
FINAL: Flexible and Scalable Composition of
File System Name Spaces

ABSTRACT

Group file operations enable tools and middleware to operate upon
a large group of files located across thousands of independent serv-
ers in a scalable fashion, a necessary requirement for effective use
of today’s largest distributed systems. Our initial prototype of
group file operations showed scalability benefits for several tools,
but also revealed the importance of having a scalable method for
defining useful groups. We have developed a language called
FINAL for describing name space composition in a flexible and
scalable manner. Clients of our TBON-FS distributed file system
can use this language to compose a single-system image (SSI)
name space that automatically creates useful groups in a scalable
fashion. We provide many examples of traditional and SSI name
space compositions that can be described using FINAL, and report
how TBON-FS can compose a global name space from tens of
thousands of independent name spaces in one-quarter second.

KEYWORDS

name space, composition, file system, scalability, middleware

1. INTRODUCTION
Tools and middleware face a daunting challenge to operate

effectively on the world’s largest distributed systems containing
tens of thousands of hosts and hundreds of thousands of proces-
sors. A large class of problems encountered at this scale result
from system designs that force group operations to use serial inter-
actions with operating systems and file systems. As the target
group size grows, the resulting group operation latency grows lin-
early or worse.

In previous work [3], we introduced group file operations, a
solution to the problem of applying the same file operations to a
large group of files located across thousands of independent hosts.
The keys to the group file operation idiom are explicit identifica-
tion of file groups using directories as the grouping mechanism,
and the ability to name a file group as the target for conventional
file system operations such as read and write. Group file oper-
ations provide an interface that eliminates forced iteration, thus
enabling scalable implementations. To support scalable group file
operations, we developed the TBON-FS distributed file system,
which employs a tree-based overlay network (TBON) to provide
scalable communication of group file operation requests and dis-
tributed aggregation of response data. TBON-FS provides client
tools with a single-system image (SSI) name space containing files
from thousands of independent file servers. Single-system image
name spaces enable applications to access and operate on distrib-
uted resources as if they were local, easing the development effort
by allowing developers to focus on features rather than distributed
access and communication.

Several classes of tools and middleware can benefit from group
file operations, including systems for distributed system adminis-
tration and monitoring, parallel application runtimes, and distrib-
uted debuggers. For instance, tools for distributed monitoring and
debugging often need to access the synthetic files for process con-
trol or inspection as provided by /proc across a large set of inde-
pendent hosts. Using group file operations, these tools can easily
control or monitor groups of processes by defining file groups over
the target files and performing group read or write operations.

Although our initial investigation clearly showed the scalability
benefits of group read and write operations, it also revealed a sig-
nificant piece was missing, the ability to define file groups in a
scalable fashion. TBON-FS originally used a simple, static compo-
sition strategy for constructing its SSI name space – each file
server’s name space was placed in an independent directory hierar-
chy of the global name space. This inflexible structure results in
inefficient group definition for groups that contain files from many
servers. For each new group, the TBON-FS client must create a
directory and populate it with symbolic links to each member file
in a non-scalable, iterative manner that can take thousands of sec-
onds for groups containing tens of thousands of distributed files.
To avoid this centralized, iterative group definition, we began
investigating scalable approaches for distributed construction of
the name space that could be implemented using the TBON.

After considering a few straightforward techniques for address-
ing the problem of scalable group definition, including parallel
path matching using regular expressions, it quickly became clear
that no single approach to constructing the TBON-FS name space
would meet the group definition requirements for a wide variety of
tools and middleware. For instance, consider a strategy for creating
groups from the synthetic files provided by /proc across a large
set of independent hosts. A parallel debugger or job management
system may wish to create a file group representing all the pro-
cesses of a specific parallel application, while a distributed system
load monitoring program may want groups consisting of all pro-
cesses from every host or all processes running the same execut-
able. We believe each TBON-FS client is best-suited to the task of
constructing and organizing the global name space, and our goal is
to develop a method for specifying global name space composition
that is both flexible and scalable. Clients should be able to easily
identify the files or directory hierarchies from each server’s name
space to include in the global name space, and to control how files
from independent servers are correlated to achieve a name space
tailored for use with group file operations. A key to achieving the
latter property is an efficient and automated method for creating
file groups as directories within the composite name space.

Prior approaches to name space composition are ill-suited to the
construction of global name spaces that comprise tens of thousands
of independent service name spaces, due to three factors. First, pre-

Michael J. Brim Barton P. Miller Vic Zandy
University of Wisconsin University of Wisconsin IDA Center for Computing Sciences

mjbrim@cs.wisc.edu bart@cs.wisc.edu zandy@cs.wisc.edu

vious systems are inefficient, requiring either pair-wise composi-
tion [11,12,13,17] or fine-grained manipulation of directory entries
[9]. Neither approach is scalable for composing thousands of name
spaces. Second, systems that have provided a global name space at
smaller scales (i.e., hundreds to a few thousand services) use an
inflexible structure that isolates service name spaces into separate
directory hierarchies, which avoids use of inefficient composition
[3,4,5]. Finally, the semantics adopted by previous systems are
fixed for specific compositions, although many valid choices may
exist. For example, name space unions may have shallow or deep
semantics, and may treat duplicate names using renaming or over-
lay semantics that hide duplicates. To address prior deficiencies
and our name space composition goals for TBON-FS, we devel-
oped a language for describing compositions with three key quali-
ties:

• Scalability - many name spaces can be combined using effi-
cient distributed name space construction, avoiding centralized
pair-wise operations.

