
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15, NO. 12, DECEMBER 1989

I

1615

Performance Measurement for Parallel and
Distributed Programs: A Structured and

Automatic Approach
CUI-QING YANG AND BARTON P. MILLER, MEMBER, IEEE

Abstract-This paper presents our new approaches in designing per-
formance measurement systems for parallel and distributed programs.
One of the approaches involves unifying performance information into
a single, regular structure that reflects the structure of programs un-
der measurement. We have defined a hierarchical model for the exe-
cution of parallel and distributed programs as a framework for the
performance measurement. A complete picture of the program’s exe-
cution can be presented at different levels of detail in the hierarchy.
The second approach is based upon the development of automatic guid-
ance techniques that can direct users to the location of performance
problems in the program. Guidance information from such techniques
will supply not only facts about problems in the program, but also pro-
vide possible answers for the further improvement of program effi-
ciency.

A performance measurement system, called IPS, has been devel-
oped as a prototype of our model and design. IPS is implemented on
the Charlotte distributed operating system at the University of Wis-
consin-Madison. Some of the test results from IPS are also discussed
in the paper to demonstrate unique features of our measurement sys-
tem.

Index Terms-Critical path, distributed computing, hierarchical
model, operation systems, parallel or distributed programs, perfor-
mance measurement.

I. INTRODUCTION
BUILDING performance measurement system for A parallel and distributed programs involves the col-

lection, interpretation, and manifestation of information
concerning the interactions among concurrently executing
processes. The inherent concurrency in a distributed pro-
gram, the lack of total ordering for events on different
machines, and the nondeterministic communication delay
between peer processes in such a program add complexity
to the problem of performance measurement. The con-
ventional methods of performance measurement for se-
quential programs are not adequate in the distributed en-
vironment because they address only the performance of
individual programs on a single processor. New tech-

Manuscript received October 18, 1988; revised April 17, 1989. Rec-
ommended by P. A. Ng. This work was supported in part by DARPA under
Contract N00014-85-K-0788 and by the National Science Foundation un-
der Grants MCS-8105904, and CCR-8703373 to the University of Wiscon-
sin-Madison.

C.-Q. Yang is with the Department of Computer Science, University of
North Texas, Denton, TX, 76203.

B. P. Miller is with the Department of Computer Sciences, University
of Wisconsin-Madison, Madison, WI 53706.

IEEE Log Number 8931158.

niques and tools are needed to aid in performance evalu-
ation of parallel and distributed programs.

Two gaps are observed in the current state of perfor-
mance measurement tools for parallel and distributed pro-
grams. The first gap, the semantic gap, is a gap between
the semantics of the structures with which we build par-
allel or distributed programs and the semantics by which
performance measurement systems to view parallel or dis-
tributed programs. On the one hand, people are using
more structured methods to develop parallel and distrib-
uted programs to cope with the increased complexity.
Some examples of these methods are: new constructs in
operating systems, a variety of parallel and distributed
programming languages, and the current trend toward ob-
ject-oriented distributed systems. On the other hand, most
of the existing performance measurement systems for par-
allel and distributed programs are built without a well-
defined model. Performance measurements in these sys-
tems were treated ad hoc. A few approaches have defined
structures in measurement systems to model the structure
of programs. However, many structures of such systems
do not match the structure of programs seen by a program-
mer. This semantic gap prevents many measurement tools
from capturing the infrastructure of programs and from
providing a complete picture of program’s execution.

The second gap is called the functional gap. Users of
performance measurement tools want not only to know
how well their programs execute, but also to understand
why the performance may not be as good as expected.
The performance metrics provided by most measurement
tools are good indications of what happened during a pro-
gram’s execution, but are of little use as guides to the
improvement of program performance. A gap exists be-
tween what users need and what measurement tools can
offer. Users need more help from a measurement tool to
locate the performance problems and to find ways for pos-
sible improvements.

