Hindawi Publishing Corporation

The Scientific World Journal

Volume 2014, Article ID 805856, 12 pages
http://dx.doi.org/10.1155/2014/805856

Research Article

Hindawi

Automating Risk Analysis of Software Design Models

Maxime Frydman,' Guifré Ruiz,” Elisa Heymann,' Eduardo César,' and Barton P. Miller

3

! Computer Architecture and Operating Systems Department, Universitat Auténoma de Barcelona, Campus UAB, Edifici Q,

Bellaterra, 08193 Barcelona, Spain

2'The Open Web Application Security Project (OWASP), 1200-C Agora Drive, No. 232, Bel Air, MD 21014, USA
3 Computer Sciences Department, University of Wisconsin, 1210 West Dayton Street, Madison, WI 53706-1685, USA

Correspondence should be addressed to Maxime Frydman; mb.frydman@gmail.com

Received 14 March 2014; Accepted 20 May 2014; Published 18 June 2014

Academic Editor: Mirjana Ivanovic

Copyright © 2014 Maxime Frydman et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The growth of the internet and networked systems has exposed software to an increased amount of security threats. One of the
responses from software developers to these threats is the introduction of security activities in the software development lifecycle.
This paper describes an approach to reduce the need for costly human expertise to perform risk analysis in software, which is
common in secure development methodologies, by automating threat modeling. Reducing the dependency on security experts
aims at reducing the cost of secure development by allowing non-security-aware developers to apply secure development with little
to no additional cost, making secure development more accessible. To automate threat modeling two data structures are introduced,
identification trees and mitigation trees, to identify threats in software designs and advise mitigation techniques, while taking into
account specification requirements and cost concerns. These are the components of our model for automated threat modeling,
AutSEC. We validated AutSEC by implementing it in a tool based on data flow diagrams, from the Microsoft security development

methodology, and applying it to VOMS, a grid middleware component, to evaluate our model’s performance.

1. Introduction

Software supports the information structure of businesses
and governments worldwide. The growth of the Internet and
networked systems has implied an increase of threats and
challenges for software development companies. To address
this issue security activities are increasingly being introduced
into the software development lifecycle to reduce the number
of software defects earlier in the software cycle. Reducing
software defects earlier in the software lifecycle offers two
main advantages; first it lowers the cost of fixing the software
and second it limits the risk of deploying insecure software to
users.

There are currently three high-profile approaches to the
development of secure software (detailed in Section 2), the
OWASP comprehensive lightweight application security process
(CLASP) [1], McGraw Touchpoints, [2] and the Microsoft
security development lifecycle (SDL) [3].

All of these secure development methodologies share one
essential risk analysis activity, called threat modeling [4], used

to guide the following steps of the process. In this activity,
the architecture of the system is represented and analyzed,
generally prior to the implementation, to identify potential
security threats to the system and to select appropriate
mitigation techniques to address them.

Unfortunately, this activity either must be performed by
security-aware developers or requires a core security team
as most developers are not used to thinking and acting as
professional attackers [5], nor do they have the necessary
security expertise to imagine sophisticated attack scenarios
[6] and mitigation strategies. This need for security expertise
adds a significant cost to secure software development which
reduces the chance that it will be used in many software
projects.

In this paper we address the problem of the security
expertise required for risk analysis. We created a model, Aut-
SEC (automated security expert consultant), that automates
the risk analysis process. The purpose of AutSEC is to enforce
security by design, where threats are mitigated early in the
development process, and automate all security operations

http://dx.doi.org/10.1155/2014/805856

of the threat modeling process to allow non-security-aware
engineers to develop secure software.

To validate AutSEC we implemented the model in a
tool that integrates with the Microsoft SDL methodology.
This implementation is compatible with the Microsoft threat
modeling process and tool, facilitating its integration in
development environments where SDL is already deployed.

This paper makes the following contributions.

(i) Two new data structures, identification trees, which
contain information to identify threats in software
design models, and mitigation trees, which classify
threat countermeasures by their costs.

(ii) A model, AutSEC, relying on these two data struc-
tures, that purges the less relevant threats according
to the business policies and estimates the mitigation
techniques of least effort that adhere to the software
specification.

The rest of this paper is organized as follows. Section 2
describes current methodologies used for threat modeling.
Section 3 describes the input expected by our tool in addition
to the SDL standard. Section 4 describes the methodology
of the model used to automate threat identification, sort
risks, and compute least effort countermeasures. Section 5
presents experimental results obtained by applying our tool
to the grid middleware component VOMS Admin. Section 6
analyses the experimental results. Finally Section 7 concludes
our work.

2. Related Work

There are currently three widely deployed methodologies for
secure application development. Each of these methodologies
has the same purpose, that is, to detect and eliminate
security threats to applications throughout the development
lifecycle of the application. This activity begins during the
architectural design of the application and ends after the
application has been tested and deployed.

The OWASP comprehensive lightweight application secu-
rity process (CLASP) is a set of processes that can be integrated
into any software development process and is designed to
be both easy to adopt and effective. This makes CLASP
more suitable for small organizations. It takes a prescriptive
approach, documenting activities that organizations should
be doing, and provides an extensive wealth of security
resources that make implementing those activities reason-
able.

The McGraw Touchpoints, a methodology that involves
explicitly pondering the security situation throughout the
software lifecycle. This means identifying and understanding
common risks, designing for security, and subjecting all
software artifacts to thorough, objective risk analysis and
testing. It is based on industrial experience gathered over
many years.

The Microsoft security development lifecycle (SDL) is a
software development security assurance process consisting
of practices grouped in seven phases: training, requirements,
design, implementation, verification, release, and response.