• Simplicity - name space composition is easily described using a
simple tree abstraction for name spaces and a set of tree com-
position operators with clear semantics.

• Flexibility - many interesting compositions can be specified by
combining declarative tree operations with prescriptive pro-
gramming constructs.

The language provides a semantic foundation that guides our
approach for efficient large-scale name space composition within
TBON-FS, and can be adopted by previous or future systems
requiring flexible name space composition.

Our language is FINAL, for File Name space Aggregation Lan-
guage. FINAL treats name space composition abstractly as opera-
tions on rooted trees of names, and provides five tree composition
operations: subtree, prune, extend, graft, and merge.
Specifications containing FINAL declarations are translated at
runtime to produce a name space accessible via a library interface.
We demonstrate FINAL’s expressive power by using it to describe
many interestingly diverse compositions. We also report how
TBON-FS applies FINAL in a distributed manner, using trees to
compose trees, to scalably construct its global name space.

2. NAME SPACE COMPOSITION
The two main abstractions used within FINAL are name spaces

and file services. We first describe these abstractions, and then
introduce our name space composition operations that are based on
these abstractions. This section concludes with a few examples of
how the composition operations can be used to describe various
mount semantics provided by current operating systems.

2.1 FINAL Abstractions
We assume file system name spaces are organized as a tradi-

tional tree of directory entries, where internal vertices are directo-
ries and files are leaves. A path is a sequence of name elements
that represent a traversal of the directory tree starting at its root and
ending at the tree vertex corresponding to the named file system
entry. Thus, name spaces map paths to file system entries. Figure
2-1 presents an example name space.

A file service is our abstraction for local or remote file systems.
File services provide access to a physical name space, which con-
tains entries for the file system(s) accessed through the service.

File services also provide a set of common file operations that can
be used on entries in their physical name space (e.g., open, read,
write, and close for files, and list for directories).

For ease in describing name space composition, we abstract
name spaces as trees and name space composition as tree alter-
ations and combinations. We call these trees name space views to
distinguish them from the physical name spaces of file services.
All views used as inputs to composition operations are immutable,
and operations produce new immutable views as results. The
immutability of views provides clear semantics for composition, as
there are no side-effects to the input views, and views can be freely
used as inputs to many operations. Since file services are used as
the building blocks for name space composition, services conven-
tionally export a view that resembles their physical name space. If
a file service removes file system entries after providing a view
that contained them, lookups in the composite name space will fail.

2.2 FINAL Composition Operations
FINAL treats name space composition as abstract operations on

immutable trees. The composition algebra consists of the five tree
operations presented in Table 2-1. The first three operations, sub-
tree, prune, and extend, support common manipulations of
single trees. These operations have two operands: a tree T and a
path P. subtree(T,P) yields a view of the sub-tree whose root
is found by traversing P in T. If the target sub-tree is a single file,
subtree returns a tree consisting of a root directory whose only
child is the file. prune(T,P) complements subtree, and
results in a view of T with the sub-tree rooted at P removed.
extend(T,P) yields a copy of the input tree with P prepended
to its root. Figure 2-3 applies these three path operations to the
example name space of Figure 2-1. The fourth operation, graft,
inserts one tree into another as shown in Figure 2-3.

 Together, the first four tree compositions can describe arbi-
trarily complex tree compositions. Unfortunately, such flexibility
comes with a cost when one wants to perform deep composition of
two or more trees, such as is needed for name space overlays.
Overlays are name space compositions that include unique paths
within all input trees, and where precedence is given to a top-layer
name space when resolving shared path conflicts. A deep overlay

Figure 2-1. Name spaces and Paths
A name space is a rooted tree of names. A path is a tree traversal
starting at the root node. In all figures, uppercase names are used
for directories, and lowercase names are used for files. For the tree
T, the path “/B/g” yields file “g”.

/

A

C D

jh i

B

f gE

k l

T

Path “/B/g”

can be described by traversing the trees in level order, identifying
shared and unique paths. Sub-trees at unique paths can be grafted
into the result tree, while vertices common to both trees result in a
vertex copied from the top-layer service. A specification describ-
ing these overlay semantics may be extremely verbose for large
trees, and the efficiency of composing the trees would be limited to
serial evaluation of the composition operations. Similarly, as
graft operates on two input trees, composition of a large set of
trees would need to iterate and compose in a pair-wise fashion.
One of our goals for name space composition is to avoid complex
specifications and serialized pair-wise composition. Instead, we
favor operations that provide the required semantics while still
providing efficient and scalable composition of many trees.

