. Second, we dis-
cuss the semantics of group file operations, focusing on
the use of aggregation to handle group status and data re-
sults. Finally, we address the impact of errors on group
file operations. Section 3 describes how to provide scal-
able mechanisms in support of our new idiom.

2.1. Group file abstraction

The primary abstraction used in our new group file
operation idiom is the group file, which we define as a
set of open files that are operated upon as a single entity.
A group file is created using our new gopen operation.

Group membership is specified using a directory,
which is a natural file system abstraction for grouping
sets of files. Placing files in the same directory often im-
plies a logical association, and thus there is a good
chance that files in the same directory will be operated
on as a group. If a user wants to create groups of files not
already located in the same directory, a new directory
can be created containing copies of (or links to) existing
files.

The new gopen operation has the same function
signature as open, as shown in Table 1, but is passed a
directory instead of a file as the first parameter. gopen
can be considered equivalent to calling open on each file
corresponding to an entry in the named directory, using
the specified access flags and creation mode. Upon suc-
cessful completion, gopen returns a group file descrip-
tor (gfd) that serves as a handle to the group file. A
group file operation is performed by passing a gfd to a
file system operation that has a file descriptor operand
(e.g., read and write). The semantics of group file
operations may differ from the POSIX specification. We
discuss group file operation semantics in Section 2.2.

Special consideration is given to errors that occur
during gopen. Two modes, default and best-effort, dif-
ferentiate how failures in opening individual directory
entries affect gopen's completion status. In default
mode, gopen will succeed only when all the files in the
named directory can be opened with the specified flags
and creation mode. In best-effort mode, which is speci-
fied by including a new O_BESTEFFORT value in the
flags operand, gopen will succeed when any of the files

are successfully opened. In both modes, a failed comple-
tion will return -1 and set errno to E_GROUP.

While gopen is executing, the named directory’s
contents cannot be changed. After gopen returns, this
restriction is removed. As such, a gfd represents the set
of files that resided in the directory at the time of the
gopen and were successfully opened. Defining new
groups by adding or removing directory entries often is
convenient. For example, after operating on a particular
group file, a tool may identify a subset of the group upon
which it wants to operate as a new group. Rather than re-
quiring a new directory to be created containing the sub-
set's files, the user can simply remove files from the di-
rectory.

By allowing the contents of a directory used to de-
fine a group file to change, new operations are required
to obtain information about the group file. Fig. 1 pre-
sents three new file system operations, gsize,
gfiles, and gindex, for retrieving the group size and
information about member files.

2.2. Group file operation semantics

The group file descriptor (gfd) abstraction allows
group file operations to use existing, well-understood
file system operations. As these existing operations are
designed for operating on individual files, our challenge
is to define semantics for these operations when used
with a gfd. We follow four guiding principles in defin-
ing the semantics for group file operations:

1. Maintain POSIX file system operation interfaces, mak-
ing extensions or additions only when necessary.

2. Choose default group semantics for existing operations
that are intuitive and handle the common case well.

3. Allow users to easily specify custom behavior when the
default group semantics do not meet their needs.

4. Summarize group results whenever possible to improve
performance and scalability, yet provide methods for
users to view detailed group results as necessary.

 Conceptually, group file operations can be viewed
as equivalent to applying the file operation individually
to each group member. The complexity in defining
group file operation semantics concerns the treatment of
operation parameters and status results. We refer to pa-
rameters whose values are used only as inputs to an op-
eration as input parameters, and those whose values are
modified as output parameters. Input parameters are the
simplest to map to group behavior, as intuition suggests
that the same values should be used when operating on
each group member. For example, a write operation
has only input parameters: the gfd, a byte count, and a
data buffer. A write on a gfd will copy the requested
bytes from the provided data buffer to each member at
its current offset. In contrast, the values of output param-
eters and status results produced when operating on each
group member can differ. The individual values may be
of interest to users and must be provided upon request.

There are two obstacles to providing individual re-
sults. First, existing file operations have system call in-

terfaces designed to return individual status results and
output parameters. Second, the collections of individual
status and output parameter values have sizes that grow
linearly in the size of the group, which can lead to per-
formance and scalability problems for large groups. Our
solution is to aggregate each collection into a group re-
sult. We refer to the computed aggregates as group sta-
tus results and group data results.

By choosing appropriate aggregations, group status
and group data results can fit existing interfaces. Group
status results should take the form of a single value that
can be returned by the group file operation. When users
need more detailed information, we provide the new
gstatus operation that retrieves all individual results,
described in Section 2.3. For group data results, we ob-
serve that existing interfaces use pointers for parameters
that may be modified. A straightforward method to de-
liver group data results is to require users to pass a point-
er to a buffer that can hold an array of individual results.

For each type of group file operation, we must iden-
tify default aggregations for group status results and
group data results (if applicable) that can be returned to
users via existing interfaces and are suitable for com-
mon usage. In addition, users need the ability to specify
custom aggregations when the default aggregations are
insufficient for their needs. Section 2.3 discusses our
choices for default aggregations, and introduces new op-
erations that permit the use of custom aggregation.