In this paper, we present our new approach to bridge
these two gaps. The basis of our approach is to unify all
performance information in a single, regular structure
which matches the structure of programs. Such a structure
allows easy and intuitive access to performance informa-
tion, supports the construction of flexible user interfaces,
and facilitates automatic reasoning about a program’s be-

0098-5589/89/1200-1615$01.00 0 1989 IEEE

1616 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15, NO. 12, DECEMBER 1989

havior. Our performance measurement tool also provides
facilities that aid users in understanding program behavior
and locating trouble spots. We have developed automatic
guidance techniques, such as the critical path analysis for
the execution of distributed programs, for locating per-
formance problems in programs. These techniques not
only supply facts about performance behavior of the pro-
gram, but also provide possible reasons for the perfor-
mance problems in the program.

In the following discussion, we start with a brief over-
view of related research in Section 11. This provides a
base line for the discussion of our new approach. Section
I11 describes our hierarchical model for distributed pro-
grams and a corresponding model for program measure-
ment. These models unify many levels of performance
data and serve as the framework of the performance mea-
surement system. Section IV discusses automatic guid-
ance techniques for performance analysis of execution of
distributed programs. The major design considerations
and some implementation details of the measurement sys-
tem, IPS, are presented in Section V. Section VI de-
scribes some measurement results using IPS to show the
functions and features of the new measurement tool. We
conclude our paper by summarizing the key ideas and dis-
cussing directions for future research in Section VII.

11. RELATED RESEARCH
Much of the research on performance measurement of

distributed systems and programs shows that we can de-
scribe the behavior of a distributed program at many lev-
els of detail and abstraction. Marathe classifies the per-
formance parameters of a multiprocessor system along the
“machine cycles” axis into four separate levels: system
programming, operating system design, hardware archi-
tecture, and hardware engineering [24]. The same method
of classification can also be used to study performance
behavior of parallel and distributed programs. The two
most common levels for describing performance of dis-
tributed programs are the intraprocess and interprocess
levels.

Traditional or intraprocess performance measurement
tools provide information about individual process. The
gprof facility on BSD Unix [141, the HP sampler/3000
[30], the Mesa Spy [25], and other tools [l 11, [17] are all
based on the measurement of information about individual
processes (such as subroutine call frequencies or memory
access rates).

Performance tools for distributed programs have con-
centrated on interactions between processes. There are
two main reasons for looking at process interactions. First,
process interactions are subject to synchronization prob-
lems such as race conditions and protocol mismatches.
Second, many I/O operations such as file accesses in a
distributed environment are mapped into interactions be-
tween server and client processes. Therefore, process in-
teractions are traced to understand the state changes of
process.

Gertner [131 explicitly recognized the importance of

monitoring messages as interactions among processes. He
models his performance evaluation tool after finite state
machines and uses traces of the process interactions (mes-
sages) to trigger the state transitions. Similarly, in a case
study of the performance measurement of a distributed
dining philosophers algorithm on ZMOB [11, [34], mes-
sages between processors are assigned time values and
recorded upon transmission, reception, or dequeueing for
application input. Miller has developed a measurement
tool for distributed programs (DPM) based solely on the
interprocess level [26]. The system monitors program ac-
tivities at the process level and communication events
among different processes. Other than message commu-
nication, some measurement systems take various re-
sources (e.g., CPU or memories) shared by processes as
interactions among them. Performance measurement of
EGPA processor array [12], [18] only traces the history
of process identifiers which have run on the CPU. Never-
theless, the binding of switchable memory modules with
processing elements in the system MIDAS [23] was mon-
itored for the performance analysis of data-driven opera-
tions.

A complete picture of program’s execution needs in-
formation from different levels and some way to coordi-
nate the information received from these various levels of
abstraction. Research on integrated instrumentation en-
vironment for multiprocessors [32] and the PIE project
[15], [33] at CMU proposes the concept of programming
observability. It requires provisions for observing status
and performance events at all levels (hardware level, ker-
nel level, run-time support level, and application level)
and the combination of program run-time information and
development-time information. The integrated view is
important to the programmer’s ease in using the perfor-
mance tool. The relational data model in the PIE project
integrates various information at different levels and dif-
ferent stages of development. However, since the rela-
tional model does not fit the structure of programs, it is
hard to have information from various levels form a co-
herent picture of a program’s execution. The structure of
a measurement system needs to match the structure of
programs to be measured. In this way, the so-called se-
mantic gap will be reduced.