Our last composition operation, merge, is designed to achieve
this goal by providing a general-purpose, operation that captures
the behavior of a large class of deep compositions, while still sup-
porting customizable composition semantics.
merge({Tk},conflict_fn) provides deep composition of a
set of trees, where the trees are combined at all levels from their
roots to leaves. The tree produced by merge contains all unique
paths that occur in one input tree but not the others, as well as the
results of applying a customizable conflict resolution function to

paths that are shared among the input trees. Unique and shared
paths are determined using a level-order traversal across all input
trees. At each level starting with the roots, the conflict resolution
function is called for each path that is shared among two or more
trees. The function is passed the shared path and a set of conflict-
ing vertices, and produces an output set of (vertex, path) pairs.
Each vertex in the output set is added to the result tree at its paired
path. Letting users define custom conflict resolution functions pro-
vides flexibility to perform fine-grained manipulation, similar to
how directory filters are used within the Virtual System Model [9],
while still describing merge compositions at a high-level. Though
merge captures the behavior of many types of deep composition,
it cannot emulate shallow merges, such as the unions provided by
Plan 9 in which only first level names below the root are overlayed
[12]. Still, shallow composition can be reproduced using iterative
application of graft and subtree.

Pseudocode for an example conflict resolution function that
uses a simple file renaming strategy is shown in Figure 2-2; this
function returns a single directory for shared directory paths, or a
set of renamed files for shared file paths. An example merge
operation using this conflict function is shown in Figure 2-4. In
Section 4., we use a minor variation of the conflict resolution func-
tion of Figure 2-2 that creates a new directory containing renamed
files to merge thousands of name spaces without hiding any files
from the constituent trees. Due to the common use of overlay
semantics [11,12,17], we provide a pre-defined conflict resolution
function called overlay. This function outputs the first vertex in
the conflicting input set.

2.3 Traditional Composition Examples
FINAL can be used to specify a wide range of compositions in

a simple, declarative manner. Here we focus on giving example
compositions that describe the various forms of mounts provided
by current operating systems. Section 3. provides additional exam-
ples that fully use the flexibility of FINAL.

A traditional UNIX mount operation that attaches a file service
to the current name space at a specified path, the mount point, is
easily described using prune and graft:

 T = graft(prune(O,P), N, P)

where O is a view of the original name space, P is the mount
point, N is the new tree to be mounted, and T is the resulting tree.

A bind mount is a variation of the standard mount that uses a
sub-tree of the existing name space rather than a new file system as
the new name space to be mounted. Thus, bind mounts make a por-
tion of the current name space available at more than one path
simultaneously, and can be described by:

T = graft(O, subtree(O,P1)), P2)

where P1 is the original path to the sub-tree and P2 is the new path.
A union mount that lays the mounted name space over (or

under) the current name space at the mount point, instead of
replacing its contents, can be described by:

T = graft(O, merge({N,subtree(O,P)},
 overlay), P)

which lays the name space over the existing sub-tree, or by:

T = graft(O, merge({subtree(O,P),N},
 overlay), P)

Table 2-1. Final Composition Operations

subtree(Tree, Path) => Tree
Returns a copy of sub-tree at the specified path in the input tree.

prune(Tree, Path) => Tree
Returns a copy of the tree with sub-tree at path removed.

extend(Tree, Path) => Tree
Returns a copy of the tree with the specified path prepended.

graft(Tree1, Tree2, Path) => Tree
Returns a copy of Tree1 with Tree2 inserted at the specified path.

merge({Treek}, conflict_fn) => Tree
Returns a new tree that contains all unique paths and entries
returned from applying the conflict function to all shared paths.

rename_merge(shared_path, conflicts)
{
 results = [:]; // initialize empty hash table
 if(all_directories(conflicts)) {
 // return single, common directory
 results[shared_path] = conflicts[0];
 return results;
 }
 else if(all_files(conflicts)) {
 // return all files, renamed to not conflict
 for(int i=0; i < length(conflicts); i++) {
 // new path is shared path plus version
 p = shared_path + “.” + i;
 results[p] = conflicts[i];
 }
 return results;
 }
 // bad input structure
 return nil;
}

Figure 2-2. merge Conflict Resolution Function
Renames all files having the same path by appending a version
number. Conflicting directories are merged to a single directory.

which lays the name space under the existing sub-tree.
These simple mount examples show the ease in describing com-

mon name space compositions using our tree composition opera-
tions. We now proceed to discuss the flexibility afforded for
specifying more diverse compositions that results from combining
the tree algebra with prescriptive programming capabilities.

3. THE FINAL LANGUAGE
FINAL’s abstractions and tree composition operations provide

the foundation for describing composition of many name spaces in
a declarative manner. Further flexibility in composition specifica-
tion can be achieved by extending FINAL with prescriptive capa-
bilities such as iteration and conditional program flow constructs.

3.1 Prescriptive Extensions
While the declarative, functional nature of FINAL’s composi-

tion operations is appealing due to its simplicity, there exist inter-
esting composition strategies that are hard to describe using only
these operations. To provide additional flexibility in writing practi-
cal specifications, we believe that imperative specification con-
structs are necessary. For example, when composing related sub-
trees of name spaces from distributed services, the organization of
the services’ physical name spaces may differ such that the sub-
trees are located at different paths. To support such heterogeneous
name space composition using a declarative specification, the user
would need to know a priori the specific paths to the sub-tree on
each service. In these cases, it would be convenient to allow the
specification to employ run-time queries to discover name space

Figure 2-3. Path Composition Operations
The two left trees show results from applying the prune and subtree operations to the name space of Figure 2-1 with the path “/B”. The
third tree shows the result of extending the S sub-tree with the path “/X“. The right tree shows a graft of tree P into tree X at path “/Y”.