Fig. 1 lists the steps required for each group file op-
eration. It is important to note that the implementation of
these steps can take advantage of parallel techniques, as
we show in Section 3. First, the group file descriptor is
used to retrieve group file information (line 1). The file
operation is called for each of the group members, and
individual status values are stored (5-9). The status ag-
gregation function is used to compute the group status

result (11-12). If necessary, group data results are com-
puted using the data aggregation function (14-17). Fi-
nally, the group status result is returned, and group data
results are returned in the output parameters.

2.3. Group status and data aggregation

For convenience, we provide a small set of pre-de-
fined aggregations that includes common functions for
processing group status and data results. The initial set
includes six summary aggregations (average, equal,
max, min, sum, and zero) and a concatenate aggregation
that combines individual results into an array.

Summary aggregations should be used for group
status results to produce a single value that can be re-
turned by the group file operation. In Table 2, we have
chosen default status aggregations for each type of
group file operation that are reasonable for common use.
When a summary of the group file operation’s behavior
is insufficient, we have defined the new gstatus op-
eration, described in Fig. 1, to allow users to query indi-
vidual results from the last group file operation issued
for a gfd. We expect that in the common case, gstatus
will be used only when the summary value indicates un-
expected behavior. For example, an anomalous status
for a group read using the sum aggregation would be less
than the expected value num-bytes-to-read ×
gsize(gfd). The user could then query individual re-
sults to see which members did not read the requested
amount.

For group file operations that produce group data re-
sults, we believe the logical choice for default aggrega-
tion is concatenate, which combines individual results
into an array. Individual results are then accessed in the
group data result using a member file’s index as returned
by the new gindex operation. Although array concate-
nation is by no means the most scalable of aggregations,

TABLE 1. NEW FILE SYSTEM OPERATIONS FOR MANAGEMENT OF GROUP FILES: INTERFACE AND DESCRIPTION

int gopen(const char* dirname, int flags, int mode)
Opens all files in directory dirname using specified access flags and creation mode. Returns a group file descriptor.

int gsize(int gfd)
Returns the number of files in the group specified by gfd.

int gfiles(int gfd, char** files)
Copies directory entry names corresponding to files in the group specified by gfd into the user-allocated array of character buffers files. The
files array should be allocated to contain gsize(gfd) character buffers, each able to hold a maximum length directory entry name.

int gindex(int gfd, const char* file)
Returns the index within group results of the named file for the group specified by gfd.

int gstatus(int gfd, int* status_array)
Fills user-allocated status_array with the individual member status results of the last group file operation on the specified gfd. Returns
positive number indicating number of individual errors.

int gloadaggr(const char* library, const char* function)
Loads the named aggregation function located in the shared object file library. Returns a new unique identifier for the aggregation that
can be used with gbindaggr.

int gbindaggr(int gfd, FileOp fop, AggrType typ, int ag, const char* params_fmt, ...)
Binds aggregation ag to the file operation fop for the group gfd. If gfd equals -1, the binding is a default for future groups. AggrType is an
enumeration indicating status or data aggregation. params_fmt is a varargs format string that describes a variable number of parameters.

it is intuitive and functional for arbitrary data (e.g., bina-
ry data structures and text). Users that know the format
of output data a priori are encouraged to use custom ag-
gregation for improved performance and scalability.

We have defined two new operations in support of
specifying custom aggregations, gloadaggr and
gbindaggr, with interfaces as described in Fig. 1. The
former is used to load new aggregations for use with
group file operations, while the latter binds status or data
aggregations to a specific group file operation. Aggrega-
tions can be bound to group file operations for a partic-
ular group file or as a default for future groups. The new
gloadaggr and gbindaggr system calls do not
specify the interface to aggregation functions. Instead,
they simply allow for finding a function pointer to the
compiled code of an aggregation within a shared library.
File systems directly supporting group file operations
specify their own aggregation interfaces as appropriate.

To illustrate the use of default and custom aggrega-
tion of group results, we give an example using read on
a group of /proc/loadavg files from many Linux
hosts. These files contain text indicating the one, five,
and fifteen minute system loads. We assume the tool is
interested in the average loads. Fig. 2a shows pseudo-
code for the example using default aggregation, while
Fig. 2b shows how custom aggregation may be used.

2.4. Error semantics

The semantics for group file operations are compli-
cated when one or more of the individual member oper-
ations return an error status. Our current specification
requires a group file operation to return an error status
(E_GROUP) if any individual errors occur. This status
indicates to the user that gstatus should be used to
identify faulty members. Both pre-defined and user-de-
fined aggregation functions must be error-aware in order
to avoid returning corrupted group status or data results.
For example, if the sum aggregation was not error-

aware, adding one or more negative error values to the
computed sum would produce an invalid value.