The Scientific World Journal

All three methodologies share a common activity called
threat modeling where the software under development is
modeled. This model is then used by security experts to
identify potential threats to the software and how to best
mitigate them. This is a crucial step in secure application
development as it orients the security efforts that will be
deployed throughout the applications development lifecycle.

Our proposal reduces the reliance on security experts
by automating the threat identification and mitigation step.
Our model was developed to be generic; however our
implementation used to validate AutSEC is compatible with
the Microsoft SDL methodology. This choice was made as
the SDL methodology offers a modeling tool that meets the
requirements of threat matching, while having the flexibility
to add custom annotations used by our model to refine the
analysis (further described in Section 4).

Our model relies on a knowledge base called attack
patterns to perform threat identification. This knowledge base
is composed of threats that AutSEC is capable of identifying.
Each threat in our knowledge base is represented by an iden-
tification tree, a mitigation tree, and ranking information. The
identification tree is used to identify potential threats based on
the software model and is based on the work found in [7]. The
mitigation tree represents all the possible countermeasures
that can be used to address a threat. Mitigation trees are a
new concept to list and rank possible countermeasure but
its representation is based on concepts introduced by attack
trees.

3. Software Design Modeling

There are several approaches used to represent software
designs for security purposes [8]. As explained in Section 2,
our implementation of the AutSEC model is aimed at
automating the widely used threat modeling [9] process of
the Microsoft security development lifecycle (SDL), which
uses data flow diagrams (DFDs) to represent the software
architecture. To perform the modeling, Microsoft provides
analysts with a modeling tool [10]; our implementation is
based on the output of this tool and only requires a few
specific additions to the original diagrams.

Our implementation expects the system to be represented
as defined in the threat modeling process, which consists
of data flows, data stores, processes, and trust boundaries
to build the DFDs [3]. In addition, it is expected of the
developers to make three small additions to elements in the
form of attributes.

(i) Asset value represents the value as a resource, {high,
medium, and low}, of a DFD element; for example,
a server might be valued as high, while the log
files might be valued as low. This is based on the
potential damage that would result in the resource
being compromised.

(ii) Languages are programming language used, for exam-
ple, Java or C++.
(iii) Frameworks are frameworks or other external soft-

ware libraries used, if any, for example, CSRF Guard
or ESPAL

The Scientific World Journal

The asset value attribute must be defined for each DFD
element, but Languages and Frameworks must be defined
only for processes. This information will be used to refine
the results in the threat identification and risk sorting steps.
Since our tool is implemented on top of the current threat
modeling process, it is important to maintain compatibility
with the current SDL tool. The addition of the new attributes
is performed by utilizing the assumption feature of SDL and
allows native integration.

An example of the required additions is shown in Figure 1.
Figure 1(a) shows the original DFD modeled according to
SDL. Figure 1(b) shows the same model as well as the new
added attributes required by AutSEC. In this example, each
DED element of Figure 1(b) has now been assigned an asset
value and the only process, VOMS server, has been assigned
a language.

The asset value is determined based on the damage that
can be done if the resource is compromised. The VOMS
server was classified as a high value asset, the mail server
was classified as a medium value asset, and the log files
are classified as low value assets. In the case of VOMS,
compromising the main server would allow an attacker to
compromise the operations of VOMS while obtaining the log
files would at best disclose certain private information.

4. Methodology

The aim of our model, AutSEC, is to automate the threat
modeling activity so that non-security-aware developers can
perform secure development. The model described in this
section takes the diagrams produced by the developers
during the requirements and design phase of their software
and produces documentation that will identify threats and
describe how to mitigate the threats throughout the software’s
lifecycle.

AutSEC is a 4-step process whose result is to generate
three detailed reports, one for each relevant software devel-
opment activity; these are the design, implementation, and
verification reports.

The design report discusses architectural and design
decisions that can mitigate or eliminate potential threats.
The implementation report shows how to implement certain
features in a secure manner. The verification report combines
all the threats contained in the design and verification
reports and details how to assert that each threat has been
properly mitigated. These three reports reflect the stages of
the development lifecycle.

Since our model is aimed at developers regardless of
their security expertise, we have taken great care as to limit
interaction with the developers. When our process requires
inputs, the inputs take the form of specific questions that a
developer is able to answer, that is, business requirements,
implementation details, and general mechanics, about the
software he is developing and in the form of a multiple
choice or polar question (yes or no). For the same reason the
documentation produced as output of our model is presented
with all the necessary information to understand each threat
and its mitigation technique.

The input to our model is the DFD produced by the threat
modeling tool according to Section 3, and the outputs are the
three detailed reports mentioned above. AutSEC is a 4-step
process as shown in Figure 2.

(1) Data flow diagram canonicalization to interpret the
labels of user-defined elements of the diagram.

(2) Threat identification to identify threats relevant to the
diagram.

(3) Risk ranking and threat purging to prioritize threats
according to risk and dismiss threats depending on
business requirements.

(4) Mitigation planning to propose countermeasures for
the discovered threats to the developers that are
compatible with their requirements.

The combination of these four steps results in the threat
evaluation of the user application. To perform the threat
evaluation we use two knowledge bases.

Cl4n Table: Cl4n is the canonicalization table that
contains the information used to map unknown user
labels of the diagram to known values.

Attack Patterns: the attack patterns are a collection
of information over each threat that contain the
identification tree used to identify the threat, the risk
attributes used to rank the threat, and the mitigation
tree used to mitigate the threat.

The information concerning threats used to build the
attack patterns was gathered from several relevant security
sources and standards, such as Common Attack Pattern Enu-
meration and Classification (CAPEC) [11], Common Weakness
Enumeration (CWE) [12], and Open Web Security Project
(OWASP) [13] amongst others. These databases contain
generic information that can be applied to any software as
long as it is modelled with the methodology described in
Section 3.