Figure 2-4. merge Tree Composition Operation
The upper three trees, A, B, and C, are merged using the conflict function of Figure 2-2, resulting in the lower tree M. As specified by the con-
flict function, common directories are merged into a single directory in M, and common files are renamed by appending a version number.

/

f gE

k l

S

S = subtree(T,“/B”)

X = extend(S,“/X”)

X

X

f gE

k l

/ /

A

C D

jh i

X

f gE

k l

R

Y

R = graft(X,P,”/Y”)

A

C D

jh i

P

P = prune(T,“/B”)

/

/

A

C D

jh i

A
/

A

C D

h

B

f gE

k l

B
/

A

C

h i

B

gE

k

C

= merge(A,B,C,rename_merge)
/

A

C D

j

B

fE

l

M

h.1 h.2 h.3 i.1 i.2 k.1 k.2

g.1 g.2

contents or environment context. Another instance where prescrip-
tive capabilities are useful is when the composition is selective
based on file attributes, and the specification could query name
space entries to find those that satisfy the desired criteria.

Rather than design a completely new language to add prescrip-
tive functionality, we have decided to embed the FINAL abstrac-
tions and operations within an existing programming language that
provides the desired features. Cinquecento [18] is a dynamically
typed functional language that supports C expression syntax and
data operators. Cinquecento programs are sequences of expres-
sions that are dynamically evaluated in order. Originally designed
to enable mixed-domain debugging, the language provides many
useful functional capabilities such as lambda expressions as well
as built-in types for high-level data structures including lists, vec-
tors, and dictionary hashes. Cinquecento’s C-based syntax should
feel familiar to systems programmers, and its functional character-
istics allow FINAL’s composition operations to be used in a natural
manner. Although we consider Cinquecento a natural fit as the
basis for FINAL, it is important to note that the flexibility that
results from combining FINAL abstractions and composition oper-
ations with prescriptive language capabilities is not dependent on
the choice of Cinquecento. Similar benefits could be realized using
other dynamically evaluated languages such as Python or Java.

3.2 Abstractions and Composition Operations
We have embedded two new data types in Cinquecento,

nstree and filesvc, and functions that operate on these types
to support FINAL’s tree and file service abstractions.

The nstree data type represents a vertex in a name space tree.
Each nstree corresponds to a name space entry on some file ser-
vice, and contains a path and filesvc reference. To maintain the
name space organization, each nstree has references to its par-
ent and children nstree vertices. Initial views for a service are
created using the mknstree function, which takes a filesvc
operand and returns the root nstree for a tree that has an identi-
cal structure to the physical name space of the service. Figure 3-1
presents interfaces for creating and using the nstree data type.

The filesvc type represents an instance of a defined file ser-
vice. The mkfilesvc function creates a new instance of the
named file service. mkfilesvc supports optional parameters that
can be used to customize the service instance, such as passing host
and mount point information for a remote file service like NFS or
9P. For convenience, a pre-defined service named local provides
access to the local name space. Additional file services can be
defined with the svcdefine function, which associates a set of
service operations with the given name. mkfilesvc simply
returns the service instance obtained by passing the optional
parameters to the init operation of the named service. Figure 3-2
presents the interfaces for filesvc.

3.3 Example Specifications
In every FINAL specification, the variable root is used to

denote the nstree that should be used as the resulting name
space. The value bound to this variable at evaluation time should
be of type nstree, and will be used to instantiate the name space
that is used by applications. A specification to access the sub-tree
of the local name space located at path “/usr/bin” would be:

L = mknstree(mkfilesvc(“local”));
root = subtree(L, “/usr/bin”);

The following example specification uses procedural constructs
to deal with heterogeneous context. It checks for the presence of
three common paths for temporary storage within the local name
space and chooses the first available, and defaults to the user’s
home directory if none of the paths were found:

L = mknstree(mkfilesvc(“local”));
tmp = subtree(L, “/tmp”);
if(tmp == nil) {
 tmp = subtree(L, “/temp”);
 if(tmp == nil) {
 home = getenv(“HOME”);
 tmp = subtree(L, home);
 }
}
root = tmp;

This example also demonstrates Cinquecento’s support for access-
ing the environment, which is useful for parameterizing specifica-
tions that handle heterogeneous context.

Our next specification shows the use of name space inspection
and a Cinquecento lambda function to generate a name space con-
taining all files in the “/var/log” directory of the local name
space that have sizes larger than 4KB:

L = mknstree(mkfilesvc(“local”));
log = subtree(L, “/var/log”);
entries = treelist(log);
result = nulltree();
check_entry = @lambda(x){
 ent = treewalk(log, x);
 if(ent != nil) {
 attr = stat(treesvc(ent),
 treefile(ent));
 if(isfile(attr) &&
 attrsize(attr) >= 4096)
 result = graft(result, ent,
 “/” + treename(ent));
 }
}
foreach(check_entry, entries);
root = result;

The above example introduces two functions for name space navi-
gation using nstree’s: treewalk and treelist. Each func-
tion has a nstree parameter that indicates the node from which
navigation begins. treewalk takes a relative path operand, walks
the path to the target nstree, and returns the target or the
Cinquecento special value nil. treelist returns a list of
string values for the names of children of the current nstree.
In the example, treelist retrieves the directory entries of “/
var/log”, and treewalk is used to visit each entry.