3. TBON-FS: A FILE SYSTEM FOR
SCALABLE GROUP FILE OPERATIONS

The group file operation idiom permits the use of
scalable implementation techniques by removing ex-
plicit iteration at the file system interface when operat-
ing on file groups. We now describe TBON-FS, a new
distributed file system designed for scalable group file
operations on thousands of distributed files. First, we
describe the global mount abstraction of TBON-FS. The
TBON-FS architecture is presented next, with focus giv-
en to the design choices that address the scalability bar-
riers for group file operations. Finally, the prototype
TBON-FS system used for the evaluation in Section 4 is
discussed.

3.1. TBON-FS global mount

TBON-FS combines a collection of remote file sys-
tem directories under a single mount point on the client.
The global mount abstraction provided by TBON-FS is
inspired by previous work on single system image (SSI)
administration of distributed systems [3,9,12,16,19,20].
The goal of a global mount is to provide a unified file
namespace that hides the distributed nature of files,
which simplifies tool development. The two most com-
mon approaches to provide the global mount abstraction
are to use a distributed operating system, or build upon
existing distributed (or parallel) file systems.

Since we endeavour to provide a scalable approach
to group file operations that can be used on a wide vari-
ety of distributed systems, and distributed operating sys-
tems are rarely used for large-scale production systems,
we believe that there is little benefit in adding group file
operations to a specific distributed operating system.

Relying on existing distributed file systems has two
problems when considering group operations on files
distributed across thousands of servers. First, distributed
file systems are designed to provide good performance
for multiple clients making requests to a single server,
while group file operations invert the relation to a single

 int fileop(gfd, in_arg, out_arg)
 {
1 group_file* gf = get_group(gfd);
2 int stat[gf->size];
3
4 // Call fileop for each member
5 for(i=0; i < gf->size; i++) {
6 int fd = gf->members[i];
7 o_arg = out_arg + i;
8 stat[i] = fileop(fd, in_arg, o_arg);
9 }
10 // Compute group status result
11 status_aggr_fn = gf->saggr(fileop);
12 int grp_status = status_aggr_fn(stat);
13
14 data_aggr_fn = gf->daggr(fileop);
15 if(data_aggr_fn != NULL)
16 // Compute group data results
17 data_aggr_fn(stat, in_arg, out_arg);
18
19 return grp_status;
 }

Figure 1. Group file operation algorithm
General algorithm for applying a file operation to a group file and com-
puting group status and data results.

TABLE 2. GROUP STATUS AGGREGATION DEFAULTS

Summary Aggregation & Group File Operations

zero: Return zero if all member operations succeed.

close, fchmod, fchown, fstat, fsync,
ftruncate, lio_listio, aio_fsync, aio_read,

aio_write, aio_suspend

sum: Return total bytes read/written across all members.

pread, pwrite, read, readv, write, writev

equal: Return common offset when all individual file offsets
are equal. Otherwise, return invalid offset value.

lseek

client interacting with many servers. Without significant
changes to the client-server model, client support for
group file operations in existing distributed file systems
still requires iteration over servers. Second, the majority
of distributed file systems directly manage the underly-
ing storage. To include files in the global mount, the
files must reside in the distributed file system. This pre-
cludes access to a large set of useful files in memory-
backed file systems (e.g., /proc), and forces all disk
files on each server that may be of interest to the client
tool to reside in the distributed file system, which may
introduce unnecessary overhead for server-local file op-
erations.

To avoid the inherent limitations for group file op-
erations in an existing distributed file system, we de-
signed TBON-FS to provide scalable group file opera-
tions on arbitrary server files from the beginning.

3.2. TBON-FS scalable architecture

In designing TBON-FS, we adopted techniques that
have been shown to be scalable for large distributed sys-
tems. In particular, we target methods that permit paral-
lel execution and do not require knowledge of global
state to be maintained at each distributed host. The key
piece of the TBON-FS architecture that allows for par-
allel execution is the integration of a tree-based overlay
network, which provides both scalable group multicast
communication and scalable aggregation of group data.

The group file operation idiom allows for parallel
execution when member files are distributed across
many file servers. With both gopen and group file op-
erations, each file server can operate independently.
Thus, the client can multicast the operation request, and
servers can fulfill the request in parallel. As servers fin-
ish their local operations, the resulting status and data
values can be returned to the client. Using distributed
aggregation, the group status and data results can be
computed in a parallel fashion. By distributing commu-
nication and processing load over a tree overlay, client
load and completion time for group file operations can
be greatly reduced.

TBONs easily scale to any size distributed system
by simply increasing fan-out or depth. For example, a
TBON-based debugging tool was the first to run at full
scale on the BlueGene/L system, which has over
200,000 processors [13]. Using reasonable fan-outs
(e.g., 32 or 64) and depths (e.g., 4 or less), a tree topol-
ogy has the desirable property that the number of non-
leaf nodes is a small percentage of the total number of
nodes. A balanced tree with fan-out 32 and depth 4 can
be used to access one million servers, and has only 3%
non-leaf nodes. TBONs also provide desirable proper-
ties for recovery and reconfiguration that help tolerate
faults, which occur with higher frequency at larger
scales [1].