The measurement results from most performance sys-
tems are presented in some form of performance metrics,
such as the process execution time, message traffic statis-
tics, and overall parallelism. These metrics are good for
the evaluation of the performance outcome of a program’s
execution. They tell much about how good or bad the pro-
gram’s execution is but little about why. Few efforts were
directed at the study of combining performance measure-
ment tools with techniques to locate performance prob-
lems and improve the behavior of parallel and distributed
programs. This leads to the so-called functional gap. A
performance measurement tool should not only be a judge
of the past, but also be a prophet of the future. Program-
mers need more than a tool that provides extensive lists
of performance metrics; they need tools that will direct

YANG AND MILLER: PERFORMANCE MEASUREMENT FOR PARALLEL AND DISTRIBUTED PROGRAMS

them to the location of performance problems and give
them guidance for possible solutions.

111. THE PROGRAM AND MEASUREMENT HIERARCHIES

A general approach to problem-solving is to decompose
a big problem into a set of smaller problems and first to
solve these smaller problems. This decomposition is the
way that we structure programs: the original problem is
divided into pieces such-as modules and processes. Dif-
ferent data structures ani% individual procedures are fur-
ther defined in each process. All of these objects form a
hierarchy within the structure of the program.

Our approach to the performance measurement of par-
allel and distributed programs is based on organizing the
performance measurement tool as a regular structure that
matches the structure of the program being measured. We
choose a hierarchical model as a framework for our per-
formance measurement system. A hierarchical model pro-
vides multiple levels of abstraction, supports multiple
views, and has a regular structure. The performance in-
formation within this hierarchy reflects the program be-
havior based on its internal structure, and gives a com-
plete picture of program's execution. An interactive user
interface allows users to easily traverse through the hier-
archy, to zoom-in/zoom-out at different levels of abstrac-
tion, and to focus on the places in the program structure
that have great impact on the performance behavior of the
program.

In this section we demonstrate these ideas by presenting
a sample hierarchy for distributed programs that is based
on our initial implementation systems-the Charlotte Dis-
tributed Operating System [2] and 4.3 BSD Berkeley
UNIX [20]. Both systems consist of processes commu-
nicating via messages. These processes execute on ma-
chines connected via high-speed local networks.

The hierarchy presented here serves as a test example
of our hierarchical model and reflects our current imple-
mentation [27]. The hierarchy is not fixed and it is easy
to incorporate new features and other programming ab-
stractions. For example, we can add the light-weight pro-
cesses (processes in the same address space) from the
LYNX parallel programming language [3 13 to our hier-
archy with little effort. Our hierarchical structure could be
also applied to systems such as HPC [19], which has a
different notion of program structuring, or MIDAS 1231,
which has a three-level programming hierarchy.

A. The Program Hierarchy
In our sample hierarchy, a program consists of parallel

activities on several machines. Machines are each running
several processes. A process itself consists of the sequen-
tial execution of procedures. An overview of our com-
putation hierarchy is illustrated in Fig. 1. This hierarchy
can be considered a subset of a larger hierarchy, extend-
ing upwards to include local and remote networks and
downward to include machine instructions, microcode,
and hardware gates.

I

1617

whole program level

machine level

process level

procedure level

Fig. 1 . Overview of computation hierarchy.

1) Program Level: This level is the top level of the
hierarchy, and is the level in which the distributed system
accounts for all the activities of the program on behalf of
the user. At this level, we can view a distributed program
as a black box to which a user feeds inputs and gets back
outputs. The general behavior of the whole program, such
as the total execution time is visible at this level; the un-
derlying details of the program are hidden.