The following subsections describe each of AutSEC’s 4
steps in detail.

4.1. Data Flow Diagram Canonicalization. The first step of
AutSEC is the data flow diagram canonicalization; this serves
to map unknown user-defined labels to ones that can be
automatically interpreted, for example, the identification of
a user defined entity called Apache as a web server. This is
accomplished using a data structure called MultiMap that
allows the mapping of a set of values to a single key to build a
canonicalization table; see Figure 3.

The purpose of canonicalization is to obtain specific
information about the elements contained in the diagram
of the application. This increases the precision of the threat
identification and reduces the amount of generic threats
reported.

While this process performs relatively well, it is not
possible to anticipate every declination that can be given to
DFD elements. This is addressed by the questioning phase
of AutSEC, where unmapped elements can be refined by the
developers. This gives flexibility to the tool both in terms of

The Scientific World Journal

Asset: high
Config.
Anonymous
Anonymous user -
user - Asset: low Email
Email server
server Asset: medium
Identified
Identified user
user : i > ~ove
Asset: medium « - VOMS
VOMS ¥ S > database
database VO admin Asset: high
VO admin - i
Asset: high Asset: medium
(a) Original DFD (b) DFD with additional annotations

FIGURE 1: Original DFD compared to annotated DFD.

(2) Threat (3) Risk (4) Mitigation
identification ran planning
Attack
patterns

Input Output
409 o
é\"o‘\ o\"b‘\ . Cb"x\o
System 9 \&‘ qe“ -
model NN 2
] X X7 X7

22 z 174
—_:[Requirements]—[Design H Implementation]-[Veriﬁcation]—[Maintenance]

Software development lifecycle

FIGURE 2: General architecture diagram of our approach.

Apache

Nginx
Web server

Custom web server

MySQL

Oracle
Relational database

Customer database

FIGURE 3: Example multimap mapping.

The Scientific World Journal

Element = external entity
threat agent

¥
Element = data flow
trust boundary

N — .*.\)

Element = process
Label = “web server”
Frame works = {-CSRF
Guard, -ESPAI}

Frame works = {=CSRF

Element = process

Guard, -ESPAT}

v

Element =
external entity
Label =
“web browser”
asset

¥
Element =
data flow

Element =

external entity
asset

Element = Element =
data flow data flow
Label = “HTTP” || Label = “HTTPS”

1
Element = Element =
external entity external entity
asset asset

FIGURE 4: Identification graph of CSRF threats.

modeling restrictions as well as usability during the modeling
process, only asking for refinements when interpretation
has failed and learning from those refinements for further
projects.

To interpret string attributes, each named element
defined by the developer in the data flow diagram (DFD) is
compared with the values contained in the MultiMap. If the
mapping is successful then the label of the DFD element is
replaced by the mapped key. Otherwise, a number of possible
keys are presented to the developer for the unknown DFD
element. This comes in the form of a list of generic items that
are common in software development, for example, relational
databases, web servers, and user interfaces. If one of these
items is selected by the developer, the new value is added to
the canonicalization table and its mapping key is assigned to
the element of the DFD. If there were no suitable mappings, a
generic value is assigned to the element and it will be treated
as a generic element.

The resulting canonicalized DFD serves as input to the
second step of the process.

4.2. Threat Identification. The second step of AutSEC is
to perform threat identification based on the information
contained in the canonicalized DFD.

This step is the core of the analysis; all further steps rely
on the accuracy of the threat detection. To identify threats,
a set of trees, identification trees, were designed. Each threat
defined in the attack patterns contains an identification tree
which is used to determine if the threat is relevant to the DFD.

Each branch of an identification tree represents a subgraph
to be matched in the DFD. If the tree is matched with the
DEFD, it means that the threat is relevant. Each node in the tree
represents an element of the DFD and can indicate additional
attributes required for the match to be valid. These attributes
can either be a requirement or indicate that a specific element
cannot be present in the DFD for the match to be successful.

Figure 4 shows an example of identification tree for cross-site
request forgery (CSRF) threats.

As shown in the figure, CSRF is a possible threat when
there is data crossing a trust boundary (attack surface (the
attack surface is the collection of interaction points with a
software available to an attacker) [14]) to an HTTP server
and the process that handles the HITTP request does not
use specific frameworks against CSRF threats. If an anti-
CSRF framework was used, it would indicate that the threat is
mitigated making the threat irrelevant. This is represented by
a key value pair, and the value has a “=” symbol to indicate
the negation in the match. In addition, each threat defines
the Threat Agent, the component carrying out the attack, and
the asset, the component compromised. In this case the threat
agent is an external entity and the asset is a resource of value
present on the web server. Certain threats can also require
specific canonical labels; here the requirement for a successful
CSREF attack is the presence of a web server.

The tree of Figure 4 is relatively generic for client-side
threats of web technologies and can easily be reused for other
types of threats.

Each threat identified in this step is added to a list of
threats potentially affecting the software. This list serves as
input to the next step of the process.

4.3. Risk Ranking and Threat Purging. The third step of
AutSEC is to rank the list of identified threats by risk; this
serves two purposes.

First purpose is the sorting of discovered threats to be able
to prioritize the order in which they should be addressed.
Second purpose is to allow the purging of threats; while
certain potential threats can be present in a system, they
might be considered too unlikely to occur or to have a
very insignificant impact. For this purpose the user can set
a threshold to eliminate certain threats based on business
security policies.