The previous example also shows how a specification can query
attribute information for the file referenced by a nstree using the
stat method, which takes a filesvc and path and returns a
fileattr. A fileattr object contains information similar to
a struct stat as used by the POSIX stat operation. In the
example, the attributes of each directory entry are queried to deter-
mine if the entry is a file whose size is greater than 4KB.

Private name spaces, which originated in the Plan 9 operating
system, provide processes the ability to construct a custom view of

the default system name space. Common uses for this customiza-
tion are for user convenience or system security. For convenience,
a process may select some subset of the local name space that is
necessary for execution. The reduced name space often makes
access to target files more efficient, as the files are placed closer to
the root of the name space. In the security realm, private name
spaces can be used to prevent unauthorized access to files through
isolation or omission. System administrators may desire to exclude
sensitive portions of the system name space from the view of regu-
lar user processes. The next specification supports the latter by
applying a lambda function to prune excluded paths.
rest = mknstree(mkfilesvc(“local”));
excludes = [“/etc”, “/root”, “/sbin”,
 “/usr/sbin”, “/var/log”];
excl_fn = @lambda(x) {
 rest = prune(rest, x);
}
foreach(excl_fn, excludes);
root = rest;

4. SCALABLE NAME SPACE COMPOSI-
TION IN TBON-FS

TBON-FS is a distributed file system we designed to provide
scalable group operations on large sets of files located across tens
of thousands of distributed servers. A TBON-FS client views a
global name space composed from the independent name spaces of
servers. We describe our changes to TBON-FS to allow it to scal-
ably construct the global name space, and give example SSI name
space specifications that automatically create file groups. The sec-
tion concludes with an evaluation of the modified TBON-FS sys-
tem when composing tens of thousands of name spaces.

4.1 TBON-FS Architecture and Name Space
TBON-FS uses a tree-based overlay network, namely MRNet

[15], to multicast client application file system requests to user-
level proxy servers on each distributed host. Servers run in the

context of the user who owns the client application, and have the
same file system access privileges as that user. File operation
responses are aggregated with the TBON and delivered to the cli-
ent. The set of server hosts and the overlay tree topology are speci-
fied as file system options when TBON-FS is first mounted.

Although TBON-FS supports operations on individual files, it is
designed to provide scalable group file operations [3]. The group
file operation idiom allows clients to explicitly define groups using
a directory as the group abstraction, and to open groups by passing
the group directory as the first operand of gopen, a group version
of open. The group file descriptor returned by gopen allows file
operations such as read and write to be used on file groups.

TBON-FS originally used a simple composition strategy for
constructing its global name space – each server’s name space was
placed in an independent directory hierarchy. This structure results
in excess overhead for defining groups that contain files spanning
many servers, as a new directory must be created for the group,
and the member files must be either copied or symbolically linked
inside the group directory. Thus, group definition proceeds in a
non-scalable, iterative fashion. This behavior directly contradicts
the goals of the group file operation idiom for eliminating explicit
iteration. By integrating FINAL within TBON-FS, we let clients
specify how the aggregate name space is constructed and enable
efficient grouping of related files within directories, thus avoiding
the need for iterative group definition.

4.2 TBON-FS + FINAL
We have extended TBON-FS to let clients provide a FINAL

specification that controls how the global name space is con-
structed. Scalability in name space composition for large numbers
of servers requires distributed execution to avoid non-scalable,
centralized evaluation at the client. Further, to enable specifica-
tions to use server-local context when generating the name space,
those specifications must be evaluated on the servers. Our integra-
tion of FINAL in TBON-FS takes advantage of the TBON to par-
allelize name space construction at each server and merge the
server trees. Prior work has shown TBONs provide scalable tree
merging for parallel analysis of application call graphs [1,7].

Conceptually, mount requests at the client are treated as a
graft of a tbonfs service into the client’s current name space
at the requested mount point. A tbonfs service represents all
TBON-FS servers, and provides a view that merges the individual
name spaces of each server. Individual server name spaces are con-
structed according to a FINAL specification file that is named in
the file system options passed to mount. Server specifications
should be designed to achieve a name space organization that is
suitable for merging. The service uses the TBON to multicast the
specification to all servers. Since the specification is evaluated at
the server hosts, it can rely on server-local context to handle heter-
ogeneity in a manner that promotes easy merging. The conflict
function used by the tbonfs service to merge the server name
spaces is also supplied using file system options, in the form of
two names: a shared library name, and the name of a function in
that library. Since TBON-FS uses MRNet as its TBON, the con-
flict function is implemented as an MRNet filter function [15]. A
unique feature of TBON-FS is that the client can call mount many
times, each time passing a unique specification, as a means for
generating multiple concurrent global views of the servers.