As shown in Fig. 3, the TBON-FS architecture inter-
poses a TBON between a client at the root and many
servers at the leaves. The client uses the TBON to mul-
ticast group file operation requests to servers. The serv-
ers transform requests into standard operations on local
member files, and send the status and data results back
to the client via the TBON, which executes the aggrega-
tion functions (i.e., status/data aggregations bound to the
current group file operation) to produce group results.

A tree-based approach to data aggregation requires
functions that support hierarchical execution. An aggre-
gation function at a non-leaf tree vertex will be passed a
set of input data, where each input datum is the output
produced by the function at one child. An example ag-
gregation function that supports hierarchical execution
is presented in Fig. 4, which shows psuedocode for the
custom load average calculation described in Section
2.3 and used in Fig. 2b. A file_data structure is de-
fined to encapsulate raw or aggregated file data and a list
of group file indices. For raw data (e.g., data obtained di-

// Open group
int gfd = gopen(“loadavg_grp”, O_RDONLY);
int gsz = gsize(gfd);

// Collect load average file data
char* buf = malloc(gsz * LDAVG_FILE_SZ);
read(gfd, buf, LDAVG_FILE_SZ);
close(gfd);

// Scan data and compute overall averages
double avg_one, avg_five, avg_fifteen;
avg_one = avg_five = avg_fifteen = 0.0;
for(i = 0; i < gsz; i++) {
 double one, five, fiftn;
 char* data = buf + (i * LDAVG_FILE_SZ);
 scandata(data, &one, &five, &fiftn);
 avg_one += one;
 avg_five += five;
 avg_fifteen += fiftn;
}
avg_one /= gsz;
avg_five /= gsz;
avg_fifteen /= gsz;

(a) Using Default Aggregation

// Open group
int gfd = gopen(“loadavg_grp”, O_RDONLY);

// Load and Bind Custom Aggregation
int ag = gloadaggr(“tool_aggr.so”,
 “calc_load_avgs”);
gbindaggr(gfd, OP_READ, DATA_AGGR, ag);

// Collect and aggregate load averages
double* avgs = malloc(3 * sizeof(double));
read(gfd, avgs, LDAVG_FILE_SZ);
close(gfd);

double avg_one = avgs[0];
double avg_five = avgs[1];
double avg_fifteen = avgs[2];

(b) Using Custom Aggregation

Figure 2. Default vs. custom data aggregation
(a) With default aggregation, a group read generates an array of re-
sults that is iterated over to scan and compute averages.
(b) With custom aggregation, gbindaggr is used to specify a load
average calculation function for use with the read, and the averages
are directly extracted from the result buffer.

rectly from read), the list will contain a single integer de-
noting the origin file index. With aggregate data, the list
will contain each of the indices that contribute to the ag-
gregated result. The aggregation function accepts an ar-
ray of file_data structures as an input, and stores ag-
gregated results in a file_data output parameter.

 To avoid shared global state that may require costly
synchronization or consensus, TBON-FS adopts a poli-
cy where neither the client nor servers maintain com-
plete information for the state of each group file. Servers
keep track of the local member files, last operation sta-
tus results, and bound aggregations for each group file.
The client keeps only summary information such as the
size of each file group. This policy introduces some ex-
tra collection overhead when global information is re-
quired, such as when gstatus, gfiles, or gindex is used.
Fortunately, TBONs are efficient for data collection.

3.3. Prototype system

The TBON-FS prototype system provides a frame-
work for evaluating group file operations with respect to
adoption and ease-of-use within tools and middleware.
Our implementation effort focused on rapid develop-
ment and testing, rather than performance optimization.

The resulting system consists of a shared library that
is linked with client tools and a user-level file server.
The client library implements the operations defined in

Fig. 1, group-aware versions of the standard file system
calls in Table 2, and functions for mounting TBON-FS.
The server implements a simple proxy file service that
uses standard file operations on local files, and manages
the local state for each group file. MRNet [22] serves as
our TBON infrastructure, and TBON-FS aggregations
are written conforming to the MRNet filter API.

The MRNet infrastructure is instantiated when a
user mounts TBON-FS. The name of a file containing
pairs of the form (server host, directory) is passed as the
device operand to mount, and a TBON topology file is
given in the file system options. During overlay instan-
tiation, communication processes are started at internal
TBON vertices, and servers are launched at the leaves.
For each new group file, a set of MRNet data streams are
created: a group control stream, a group file operation
request stream, and streams for aggregating group status
and data results. The control stream supports the new
group operations from Table 1. The request stream is
used for multicasting group file operation requests to
servers. One result stream is created for each status and
data aggregation that is set as the default for any group
file operation.