2) Machine Level: At the machine level, the program
consists of multiple threads that run simultaneously on the
individual machines of the system. We can record sum-
mary information for each machine, and the interactions
(communications) between the different machines. All
events from a single machine can be totally ordered since
they reference the same physical clock. The machine level
provides no details about the structure of activities within
each machine.

3) Process Level: The process level represents a dis-
tributed program as a collection of communicating pro-
cesses. At this level, we can view groups of processes that
reside on the same machine, or we can ignore machine
boundaries and view the computation as a single group of
communicating processes.

If we view a group of processes that reside on the same
machine, we can study the effects of the processes com-
peting for shared local resources (such as CPU and com-
munication channels). We can compare intra- and inter-

1618

I

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15, NO. 12, DECEMBER 1989

machine communication levels. We can also view the
entire process population and abstract the process’s be-
havior away from a particular machine assignment.

4) Procedure Level: At the procedure level, a distrib-
uted program is represented as a sequentially executed
procedure-call chain for each process. Since the proce-
dure is the basic unit supported by most high-level pro-
gramming languages, this level can give us detailed in-
formation about the execution of the program. The
procedure level activities within a process are totally or-
dered.

The step from the process to the procedure level rep-
resents a large increase in the rate of component interac-
tions, and a corresponding increase in the amount of in-
formation needed to record these interactions. Procedure
calls typically occur at a much higher frequency than mes-
sage transmissions.

5) Primitive Activity Level: The lowest level of the hi-
erarchy is the collection of primitive activities that are
detected to support our measurements. Our primitive ac-
tivities include process blocking and unblocking by the
scheduler, message send and receive, process creation and
destruction, procedure entry and exit. Each event is as-
sociated with a probe in the operating system or program-
ming language run-time that records the type of the event,
machine, process, and procedure in which it occurred, a
local time stamp, and event type dependent parameters.
The events are listed in Table I.

B. The Measurement Hierarchy

The program hierarchy provides a uniform framework
for viewing the various levels of abstraction in a distrib-
uted program. If we wish to understand the performance
of a distributed computation, we can observe its behavior
at different levels of detail. We chose a measurement hi-
erarchy whose levels correspond to the levels in our hi-
erarchy of distributed programs. At each level of the hi-
erarchy, we define performance metrics to describe the
program’s execution. For example, we may be interested
in parallelism at the program level, or in message fre-
quencies at the process level. We can look at message
frequencies between processes or between groups of pro-
cesses on the same machine. This selective observation
permits a user to focus on areas of interests without being
overwhelmed by all of the details of other unrelated ac-
tivities. The hierarchical structure matches the organiza-
tion of a distributed computation and its associated per-
formance data.

Table I1 lists several of the performance metrics that
can be calculated by the measurement system. Some of
these metrics are appropriate for more than one level in
the hierarchy, reflecting different levels of detail. Table
I11 summarizes the use of these metrics at each level. The
list in Table I1 is provided as an example of the type of
metrics that can be calculated. A different model of par-
allel computation can define a different program hierarchy
with its own set of metrics.

IV. AUTOMATIC GUIDANCE TECHNIQUES

We base our performance system on the idea that it
should provide answers, not just numbers. A perfor-
mance system should be able to guide the programmer in
locating performance problems and should help users im-
prove program efficiency. In this section, we discuss some
analysis techniques that support our approach.

The execution of a parallel or distributed program can
be quite complex. Often individual performance metrics
do not reveal the cause of poor performance, because a
sequence of activities, spanning several machines or pro-
cesses, may be responsible for slow execution. Consider
an example from traditional procedure profiling. We might
discover a procedure in our program that is responsible
for 90 percent of the execution time. We could hide this
problem by splitting the procedure into 10 subprocedures,
each responsible for 9 percent of execution time. For this
reason, it is necessary to detect a situation in which cost
is dispersed among several procedures, and across pro-
cess and machine boundaries.