Construct a tree from a file service.
mknstree(svc) → nstree

Construct an empty tree.
nulltree() → nstree

Walk path in tree to target tree. Returns nil for bad path.
treewalk(tree, path) → nstree | nil

Retrieve names for children of tree.
treelist(tree) → string[]

Get vertex name, file service path, or file service for tree.
treename(tree) → string
treepath(tree) → path
treesvc(tree) → filesvc

Figure 3-1. nstree Interfaces

Construct an instance of the named file service; “...” repre-
sents an optional set of service specific operands.
mkfilesvc(name [, ...]) → filesvc

Define new file service with name and file operations.
svcdefine(name, file_ops) → int

Figure 3-2. filesvc Interfaces

 For efficiency, the merged name space provided by the
tbonfs service is not fully computed at the time of mount.
Rather, we use a lazy update strategy that applies the conflict func-
tion as necessary to the results returned by each server when spe-
cific paths are accessed. When resolving paths (e.g., during open
or stat) or listing directories, the client traverses its local portion
of the global name space, which consists of only the mount points
for each tbonfs service. The service corresponding to the path’s
prefix is found, the prefix is removed, and the remaining path is
passed to the appropriate service operation. The tbonfs service
handles the operation request by using the TBON to perform a dis-
tributed name space lookup on each server and merge the results
using its associated conflict function.

4.3 SSI Name Space Examples
Single-system image (SSI) name spaces provide file system cli-

ents a view of distributed resources that permits applications to use
the resources as if they were local. Such name spaces simplify
software development and reduce the effort required for system
administration. Here, we present two examples of how clients can
specify useful SSI name spaces.

The following examples assume the client specifies that the
tbonfs service should use a tbonfs_merge conflict function
that automatically creates file groups as directories in the global
name space from common file paths in the independent server
name spaces. Similar to the rename_merge function presented
in Figure 2-2, tbonfs_merge produces a single directory for
each common directory path. For common file paths, however, the
function produces a new directory at the common path. The direc-
tory is populated with the conflicting files, after renaming the files
using a version number.

Our first example shows a custom name space composition for
the most common use of TBON-FS, where a client wants to per-
form group file operations. The target group often corresponds to a
file having the same path on all servers. Figure 4-1 shows an
example server specification that merges the sub-trees correspond-
ing to three file paths, and the resulting client name space if the
mount point is “/tbonfs”.

Traditionally, SSI name spaces have been used in the area of
parallel computing. With the advent of cloud computing, SSI name
spaces could be used to help manage the large distributed comput-
ing resources provided by cloud providers such as Amazon, Goo-
gle, and Microsoft. Figure 4-2 shows an example specification that
uses server local context to organize various systems by the type of
service provided (e.g., the operating system and machine architec-
ture). Cloud administrators could use the resulting name space to
simplify common tasks such as software installations and updates.

4.4 Scalability Evaluation
Our hypothesis is that we can use FINAL within TBON-FS to

improve the efficiency of group file operations by composing a
global name space where file groups are automatically defined,
and avoiding the serial cost of group definition.

All experiments used JaguarPF, a Cray XT5 supercomputer
located at Oak Ridge National Laboratory. Jaguar consists of over
18,000 compute nodes, each with two six-core Opteron processors
and 16GB of memory, connected with Cray’s SeaStar 2 network.
Our experiments used overlay tree topologies with up to 46,656
leaves (servers). Servers were run on separate compute nodes from

those hosting the internal tree processes, and twelve servers were
run on each compute node to virtually increase the number of
available hosts.

Our first experiment measured the time to construct the global
name space at the time of mount. We measured the total latency
observed at the client. Figure 4-3 shows the mount timing results
for four specifications: “orig” is the original TBON-FS name
space, while “simple” and “cloud” correspond to the custom name
spaces generated from the specifications of Figures 4-1 and 4-2,
respectively. We see excellent performance, as we are able to com-

// overlay files at root of name space
grps = [];
loc = mknstree(mkfilesvc(“local”));
grps.append(subtree(loc,“/proc/meminfo”));
grps.append(subtree(loc,“/var/log/syslog”));
root = merge(grps, overlay);

(a) Server FINAL Specification
/tbonfs/
 /meminfo/
 /[0-99999] # servers 0 to 99999
 /syslog/
 /[0-99999]

(b) Client Name Space

Figure 4-1. Automatic File Groups
(a) Server FINAL specification that selects target files.
(b) Client name space with files in group directories.

// get local resources
os = getenv(“OSTYPE”);
arch = getenv(“MACHTYPE”);
loc = mknstree(mkfilesvc(“local”));
bin = subtree(loc, “/usr/bin”);
bin = extend(bin, “/bin”);
if(strstr(arch, “64”) == nil)
 lib = subtree(loc, “/usr/lib”);
else
 lib = subtree(loc, “/usr/lib64”);
lib = extend(lib, “/lib”);
mytree = merge([bin, lib], overlay);
// place local resources according to context
osarch = “/os/” + os + “/” + arch;
ostree = graft(ostree, mytree, osarch);
root = ostree;

(a) Server FINAL Specification
/cloud/
 /os/
 /Linux/
 /x86/
 /{bin,lib}
 /x86_64/
 /{bin,lib}
 /Solaris/
 /...
 /...