Figure 3. TBON-FS architecture
A tool group read is a system call to the Virtual File System, which
maps the request to a TBON-FS file system operation. The TBON-FS
client process polls a character device for new requests, and multicasts
them to servers via the TBON. Servers transform requests into local file
operations, and send results back through the TBON, which performs
aggregation.

struct file_data {
 unsigned data_len; // length of data
 void* data; // data (any format)
 unsigned files_len; // number of files
 int* files; // group file indices
}

int calc_load_avgs(unsigned num_inputs,
 struct file_data inputs[],
 struct file_data* output)
{
 // calculate average of inputs
 double avg1 = 0, avg5 = 0, avg15 = 0;
 unsigned total_num_files;
 for(unsigned u=0; u < num_inputs; u++) {
 int nfiles = inputs[u].files_len;
 void* idata = inputs[u].data;
 if(nfiles == 1) {
 // scan raw file data
 double one, five, fiftn;
 scandata(idata, &one, &five, &fiftn);
 avg1 += one;
 avg5 += five;
 avg15 += fiftn;
 } else {
 // data contains aggregated loads
 double* avgs = (double*) idata;
 avg1 += avgs[0] * nfiles;
 avg5 += avgs[1] * nfiles;
 avg15 += avgs[2] * nfiles;
 }
 total_num_files += nfiles;
 }
 avg1 /= total_num_files;
 avg5 /= total_num_files;
 avg15 /= total_num_files;

 // prepare output data
 allocate_output_data(output);
 store_averages(output, avg1, avg5, avg15);
 fill_output_file_list(inputs, output);
}

Figure 4. TBON aggregation function example
Pseudocode for a hierarchical version of the custom system load aver-
age calculation used in Fig. 2b.

4. EVALUATION

Our goal for evaluating group file operations and the
prototype TBON-FS system is to demonstrate the idi-
om’s power and the benefits of aggregation at scale.
Section 4.1 describes our use of group file operations to
create parallel versions of five Linux command-line
tools: cp, grep, rsync, tail, and top. Section 4.2 relates
our experience in quickly adding group file operations
to the Ganglia Distributed Monitoring System [15].

Experiments were run on two Linux clusters, Thun-
der and Atlas, located at Lawrence Livermore National
Laboratory. Thunder has 1024 hosts connected via
Quadrics QsNetII Elan4, and each host has four 1.4GHz
Intel Itanium2 processors and 8GB of memory. Atlas
contains 1152 hosts, each with eight 2.4GHz AMD
Opteron processors and 16GB of memory, and uses a
4X-DDR Infiniband interconnect. Thunder experiments
used four TBON-FS servers per host, and Atlas experi-
ments used eight servers per host. In all experiments, the
TBON-FS client and each MRNet communication pro-
cess were run on hosts separate from those with TBON-
FS servers. On Thunder, we used five tree topologies:
1×24×24 (576 servers), 1×28×28 (784), 1×32×32 (1024),
1×8×10×16 (1280), and 1×6×16×16 (1536). On Atlas,
four topologies were used: 1×4×8×32 (1024), 1×8×8×32
(2048), 1×8×12×32 (3072), and 1×8×16×32 (4096).

4.1. Parallel UNIX tools

4.1.1. Parallel cp and rsync
File distribution is a common task when managing

large distributed systems. In environments such as clus-
ters where hosts are similarly configured, file distribu-
tion can be used to update configuration files local to
each host. For distributed computing, application, data,
and script files may be staged to hosts before execution.

To improve the scalability of file distribution, we
developed parallel versions of cp and rsync. pcp uses
group write operations to multicast a source file to all
servers. psync uses the rsync block checksum com-
parison algorithm [26] to identify differences between
the servers’ copies of a file and the client source file, and
only multicasts the data that has been changed or added.
psync uses group read operations with an aggregation
that checksums file data blocks. The aggregation identi-
fies sub-groups of servers whose file data is identical.
The block checksums for each sub-group are compared
to the source file, and updated data is multicast using a
group write. In homogenous environments with one
unique group, the computational load for psync on the
client is similar to rsync with a single server.

We evaluated the performance of pcp and psync
in terms of distribution time for three file sizes on the
Atlas cluster. The files were chosen by finding recently
modified configuration files on Atlas for which we
could retrieve the prior version. For comparison, we
measured the time for every server to use the cp com-

mand to get the file from NFS or a Lustre parallel file
system. The cp tasks were launched in parallel using the
srun command of SLURM, the resource management
system used on Atlas. To account for srun overhead,
we measured the time to run hostname in parallel at
each experimental scale, and subtracted that time from
the NFS and Lustre times. Two versions of pcp were
tested, using synchronous and asynchronous group
write. Synchronous pcp was always faster, so we re-
port those results, although the asynchronous version
still outperformed the parallel cp from NFS and Lustre.
cp and pcp experiments use /dev/null as the desti-
nation file to avoid measurement bias from local disk
writes on the servers.

Fig. 5 reports copy times for the three files. pcp is
always fastest, showing logarithmic performance as the
number of servers (destinations) increases. Lustre
comes in second, but has poor linear scaling. NFS does
not exhibit linear scaling, but is an order of magnitude
slower than pcp. For the two smaller files, psync out-
performs NFS at all but the largest experimental scale,
even though it must read and checksum all destination
files. On the largest file, the overhead of processing over
500 1KB blocks becomes too costly. However, as
shown in Table 3, psync sends much less data by only
transmitting new data and information on the matched
blocks. Due to its network savings, psync is attractive
for updating files on systems where the network is high-
ly-utilized, yet computation is comparatively cheap.