The sorting is performed using the US National Secu-
rity Telecommunications and Information Systems Security
Committee [15] definition of risk in

Risk = Likelihood x Impact. 1)

The likelihood of exploitation value is taken from the
CAPEC security source; its potential values are very high
(1), high (0.75), medium (0.5), and low (0.25). The impact is
calculated as shown in

Impact = Asset x ThreatAgent x CIA Impact. (2)

The asset is defined by the developers, as explained in
Section 3, and the ThreatAgent is the inverse of the asset. If
a component is a high value asset, it will be a low value threat
agent. For instance, if the asset is very high such as a database
containing confidential information or an administrator of
the system, it implies that it is a highly trusted component
and the risk of suffering an attack from it is low. The possible
values for the asset and ThreatAgent are high (1.2), medium
(1.0), and low (0.8). Combining this information the CIA
impact is computed as shown in

CIA Impact = Conf Imp + Int Imp + Avai Imp. (3)

The confidentiality, integrity, and availability impact infor-
mation are gathered from the attack patterns of CAPEC. Their
value can be high (0.33), medium (0.22) or low (0.11). This puts
risks in a range of approximately 0.05 and 1.45.

Using this ranking each threat identified in the previous
step is ranked according to risk. The choice is then offered to
the developers to elect a threshold; a threshold is a value from
0 to 1.5. Threats ranked below this threshold will be purged
and will not be considered for the mitigation planning.

The purged list of threats contains only those that scored
above the threshold; this is the input to the final step of the
process.

4.4. Mitigation Planning. The final step of AutSEC is the
production of the results that will be used by the software
developers for secure development. The results take the form
of reports that address each threat that was detected.

These reports are separated into three categories. The
first addresses the design activity of the development and
indicates architecture consideration to mitigate threats. The
second addresses the implementation activity where specific
guidelines are given to mitigate the threat. The third report
concerns testing and serves as a fail-safe measure to ensure
that all the detected threats were properly mitigated.

The architecture and implementation reports contain
countermeasures for each identified threat. There are usually
a number of possible countermeasures available to address
a threat. Each of these countermeasures has implications,
whether in terms of effort or as limitations to the software.
For example, while removing all input to a software might be
an eflicient and effortless way to mitigate most threats, it is
unlikely to conform with business requirements.

To address the election of the proper countermeasure, a
new data structure was defined, called mitigation tree. The

The Scientific World Journal

purpose of mitigation trees is to determine the mitigation
of least effort, that is, those that require the least monetary
and/or time investment, to address the threat while conform-
ing to the business requirements. If the countermeasure is not
suitable, alternatives will be proposed that are more flexible
but incur a higher effort.

Attack trees have been widely used by the community to
represent attacks in a similar way as attack patterns do. Its
root is the goal of an attacker, and each branch contains the
set of actions that an attacker must carry out to achieve the
goal at the root. Mitigation trees are similar however with a
constructive rather than destructive intent. The root of the
mitigation tree is the goal of mitigating a determined threat;
each branch contains the set of software specifications or
features, for the design and implementation activities, needed
to accomplish the goal of the root. In addition, each feature
contains an estimated cost associated to its implementation.
This information is stored for each mitigation in the attack
pattern of the threat.

Figure 5 shows the mitigation tree of CSRF attacks.
It shows that to mitigate CSRF threats it is necessary to
first mitigate all persistent cross-site scripting (PXSS) and
reflected cross-site scripting (RXSS) threats and then offers
four subbranches that represent different mitigation tech-
niques. Each node or software specification of the attack tree
has an estimated cost. This cost is calculated by using an
expert judgment approach [16], where the security expert that
builds the tree establishes a relative cost for each software
specification using his past experiences as criteria.

During the mitigation planning, a set of polar questions
are presented to the developers concerning design specifi-
cations, which are not shown in the DFD, and are relevant
from a security point of view. These questions aim to identify
whether certain threats are already mitigated and need not
appear in the mitigation planning.

Since the purpose of this method is to emphasize security
by default and security by design, it might be possible that
certain countermeasures degrade the usability of the system,
or that they are incompatible with the business requirements.
When a certain countermeasure implies limitations, these are
presented to the developers to ensure that they are acceptable.
When a countermeasure is rejected, the least effort mitigation
is recomputed excluding the incompatible mitigation. This
process is repeated until a suitable countermeasure has been
found for each threat.

While the verification and design reports indicate the
measures to be taken to mitigate threats, this does not
guarantee their proper implementation. This is addressed by
the verification report, where each threat is set to be tested. If
the threat is not successfully avoided during the elaboration
of the architecture and the implementation, it will be detected
when carrying out the penetration testing actions of this
activity. The verification report contains for each threat the
testing activities, some example exploit code, and relevant
references.

Due to unclear boundaries between design and imple-
mentation [12], we define the boundary here as follows. If it
can be modeled in UML, it corresponds to the design activity,
otherwise to the implementation.

The Scientific World Journal

[Mitigate CSRF]

\LZ costs of PXSS
(Mitigate PXSS)
J/Z costs of RXSS
M1t1gate RXSS
Double submit Synchronize Check referer Captcha
cookies token patterns header challenge
FIGURE 5: Mitigation tree of the CSRF attack pattern.
Asset: high Asset: high
Config. _Generic
Anonymous — Web
user browser
Email Email
Asset: low server Asset: low server
Asset: medium Asset: medium
Identified Web
ser https browser https
Asset: medium [Asset: medium > T
x&Q VOMS ‘(\“Qs | Relational
¥ database 39S _database
VO admin Asset: high Web Asset: high
Logs browser Generic
Asset: high Asset: medium Asset: high Asset: medium
(a) DFD of VOMS Admin (b) Canonical DFD of VOMS Admin
FIGURE 6: VOMS Admin parsing.
5. Experimental Results the VOMS server, configuration files, and logs, as they do not

To evaluate the validity of AutSEC’s approach, the distributed
grid middleware component VOMS was used as case study
using our tool that implements AutSEC. VOMS is a grid
middleware that manages virtual organizations and user cer-
tificate attributes that will later be used by other middleware
systems to take authorization decisions.