(b) Client Name Space

Figure 4-2. Cloud Resource Organization
(a) Server FINAL specification that prepends OS and architecture
to local executable and library locations.
(b) Client name space organized by OS and architecture.

pose the global name space for over 45,000 servers in approxi-
mately 250 milliseconds.

The second experiment measured the performance of defining
and opening file groups. In the original TBON-FS name space,
group definition is a costly operation that requires a stat and
link operation for each member file. Group definition thus has
linear behavior and can take thousands of seconds for very large
groups. Using a custom TBON-FS global name space that auto-
matically creates group directories completely eliminates the sub-
stantial cost of defining large file groups. Once a group directory
has been created, TBON-FS clients can use our new gopen sys-
tem call to obtain a group file descriptor that can be used for group
file operations such as read and write. To show that name
space composition does not degrade the performance of gopen,
we measured its latency for both the original TBON-FS name
space that isolates servers into separate directory hiearchies, and
the two custom name spaces that provide automatic grouping.
Table 4-1 shows that gopen on groups in the custom name spaces
is always faster than using the original name space. This improve-
ment results from the fact that in the custom name spaces, group
directory membership is known at the servers, while in the original
name space, the membership is kept at the client and must be dis-
tributed to servers. We also measured the latency of group read
operations in the original and simple name spaces and confirmed
that name space composition has no measurable impact on the
scalable performance observed previously [3].

5. RELATED WORK
Flexible systems for custom name space composition include

the Cedar [5], Jade [13], and Prospero [9] distributed file systems.
Cedar has attachments that let users construct custom name spaces
containing interesting subsets of the files available in the distrib-
uted system. Jade supports arbitrary mounting of logical or physi-
cal name spaces using a logical root name space based on skeleton
directories. The Virtual System Model underlying Prospero allows
users to construct a private view of a global name space as a
directed graph. Generally, the flexibility provided by these systems

comes at the cost of fine-grained name space construction, which
is not scalable for composing thousands of name spaces. FINAL
allows users to describe scalable compositions of large sets of
name spaces, while still providing flexibility for prescriptive
manipulation when necessary.

Single-system image (SSI) projects have the goal of providing a
global name space that includes all the resources of the distributed
system. BProc [6] and Mosix [2] limit the global name space to a
unified process space, while systems such as LOCUS [16], Kerri-
ghed [8], and OpenSSI [10] provide a distributed file system in
addition to the unified process space. Unfortunately, none of these
systems permit custom name space composition.

6. REFERENCES
[1] Dorian C. Arnold et al., "Stack Trace Analysis for Large Scale

Applications", International Parallel and Distributed Processing
Symposium (IPDPS ‘07), March 2007.

[2] Amnon Barak and Oren La’adan, “The MOSIX multicomputer
operating system for high performance cluster computing”, Future
Generation Computer Systems 13, 4-5, March 1998, pp. 361-372.

[3] Michael J. Brim and Barton P. Miller, “Group File Operations for
Scalable Tools and Middleware”, 16th Intl. Conf. on High-Perfor-
mance Computing (HiPC 2009), December 2009.

[4] D.R. Brownbridge, L.F. Marshall, and B. Randell, “The Newcastle
Connection or UNIXes of the World Unite!”, Software-Practice and
Experience 12, 1982, pp. 1147-1162.

[5] David K. Gifford, Roger M. Needham, and Michael D. Schroeder,
“The Cedar File System”, Communications of the ACM 31, 3,
March 1988, pp. 288-298.

[6] Erik Hendriks, “BProc: The Beowulf distributed process space”,
Intl. Conf. on Supercomputing, pp. 129-136, June 2002.

[7] Gregory L. Lee et al., "Lessons Learned at 208K: Towards Debug-
ging Millions of Cores", Supercomputing 2008, November 2008.

[8] Christine Morin et al., “Kerrighed: A Single System Image Cluster
Operating System for High Performance Computing”, 9th Intl.
Euro-Par Conference, August 2003.

[9] B. Clifford Neuman, “The Prospero File System: A Global File Sys-
tem Based on the Virtual System Model”, Computing Systems 5,
1992, pp. 407-432.

[10] “OpenSSI (Single System Image) Clusters for Linux”, http://
www.openssi.org/, August 2006.

[11] Jan-Simon Pendry and Marshall Kirk McKusick, “Union mounts in
4.4BSD-lite”, USENIX Technical Conference, 1995.

[12] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and Phil
Winterbottom, “The Use of Name Spaces in Plan 9”, ACM SIGOPS
Oper. Sys. Review 27, 2, April 1993, pp. 72-76.

[13] Herman C. Rao and Larry L. Peterson, “Accessing Files in an Inter-
net: The Jade File System”, IEEE Trans. on Software Engineering
19, 6, 1993, pp. 613-624.

[14] Dennis M. Ritchie and Ken Thompson, “The UNIX time-sharing
system”, Communications of the ACM 26, 1, 1983, pp. 84-89.

[15] Philip C. Roth, Dorian C. Arnold, and Barton P. Miller, “MRNet: A
Software-Based Multicast/Reduction Network for Scalable Tools”,
Supercomputing 2003 (SC’03), November 2003.

[16] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and
Greg Thiel, “The LOCUS distributed operating system”. SIGOPS
Oper. Syst. Rev. 17, 5, December 1983, pp. 49-70.