4.1.2. Parallel grep
grep can be used to search configuration files, scan

system or application logs for interesting events, and
gather host or process information. Leveraging grep on
distributed files helps identify configuration differences,
correlate distributed events, and monitor resource use.
Thus, we have developed pgrep. For simplicity, it cur-
rently supports textual searches rather than regular ex-
pressions. pgrep aggregates matching lines into
groups. Each group is a distinct line found in one or
more files, and the aggregation prepends the constituent
files. Files are represented as strided ranges of group in-
dices, where each range has a start index, stride, and
count. When a pgrep user requests line numbers in the
output, the equivalence groups match the line number
and text.

Table 6 compares pgrep on distributed files to
standard grep on files served by NFS for the same
number of files searched. We measured the completion
latency in seconds and output size in kilobytes. We
searched files backed by both disk and memory, and
used searches that returned few or many unique match-
es. services-udp searched for the abundant string "udp"
in the /etc/services file. meminfo-Free searched
/proc/meminfo for "MemFree". As the amount of free
memory is variable at runtime, this search returns many
lines. meminfo-Total searched for "MemTotal" in

/proc/meminfo. This search returns a single line rep-
resenting the homogenous group of Atlas hosts.

grep exhibits linear scaling in completion time and
output size. Due to pgrep’s equivalence aggregation,
the number of output lines is simply the number of
unique lines across all hosts. pgrep’s output is smaller
in size and easier to interpret than grep, and is an order
of magnitude smaller in cases with significant similari-
ty. For pgrep, completion time includes the time to ini-
tialize the file group using gopen and gbindaggr,
read the files using the equivalence aggregation, and
print the aggregated results. We report total and individ-
ual component times. The group read time provides in-
sight into the scalability of our equivalence aggregation.
We observe sub-linear completion time for all pgrep
experiments, and note that for smaller files the comple-
tion time is dominated by the time to initialize the file
group.

4.1.3. Parallel tail
The tail utility with the "-f" option is used to fol-

low system log activity in real-time. Existing software
enhances the functionality of tail to include monitor-
ing multiple files [17] and multiple hosts [14], and to
highlight interesting lines of output [11,17]. Combining
all three enhancements, we developed ptail for fol-
lowing large distributed file groups. To improve corre-
lation of events across hosts and reduce output, we ex-
tended the line equivalence aggregation used for pgrep
with an option to strip host-specific information (e.g.,

hostname and process ids) from lines using the syslog
message format. Correlation of distributed events can
benefit applications such as identifying misconfigured
network services (e.g., many clients of the service notice
a problem and generate an identical error) and security
(e.g., distributed intrusion or denial-of-service attacks).

We used a synthetic log generator that controls the
rate of log entries and the percentage of equivalent en-
tries across hosts to evaluate ptail. ptail signifi-
cantly reduces the number of output lines by combining
equivalent log entries. In general, for a group of size G,

Figure 5. Parallel copy scalability
File distribution time for pcp, psync, and parallel cp.

TABLE 3. PSYNC FILE STATISTICS
For each file, total size, size of new data, and size of block match meta-
data is given in bytes. psync sends only the new data and matches to
servers, reported as a percentage of total size.

Figure 6. pgrep vs. grep scalability
Time and output size is given for three searches. pgrep searched
TBON-FS files, and grep searched NFS files. For pgrep, time is split
into two main activities: read (read and aggregate) and init (gopen
and gbindaggr).

File Size (B) New (B) Matches (B) Sent

/etc/fstab 7063 1579 216 25.4%

/etc/passwd 38742 1025 1332 6.1%

/etc/services 559563 3531 19548 4.1%

psync

a percentage P of equivalent events, and L log entries
generated per host, the total number of output lines is re-
duced to L((1-P)G + P) from the total lines gener-
ated LG. The aggregated output eases log analysis, and
reduces the storage required to keep log history.

4.1.4. Parallel top
top is a simple yet powerful utility for displaying

resource utilization by processes on a single host. We
know of no existing tool that provides the same func-
tionality for many distributed hosts, so we created
ptop. As with standard top for Linux, ptop gathers
information from files in /proc. Aggregation is used to
calculate summaries and support the sorting and filter-
ing capabilities of top. To give greater insight into dis-
tributed resource use, we added two new grouping facil-
ities that summarize processes having the same com-
mand name, both for a specific user and across all users.
When grouping, one can view total, average, or maxi-
mum utilization. Using ptop, one can answer many in-
teresting questions: what application is using the most
memory pages, what is the average CPU utilization for
my parallel application processes, and who is playing
solitaire?