This section shows how the DFD diagram of VOMS
Admin, a component of VOMS, is produced, how this
diagram is processed, and the reports that result from
this diagram. The examples provided in this section limit
themselves to one element of VOMS and a specific threat,
the 3 full reports containing all the threats and the DFD
compatible with our tool are available in [17].

5.1. VOMS Admin DFD Diagram. Figure 6(a) shows the data
flow diagram of VOMS Admin that was built as described in
Section 3 using the threat modeling tool, which is the main
manual phase of the assessment. After the diagram has been
built, limited interaction is required to choose the desired
level of security and the willing balance between security by
default and usability.

5.2. VOMS Admin DFD Canonicalization. Figure 6(b) shows
the canonicalized diagram produced from the original dia-
gram. A few labels could not be automatically mapped, like

appear in the canonicalization mapping table. These were set
by the developers during the polar question phase where the
VOMS server was specified to be an app server and the other
resources were assigned as generic entities.

It is from this canonicalized DFD that the threat identifi-
cation will be performed.

5.3. VOMS Admin Threat Identification. During the threat
analysis step, the subgraphs of attack patterns are matched
with the canonical DFD of Figure 6(b) to find the potential
threats to the system. Table 1 shows each detected vulnerabil-
ity according to the DFD and the report in which it appears.

As can be seen, a wide range of potential vulnerabilities
are detected that correspond to the DFD. The threats are
separated between the design and implementation report,
depending on where it is most appropriate to mitigate the
issue. The verification report covers all detected threats to
ensure that they have been properly addressed.

The cross-site request forgery (CSRF) threat is used in
this document to provide a complete example of AutSEC’s
process.

The detection of the CSRF threat results from the match-
ing of the subgraphs shown in Listing 1 and represented in
Figure 7(a).

As can be seen, a number of different types of potential
CSREF attacks are identified for each type of web user, that

Asset: high

Anonymous
user
Asset: low

Email
server

Asset: medium

Identified
Asset: medium

T
1
32
3
0

VOMS
database

Asset: high

Logs

Asset: high © —
sset: g Asset: medium

(a) Threat identification

The Scientific World Journal

Asset: high

Anonymous
user
Asset: low

Email
server

Asset: medium

Identified

VOMS
database

Asset: high

Asset: high —
sset: Mg Asset: medium

(b) Risk purge

FIGURE 7: VOMS Admin risk analysis.

TaBLE 1: Vulnerabilities reported to be found in corresponding AutSEC reports.

Design report

Implementation report

Verification report

Cross-site request forgery (CSRF)
Insecure cryptographic storage

Time of check to time of use
SQL injection attacks
Reflected cross-site scripting (RXSS)
E-mail headers injection

Cross-site request forgery (CSRF)
Insecure cryptographic storage
Time of check to time of use
SQL injection attacks
Reflected cross-site scripting (RXSS)
E-mail headers injection

is, anonymous, identified, and admin, can perform a CSRF
attack that can target every type of user. These represent all
the potential CSRF threats to the software.

Once all the potential threats are identified, the next step
is to purge those that are least likely to have a significant
impact.

5.4. VOMS Admin Risk Ranking. The risk ranking step of this
process is where the threats detected in Listing 1 are sorted
according to their potential threat. Listing 2 shows the results
of the ranking using the CSRF example and is represented in
Figure 7(b).

As can be seen, the most likely and damaging scenario for
a CSRF attack is the one where an unprivileged user attacks an
administrator while the least likely scenario is the one where
an administrator attacks an anonymous user.

In Listing 3, the developers are asked for the threshold
that is relevant to the activity. With a threshold of 0.5 only the
most relevant CSRF attacks are kept discarding threats that
score below the threshold.

5.5. VOMS Admin Mitigation Planning. Finally, before the
final reports can be produced, the existing mitigation mea-
sures have to be identified and the countermeasures proposed
by AutSEC have to be evaluated by the developers for
compatibility with the requirements.

As described in Section 4.4, this is done using a set of
polar questions regarding the design of the system to refine
the results. This is shown in lines 1 to 3 of Listing 4. After these

questions have been answered, the countermeasures of least
effort are estimated and software developers are asked if they
are compliant with their software specification. If not, they are
recomputed until a balance between security and usability is
reached. This is shown in lines 5 to 15 of Listing 4.

This is the final step of the process and the reports are
then generated containing the mitigations that have been
approved.

It is interesting to notice that this approach has detected
that to mitigate a CSRF threat it is first required to mitigate
all PXSS and RXSS threats. For this reason, it asked in line
9 of Listing 4 if it was possible to only allow alphanumeric
characters in the HTML forms. Engineers answered “n”
(no) because special characters are required in some fields.
Therefore, mitigations were recomputed resulting in not only
amore permissive but also a more expensive solution which is
to HTML encode user supplied data before displaying it back
to the web interface.

The mitigation choices are included in the final reports;
these reports detail every threat detected that scored above
the ranking threshold, the chosen mitigation technique that
corresponds to the business requirements, and links that fur-
ther describe the threat and their possible countermeasures.