[17] Charles P. Wright et al., “Versatility and Unix Semantics in
Namespace Unification”, ACM Trans. on Storage 2, 1, February
2006, pp. 74-105.

[18] Vic Zandy and Dan Ridge, “First-class C Contexts in Cinquecento”,
April 2008. http://cqctworld.org/docs/cqct.pdf.

Figure 4-3. mount Time
Time required to construct the TBON-FS global name space using
various FINAL specifications.

Table 4-1. gopen Time
Time (in seconds) required to gopen a file group in the the
TBON-FS name space for various FINAL specifications.

3072 6144 12288 24576 49152
cloud 0.026 0.036 0.055 0.091 0.204
orig 0.249 0.487 0.927 1.858 3.656

simple 0.036 0.057 0.093 0.162 0.323

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0 8192 16384 24576 32768 40960 49152

M
ou

nt
 T

im
e

(s
ec

on
ds

)

servers

cloud
orig

simple

	FINAL: Flexible and Scalable Composition of File System Name Spaces
	1. Introduction
	2. Name Space Composition
	2.1 FINAL Abstractions
	Figure 2-1. Name spaces and Paths

	2.2 FINAL Composition Operations
	Table 2-1. Final Composition Operations
	Figure 2-2. merge Conflict Resolution Function
	Figure 2-3. Path Composition Operations
	Figure 2-4. merge Tree Composition Operation

	2.3 Traditional Composition Examples
	3. The Final Language
	3.1 Prescriptive Extensions
	3.2 Abstractions and Composition Operations
	3.3 Example Specifications
	Figure 3-1. nstree Interfaces
	Figure 3-2. filesvc Interfaces

	4. Scalable Name Space Composition in Tbon-fs
	4.1 TBON-FS Architecture and Name Space
	4.2 TBON-FS + FINAL
	4.3 SSI Name Space Examples
	4.4 Scalability Evaluation
	Figure 4-1. Automatic File Groups
	Figure 4-2. Cloud Resource Organization
	Figure 4-3. mount Time
	Table 4-1. gopen Time

	5. Related Work
	6. References
	[1] Dorian C. Arnold et al., "Stack Trace Analysis for Large Scale Applications", International Parallel and Distributed Processing Symposium (IPDPS ‘07), March 2007.
	[2] Amnon Barak and Oren La’adan, “The MOSIX multicomputer operating system for high performance cluster computing”, Future Generation Computer Systems 13, 4-5, March 1998, pp. 361-372.
	[3] Michael J. Brim and Barton P. Miller, “Group File Operations for Scalable Tools and Middleware”, 16th Intl. Conf. on High-Performance Computing (HiPC 2009), December 2009.
	[4] D.R. Brownbridge, L.F. Marshall, and B. Randell, “The Newcastle Connection or UNIXes of the World Unite!”, Software-Practice and Experience 12, 1982, pp. 1147-1162.
	[5] David K. Gifford, Roger M. Needham, and Michael D. Schroeder, “The Cedar File System”, Communications of the ACM 31, 3, March 1988, pp. 288-298.
	[6] Erik Hendriks, “BProc: The Beowulf distributed process space”, Intl. Conf. on Supercomputing, pp. 129-136, June 2002.
	[7] Gregory L. Lee et al., "Lessons Learned at 208K: Towards Debugging Millions of Cores", Supercomputing 2008, November 2008.
	[8] Christine Morin et al., “Kerrighed: A Single System Image Cluster Operating System for High Performance Computing”, 9th Intl. Euro-Par Conference, August 2003.
	[9] B. Clifford Neuman, “The Prospero File System: A Global File System Based on the Virtual System Model”, Computing Systems 5, 1992, pp. 407-432.
	[10] “OpenSSI (Single System Image) Clusters for Linux”, http:// www.openssi.org/, August 2006.
	[11] Jan-Simon Pendry and Marshall Kirk McKusick, “Union mounts in 4.4BSD-lite”, USENIX Technical Conference, 1995.
	[12] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and Phil Winterbottom, “The Use of Name Spaces in Plan 9”, ACM SIGOPS Oper. Sys. Review 27, 2, April 1993, pp. 72-76.
	[13] Herman C. Rao and Larry L. Peterson, “Accessing Files in an Internet: The Jade File System”, IEEE Trans. on Software Engineering 19, 6, 1993, pp. 613-624.
	[14] Dennis M. Ritchie and Ken Thompson, “The UNIX time-sharing system”, Communications of the ACM 26, 1, 1983, pp. 84-89.
	[15] Philip C. Roth, Dorian C. Arnold, and Barton P. Miller, “MRNet: A Software-Based Multicast/Reduction Network for Scalable Tools”, Supercomputing 2003 (SC’03), November 2003.
	[16] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg Thiel, “The LOCUS distributed operating system”. SIGOPS Oper. Syst. Rev. 17, 5, December 1983, pp. 49-70.
	[17] Charles P. Wright et al., “Versatility and Unix Semantics in Namespace Unification”, ACM Trans. on Storage 2, 1, February 2006, pp. 74-105.
	[18] Vic Zandy and Dan Ridge, “First-class C Contexts in Cinquecento”, April 2008. http://cqctworld.org/docs/cqct.pdf.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