To evaluate ptop, we measured average latency to
collect and aggregate process information and average
CPU utilization at TBON-FS servers. On Thunder, we
ran ptop for 60 seconds with and without command
grouping, using delay intervals of 5, 10, and 30 seconds
(top’s default is 5 seconds) and reporting the top 100
processes. Performance with and without grouping was
indistinguishable, so we show the grouping case. Fig. 7
shows that ptop can aggregate resource utilization for
file groups consisting of hundreds of thousands of dis-
tributed processes (several hundred processes per host)
using the same default delay interval as top. The time
scales logarithmically compared to the file group size.
We note that TBON-FS server CPU use was under 0.5%
for the 30 second interval in all experiments. Thus,
ptop can be used for low-impact, continuous monitor-
ing.

4.2. Ganglia distributed monitoring system

Ganglia supports host resource monitoring for local-
area clusters and wide-area grids. It uses a TBON archi-
tecture consisting of gmetad cluster/grid aggregator pro-
cesses, where each leaf gmetad records summary and
host information for a cluster, and gmetads at higher-
level tree nodes record grid summaries. Within a cluster,
a gmond monitor running on each host collects resource
utilization information from local files and regularly
multicasts updates to fellow gmonds in the cluster. The
gmetad for a specific cluster queries one of the gmonds
to collect the latest data for all cluster hosts.

With no previous knowledge of the Ganglia source
code, we added group file operations to version 3.0.4 in
a span of a few weeks. We unified the architecture to be
completely tree-based by removing the use of IP multi-

cast among cluster hosts. As cluster size grows, the use
of multicast causes each host in the multicast group to
incur a linear increase in CPU and network load and in
memory storage of group state [15]. To combat the neg-
ative effects of using multicast, the default update inter-
val is 90 seconds, which precludes real-time monitoring.

Our updated version, Ganglia-tbonfs, replaces the
gmonds with TBON-FS servers. We use custom aggre-
gations to store metric data in round-robin databases at
root and internal TBON processes, mimicing the behav-
ior of gmetads. To support the web-based interface and
its recursive grid/cluster/host views, we developed ag-
gregations that transform summary or host state from
the databases into XML documents and graphs.

To compare Ganglia-tbonfs to Ganglia, we mea-
sured average gmetad and gmond CPU utilization over
a period of 30 minutes on Thunder. Metrics were col-
lected according to the default intervals set by Ganglia.
With Ganglia, gmetad and gmond CPU use increased
linearly as we increased the number of monitored hosts.
In contrast, Ganglia-tbonfs suffered no ill effects from
increasing the monitored group size. At the largest scale,
Ganglia-tbonfs used 50% less CPU for the gmetad and
just 0.37% CPU at the gmonds (versus 0.95% for Gan-
glia).

5. RELATED WORK

Steere’s dynamic file sets [25] provide an abstrac-
tion similar to that of the group file, and share the same
motivation for eliminating serialization imposed by the
file system interface when operating on groups of files.
To reduce group operation latency, Steere used a thread-
ed distributed file system client to prefetch whole files
in parallel, and returned file descriptors using a set iter-
ator construct that favored fully fetched data. The dy-
namic set abstraction still requires iteration over the files

Figure 7. ptop scalability
Server CPU use and group read time vs. number of processes.

for each group operation, and scalability for large
groups is hindered by fetching all file data to the client.

Group file operations are related to the MapReduce
system [6], as both the map and reduce operations are
distributed aggregation of file data. In MapReduce, a
large data set is partitioned into many small fixed-size
chunks stored at hundreds or thousands of servers. Con-
sidering chunks as files permits a MapReduce operation
to be cast as a group file operation where both map and
reduce are implemented as a single aggregation. Goo-
gle’s MapReduce system is tightly bound to the Google
File System, as group file operations are currently bound
to TBON-FS. Group file operations are similar to the
Sawzall [21] and Pig Latin [18] programming languages
that expose data parallelism in simple interfaces that
hide the underlying parallel system. Unlike these lan-
guages, group file operations use familiar file system
calls.

CFS [5] and PAST [24] use overlay networks for
scalable file storage and retrieval. However, they only
support read-only files and do not provide in-network
aggregation of data from groups of distributed files. San
Fermín [4] provides large-scale, fault-tolerant distribut-
ed data aggregation using a binomial swap forest on a
peer-to-peer overlay network. For fault tolerance, each
distributed data source exchanges aggregated data with
peers to compute the final aggregate. Unfortunately, the
overhead of this duplicate computation and communica-
tion is too high for many distributed systems and tools,
most notably performance monitoring of HPC systems.

Gropp and Lusk [10] and Brim et al. [2] created par-
allel versions of common utilities for scalable manage-
ment of distributed systems. Neither work uses aggrega-
tion of group results to aid in analysis or presentation.
Instead, both annotate output with the origin host and re-
quire post-processing of results. These tools could ben-
efit from the integration of a TBON infrastructure to
eliminate redundant output using group summaries, as
we have done in our parallel tools.

6. CONCLUSION

Group file operations are a new, intuitive idiom for
operating on large file groups. The idiom eliminates it-
eration over group members, which allows TBON-FS to
provide scalable group file operations by using a TBON
for distributed communication and aggregation. We in-
tegrated group file operations into several tools and one
existing middleware system. Experimental and qualita-
tive observations with a prototype TBON-FS show the
applicability, ease of use, and scalability of group file
operations.