6. Experimental Results
Validation and Discussion

6.1. Validation. In order to validate our approach we com-
pared the threats reported by our tool with the list of known

The Scientific World Journal

(1) [CSRF] Path: {[VO Admin]-[App. server]-[VO Admin]}
(2) [CSRF] Path: {[VO Admin]-[App. server]-[Ident. User]}
(3) [CSRF] Path: {{[VO Admin]-[App. server]-[Anon. User]}
(4) [CSRF] Path: {[Anon. User]-[App. server]-[VO Admin]}
(5) [CSREF] Path: {[Anon. User]-[App. server]-[Ident. User]}
(6) [CSRF] Path: {[Anon. User]-[App. server]-[Anon. User]}
(7) [CSRF] Path: {[Ident. User]-[App. server]-[VO Admin]}
(8) [CSRF] Path: {[Ident. User]-[App. server]-[Ident. User]}
(9) [CSRF] Path: {[Ident. User]-[App. server]-[Anon. User]}

LIsTING 1: VOMS Admin CSRF threat identification.

(4) [CSRF] Path: {[Anon. User]-[App. server]-[VO Admin]} Risk: [0.7128]
(5) [CSREF] Path: {[Anon. User]-[App. server]-[Ident. User]} Risk: [0.6534]
(7) [CSREF] Path: {[Ident. User]-[App. server]-[VO Admin]} Risk: [0.6534]
(8) [CSRF] Path: {[Ident. User]-[App. server]-[Ident. User]} Risk: [0.5989]
(6) [CSRF] Path: {[Anon. User]-[App. server]-[Anon. User]} Risk: [0.3564]
(1) [CSRF] Path: {{[VO Admin]-[App. server]-[VO Admin]} Risk: [0.3564]
(9) [CSRF] Path: {[Ident. User]-[App. server]-[Anon. User]} Risk: [0.3267]
(2) [CSRF] Path: {[VO Admin]-[App. server]-[Ident. User]} Risk: [0.3267]
(3) [CSRF] Path: {[VO Admin]-[App. server]-[Anon. User]} Risk: [0.1782]

L1STING 2: CSREF risk sorting threats.

What threshold do you want? [0.0-1.0] 0.5

(4) [CSRF] Path: {[Anon. User]-[App. server]-[VO Admin]} Risk: [0.7128]
(5) [CSRF] Path: {[Anon. User]-[App. server]-[Ident. User]} Risk: [0.6534]
(7) [CSRF] Path: {[Ident. User]-[App. server]-[VO Admin]} Risk: [0.6534]
(8) [CSRF] Path: {[Ident. User]-[App. server]-[Ident. User]} Risk: [0.5989]

L1STING 3: Sorted CSREF risk purging threats.

(1) (4.1) To refine results please answer a set of polar questions to refine identification in the DFDs:

(2) *Are you Checking the Refer Header in the requests of all HTML form actions to determine if it originates from
a trusted domain? [y/n] n

(3) *Are you Synchronizing a Secret token pattern in all HTML form requests? [y/n] n

4)

(5) (4.2) Pushed security by default, refining to give the desired usability

(6) Answer [y/n] if it is OK to perform the following actions:

(7) #Is it OK to Synchronizing a Secret token pattern in all HTML form requests? [y/n] y

8)

(9) #Is it OK to Allow only alphanumeric characters in all fields of this payload? [y/n] n

(10)

(11) Computing best options. ..

(12)

(13) *Is it OK to HTML Encode all user supplied data before displaying it back to the web interface? [y/n] y

(14)

(15)

(16) FINAL COUNTERMEASURES COMPUTED

(17) (1) Checking Refer Header in the requests of all HTML form actions to determine if it comes from a trusted domain

(18) (2) HTML Encode all user supplied data before displaying it back to the web interface

(19)

(20) # Reports available in out/report_design.pdf, out/report_implementation.pdf and out/report_verification.pdf

L1STING 4: VOMS Admin mitigation planning.

10
TABLE 2: VOMS vulnerability summary.

Vulnerability type Count
Persistent cross-site scripting (PXSS) 2
Business specific 2
Cross-site scripting (XSS) 1
Cross-site request forgery (CSRF) 1
Denial of service (DoS) 1
Insecure third party library linking 1

VOMS vulnerabilities. The information on vulnerabilities
affecting VOMS was gathered during the security audit
carried out by our team, using the manual First Principles
Vulnerability Assessment [18] methodology, as well as the col-
lection of all the vulnerabilities reported by the community
over the 2011-2014 period shared by the VOMS development
team. All of the vulnerabilities discussed in this paper have
been fixed and disclosed.

A summary of these vulnerabilities can be found in
Table 2.

AutSEC was applied to VOMS a posteriori; that is, the
process was applied to VOMS after its release and 10 years
of activity. Although the main purpose of AutSEC is to be
applied during the elaboration and development phases of
software, it would be difficult to quantify the validity of our
approach without perspective on the security issues that arise
after software has been released for a length of time.

There are 3 crucial elements that affect the validity of this
tool; they are the quantity of information contained in the
attack patterns, the quality of the matching, and the accuracy
of the ranking. The quantity of information contained in the
attack patterns increases the security knowledge of the tool.
The quality of the matching defines whether the knowledge
contained in the attack patterns can be correctly put to
use to identify threats. And the accuracy of the ranking is
what allows prioritizing the focus of the security effort and
discarding irrelevant threats. A tool which can only detect
a single vulnerability but with 100% accuracy is of limited
use, and so is one that detects every threat incorrectly. A
useful security tool must strike a balance between those three
factors.

Similarly to other automated security tools, it is of critical
importance to present concise information to the developers
that cover the widest array of significant risks, while limiting
the amount of irrelevant information. This is traditionally
called the ratio of false positives, threats that are reported
but do not impact the system, to false negatives, threats that
do affect the system but are not reported. The value of an
automated tool to the developers is linked to the ratio of false
positives to false negatives [19] as not reporting a potential
vulnerability leads to a sense of false security, but reporting
too many irrelevant vulnerabilities can be just as harmful as
it conceals true threats.

In accordance with the definition of validity expressed
above, this experiment was conducted using a vulnerability
database that was not specific to VOMS but contained a
variety of vulnerabilities from different programming lan-
guages and technologies. The following sections analyse

The Scientific World Journal

the results provided by our tool in terms of successfully
identified threats, threats that were not identified (possible
false negatives) and threats that were identified but have not
been reported as affecting VOMS (possible false positives).

6.2. Successfully Detected Threats. From the identified poten-
tial vulnerabilities of VOMS, 4 real vulnerabilities match
our tool‘s predictions. These are the 2 persistent cross-site
scripting (PXSS), 1 cross-site scripting (XSS), and 1 cross-site
request forgery (CSRF) vulnerabilities.

Analysis of these vulnerabilities shows that the mitigation
techniques proposed by AutSEC would have successfully
neutralized the threat and thus prevented the vulnerability.
The verification fail-safe mechanism of AutSEC, in case
the implementation is not correctly carried out, was also
analyzed and it offered sufficient information to identify the
vulnerabilities found in VOMS.

This result shows that our tool was successful in iden-
tifying the threat and offers useful mitigation techniques,
and later in the application lifecycle it offers useful and
relevant information to guarantee that the threat had been
addressed. Early detection of vulnerabilities is the original
purpose of AutSEC as it limits the financial impact of fixing
vulnerabilities after deployment, as well as the impact on the
software’s users.

6.3. Undetected Threats. Considering the vulnerabilities
found in VOMS and not reported by our tool, 2 vulnerability
categories appear.

First category is vulnerabilities that lie outside of the
scope of automated assessment. This category has been
summarized as business-specific vulnerabilities, where the
vulnerability is the result of improper implementation of
domain specific requirements. While these are considered
vulnerabilities, they are in no way related to the architecture
or technology of the application and therefore cannot be
detected using AutSEC’s methodology. An example of this for
VOMS is the incorrect check of certain certificate attributes;
while this possesses a security threat to VOMS users, it is
entirely related to the domain requirements.

The second category is vulnerabilities that lie within the
scope of automated assessment. In the case of VOMS there
are 2 vulnerabilities that enter this category, DoS attacks
and insecure third party library linking. These vulnerabilities
could be added to AutSEC’s attack patterns. In our current
implementation these types of vulnerabilities have not been
included in the attack patterns as they are not due to specific
architectures. DoS vulnerabilities, for example, are a generic
issue that can affect any host providing service on a network.

This poses a complex issue between exhaustiveness and
relevance, as reporting too many generic vulnerabilities can
hurt the visibility of those specific to the system, as well as
the difficulty of properly ranking these vulnerabilities without
further information not found in the current architectural
diagrams. These types of vulnerabilities are easily identified
in our current representation, that is, a threat whose attack
tree requires the presence of only a single DFD element to be
detected.

This is a subject that will be explored in the continuation
of this research; one option currently under review is to add

The Scientific World Journal

a fourth type of report that covers generic vulnerabilities for
each technology used in a project.

6.4. Detected Threats Not Found in VOMS. There were a
number of vulnerabilities reported by our tool for which no
matching vulnerability was found in VOMS, as can be seen
by comparing Tables 1 and 2. For example, SQL injections
were identified as a potential threat but have not appeared in
VOMS.

After analysis, the reported potential threats are consid-
ered to be relevant to the architecture of VOMS, they are
not false positives, and their mitigation would benefit the
VOMS software. That is to say, our team acting as security
experts auditing VOMS would have explored whether these
vulnerabilities were present or not as they are likely to occur
and are potentially damaging.

Considering that the threats are relevant to the architec-
ture, 3 possibilities exist to explain why they did not appear
in VOMS. First, the proper mitigation techniques were
implemented by the VOMS team. Second, implementation
details of VOMS make this threat a nonissue even if the
threat was present. Third, vulnerability exists but has not been
uncovered.

Regardless of the reason why these vulnerabilities were
not uncovered within VOMS, these threats are considered to
be relevant to the architecture of the VOMS software, and
therefore their reporting is considered valid.

7. Conclusions

In this paper, we addressed the problem of security expertise
needed to perform risk assessments by automating the threat
modeling process. By allowing nonsecurity developers to
perform threat modeling we aimed at reducing the cost of
secure development, making it more available.

To this end, we modeled a new data structure called
identification tree that can be used to identify threats in
software designs. We also designed a new model to describe
countermeasures of threats called mitigation tree, which
classifies the set of software specifications that are required
to mitigate a specific threat. These data structures, along
with ranking information over threats, were combined in a
knowledge base called attack patterns.

In addition, we designed a new model, AutSEC, to auto-
mate threat modeling relying on the information contained in
the attack patterns. We implemented this model in the form of
an automated tool that works on top of the current Microsoft
threat modeling methodology. AutSEC uses the identification
trees to find the potential threats of a given software model. It
purges irrelevant threats according to the developers business
policies. And finally, it uses the mitigation trees to compute
the software specifications of least effort needed to mitigate
the detected threats during the development lifecycle.

The resulting least effort mitigations are directly related
not only to security by design but also to security by default.
This allows AutSEC to reach the willing balance between
usability and security by default by asking the developers
if the computed features are in good standing with their

1

requirements. If not, they are recomputed rejecting those that
do not comply.