7. REFERENCES

[1] D. C. Arnold, "Reliable, Scalable Tree-Based Overlay Net-
works", Ph.D. Dissertation, Computer Sciences Department,
University of Wisconsin-Madison, December 2008.

[2] M. Brim, R. Flanery, A. Geist, B. Luethke, and S. Scott, “Cluster
command & control (c3) tool suite”, Parallel and Distributed
Computing Practices 4, 4, 2001, pp. 381-399.

[3] D.R. Brownbridge, L.F. Marshall, and B. Randell, “The New-
castle Connection or UNIXes of the World Unite!”, Software-
Practice and Experience 12, 1982, pp. 1147-1162.

[4] J. Cappos and J. Hartman, "San Fermín: Aggregating Large Data
Sets using a Binomial Swap Forest", 5th USENIX Symposium on
Networked Systems Design and Implementation, April 2008.

[5] F. Dabek, F. Kaashoek, D. Karger, R. Morris, and I. Stoica,
"Wide-area cooperative storage with CFS", SIGOPS Oper. Sys.
Rev. 35, 5, December 2001, pp. 202-215.

[6] J. Dean and S. Ghemawat, "MapReduce: Simplified Data Pro-
cessing on Large Clusters", 6th Symposium on Operating Sys-
tems Design and Implmentation, December 2004.

[7] “Debugger for Multi-core, Multi-Threaded, Multi-Processor Ap-
plications”, TotalView Technologies, LLC, http://www.total-
viewtech.com/productsTV.htm, 2007.

[8] M. Ding and P. Lu, "Trellis-SDP: A Simple Data-Parallel Pro-
gramming Interface", 2004 International Conference on Parallel
Procesing Workshops, pp. 498-505, August 2004.

[9] A. Goscinski, M. Hobbs, and J. Silcock, “GENESIS: an efficient,
transparent and easy to use cluster operating system”, Parallel
Computing 28, 4, April 2002, pp. 557-606

[10] W. Gropp and E. Lusk, "Scalable Unix Tools on Parallel Proces-
sors", Scalable High-Performance Computing Conference, pp.
56-62, Knoxville, Tennessee, May 1994.

[11] S. Hansen and E. Atkins, “Automated System Monitoring and
Notification With Swatch”, 7th USENIX Conference on System
Administration, pp.145-152, November 1993.

[12] E. Hendriks, “BProc: The Beowulf distributed process space”,
2002 International Conference on Supercomputing, pp. 129-136,
New York, New York, June 2002.

[13] G. Lee, D. Ahn, D. Arnold, B. de Supinski, M. Legendre, B.
Miller, M. Schulz, and B. Liblit, "Lessons Learned at 208K: To-
wards Debugging Millions of Cores", SC 2008, November 2008.

[14] “logtail: Watch Multiple Log Files on Multiple Machines”, ht-
tps://www.fourmilab.ch/webtools/logtail/.

[15] M. Massie, B. Chun, and D. Culler, “The Ganglia Distributed
Monitoring System: Design, Implementation, and Experience”,
Parallel Computing 30, Elsevier B.V., 2004.

[16] C. Morin et al., “Kerrighed: A Single System Image Cluster Op-
erating System for High Performance Computing”, 9th Interna-
tional Euro-Par Conference, Klagenfurt, Austria, August 2003.

[17] “MultiTail”, http://www.vanheusden.com/multitail/.
[18] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins,

"Pig Latin: A Not-So-Foreign Language for Data Processing",
SIGMOD ’08, Vancouver, British Columbia, 2008.

[19] H. Ong et al., “Kernel-level single system image for petascale
computing”, SIGOPS Oper. Sys. Rev. 40, 2, April 2006, pp. 50-
54.

[20] “OpenSSI (Single System Image) Clusters for Linux”, ht-
tp://openssi.org/, August 2006.

[21] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, "Interpreting
the Data: Parallel Analysis with Sawzall", Scientific Program-
ming, 13, 4, October 2005, pp. 277-298.

[22] P. Roth, D. Arnold, and B. Miller, "MRNet: A Software-Based
Multicast/Reduction Network for Scalable Tools", SC 2003,
Phoenix, Arizona, November 2003.

[23] P. Roth and B. Miller, “On-line Automated Performance Diag-
nosis on Thousands of Processes”, ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, New York,
New York, March 2006.

[24] A. Rowstron and P. Druschel, "Storage management and caching
in PAST, a large-scale, persistent peer-to-peer storage utility",
SIGOPS Oper. Sys. Rev. 35, 5, December 2001, pp. 188-201.

[25] D. C. Steere, "Exploiting the Non-Determinism and Asynchrony
of Set Iterators to Reduce Aggregate File I/O Latency", SIGOPS
Oper. Sys. Rev. 31, 5, December 1997, pp. 252-263.

[26] A. Tridgell and P. Mackerras, "The rsync algorithm", Australian
National University Technical Report TR-CS-96-05, June 1996.