The output of applying the AutSEC model comes in the
form of 3 reports: one for the design activity, which contains
the architectural modifications needed to be carried out in
the system, another one for the implementation phase, which
contains implementation details to avoid the threats, and
a final report for the verification phase containing a set
of actions that are needed to be carried out to verify that
detected threats were properly mitigated. These reports were
designed so that any security-unaware developer can carry
out their recommendations, which are written in terms that
developers are accustomed to and provide ample resources in
the case further information is required.

Our implementation of AutSEC was designed to be com-
patible with the current threat modeling tool distributed with
the Microsoft SDL methodology. This offers the advantage
that it can be easily integrated into development teams
who already make use of the Microsoft methodology with
minimum modifications to their software models in order
to make them compatible with AutSEC’s extended SDL
attributes.

The experimental results of our tool were validated
using the grid middleware component VOMS Admin. The
results show that our tool is capable of detecting threats
and offers the appropriate mitigation techniques. We have
shown how the use of AutSEC during the development of
VOMS Admin would have allowed the early detection of
certain vulnerabilities. This has the advantage of limiting the
financial impact of vulnerabilities, without requiring software
developers to be trained in security and eliminate the impact
on the software’s users.

Further research on automated tools will focus on
expanding AutSEC’s vulnerability coverage while maintain-
ing a high level of accuracy in their detection and will look
into new ways of presenting additional threat information to
the developers without undermining the quality of current
reports.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank Andrea Ceccanti and Valery
Tschopp from the National Institute of Nuclear Physics and
Linda Cornwall from the Particle Physics Department at
Oxford for making available the vulnerability data regarding
VOMS that allowed the validation of our model. This research
has been supported by the MINECO (MICINN), Spain,
under contract TIN2011-24384.

References

(1] P. Chandra, T. Wohleber, J. Feragamo, and J. Williams, OWASP
CLASP V1.2. Comprehensive, Lightweight Application Security
Process, OWASP, Rhode Island, RI, USA, 2007.

12

[2] G. McGraw, Software Security: Building Security, Addison-
Wesley, Reading, Mass, USA, 2006.

[3] H. Michael and L. Steve, The Security Development Lifecycle,
Microsoft Press, Redmond, Wash, USA, 2006.

[4] B. De Win, R. Scandariato, K. Buyens, J. Grégoire, and W.
Joosen, “On the secure software development process: CLASP,
SDL and Touchpoints compared,” Information and Software
Technology, vol. 51, no. 7, pp. 1152-1171, 2009.

[5] S.Swigartand S. Campbell, Sdi Series, Article 4: Threat Modeling
at Microsoft, Microsoft Press, Redmond, Wash, USA, 2008.

[6] S. Swigart and S. Campbell, Sdl series article 7: Evolution of
the microsoft security development lifecycle, MSDN Magazine,
2009, http://download.microsoft.com/download/C/6/4/C64A-
557A-F6CD-48DD-B890-9B0C6270665F/SDL_Series_7.pdf.

[7] B.Schneier, “Attack trees,” Dr. Dobb’S Journal, vol. 24, no. 12, pp.
21-29,1999.

[8] L. A. Cortés, P. Eles, and Z. Peng, “A survey on hardware/soft-
ware codesign representation models,” 1999.

[9] E Swiderskiand W. Snyder, Threat Modeling. Professional Series,
Microsoft Press, Redmond, Wash, USA, 2004.

[10] Microsoft, 2013, http://www.microsoft.com/security/sdl/adopt/
threatmodeling.aspx.

[11] MITRE Corporation, Common Attack Pattern Enumeration and
Classification (Capec) Schema Description, MITRE Corpora-
tion, McLean, Va, USA, 2008.

[12] R. A. Martin and S. Barnum, “Common weakness enumeration
(cwe) status update,” ADA Letters, vol. 28, no. 1, pp. 88-91, 2008.

[13] The Open Web Application Security Project, 2005, http://www
.owasp.org/.

[14] P. K. Manadhata and J. M. Wing, “An attack surface metric,”
IEEE Transactions on Software Engineering, vol. 37, no. 3, pp.
371-386, 2011.

[15] NIACAP: National security telecommunications and informa-
tion systems security committee (2000), http://www.cnss.gov/
Assets/pdf/cnssi_4009.pdf.

[16] M. Jorgensen, “Practical guidelines for expert-judgment-based
software effort estimation,” IEEE Software, vol. 22, no. 3, pp. 57-
63, 2005.

[17] G.Ruiz and E. Heymann, Extended resource material for paper
(2014), http://research.cs.wisc.edu/mist/includes/papers.html.

[18] J. A. Kupsch, B. P. Miller, E. Heymann, and E. César, “First
principles vulnerability assessment,” in Proceedings of the 2010
ACM Workshop on Cloud Computing Security Workshop (CCSW
10), pp. 87-92, ACM, New York, NY, USA, 2010.

[19] J. A. Kupsch and B. P. Miller, “Manual vs. automated vul-
nerability assessment: a case study, in Proceedings of the Ist

International Workshop on Managing Insider Security Threats
(MIST °09), pp. 83-97, 2009.

The Scientific World Journal

International Journal of

Rotating
Machinery

Advances in

The Scientific Journal of | Journal of Mechanical
World Journal Robotics Sensors Engineering

International Journal of

Chemical Engineering

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Distributed
Sensor Networks

Advances in

Civil Engineering

-
R

VLSI Design

Advances in
OptoElectronics

Modelling &
International Journal of Simulation

Navigation and . . :
Observation in Engineering

o

Journal of
Control Science
and Engineering

Los®

f//#f

and Passive
ronic Components

Journal of
A > e Electrical and Computer
Propagation Shock and Vibration Engineering