There are other problems that are difficult to detect using
simple performance metrics. It may be important to de-
termine the effect of contention for resources. For exam-
ple, the scheduling or planning of activities on different
machines can have a great effect on the performance of
the entire program [2 11. Another example is the problem
caused by the execution pattern of a program changing
over time. A parallel program may go through a period of
intense interaction with little computation, then switch to
a period of intense Computation with little interaction
among its concurrent components. In such a case it will
be difficult to understand the detailed behavior of the pro-
gram by analyzing the program’s execution as a whole.

Our strategy in designing a measurement system is to
integrate automatic guidance techniques into such a sys-
tem. Therefore, information from these techniques, such
as that which concerns critical resource utilization, inter-
action and scheduling effects, and program time-phase be-
havior should be available to help users analyze a pro-
gram’s execution. In our research, we have developed one
of the techniques-critical path analysis for the execution
of distributed programs [35].

A . Critical Path Analysis for Execution of Distributed
Programs

Turnaround or completion time is an important perfor-
mance measure for parallel programs. When turnaround
time is used as the measure, speed is the major concern.
One way to determine the cause of a program’s turna-
round time is to find the event path in the execution his-
tory of the program that has the longest duration. This
critical path [22] identifies where in the hierarchy we
should focus our attention. As an example, Fig. 2 gives
the execution history of a distributed program with three
processes. This figure displays the program history at the
process level, and the critical path (identified by the bold

YANG AND MILLER: PERFORMANCE MEASUREMENT FOR PARALLEL AND DISTRIBUTED PROGRAMS

trfart: Process creation Process termination
tblork-cpu: Process block for CPU tunbloct-cpu: Process un-block for CPU
tblork-,yc: Process block fo synch. tunblock-ryc: Process un-block for synch.
tmter: Procedure entry tCdf : Procedure exit

fend : Message send trcv : Message receive
, Message send call t,cv-c,,,l: Message receive call

I

1619

Np: Number of processes.
T : Total execution time.
Twit: Total waiting time.
R :
P : Parallelism, Tepu 1 T.
M,: Message traffc (bytes/=)
M,: Message traffic (msgs/sec)

Response ratio, T / Tcpu.

N,: Number of machines.
rep,,: Total CPU time.
Twit-cpu: Total CPU wait time (scheduler waits)
L: Load factor, (Tcpu + T,dt-,,,,) / TIP"
p: Utilization, P 1 N,
C: Procedure call counter
PR: Progress ratio, T,,, / Twait

TABLE I1
PERFORMANCE METRICS

N."

Program Machine Process Procedure
Level Level Level Level
X

T , N,,, N,, Tcpu, T l ~ t , Tmdt
will be applied to different leve6of the measurement hierarchy (see Table 111).

R, L, p, M,, M,, and C are metrics which

I I I

X X
N P I

X I X I X I

line) readily shows us the parts of the program with the
greatest effect on performance.

We can view a distributed program as having the fol-
lowing characteristics:

1) It can be broken down into a number of separate
activities.

2) The time required for each activity can be measured.
3) Some activities must be executed serially, while

others may be carried out in parallel.
4) Each activity requires a combination of resources,

e.g., CPU's, memory spaces, and I/O devices. There may
be more than one feasible combination of resources for
different activities, and each combination is likely to re-
sult in a different duration of execution.

Based on these properties of a distributed program, we
can use the critical path method (CPM) [9], [22] to ana-
lyze a program's execution. The technique used in our
critical path analysis is based on the execution history of
a program. We can find the path in the program's execu-
tion history that took the longest time to execute. Along

Process 1 Process 2 Process 3

Send

Fig. 2. Example of critical path at process level

this path, we can identify the place(s) where the execution
of the program took the longest time. The knowledge of
this path and of the bottleneck(s) along it will help us
focus on the performance problem.

B. Program Activity Graph

To calculate critical paths for the execution of distrib-
uted programs, we first need to build graphs that represent
program activities during the program's execution. We
call these graphs program activity graphs (PAG's). A
PAG is defined as a weighted and directed multigraph,
that represents program activities and their precedence re-
lationship during a program's execution. Each edge rep-
resents an activity, and its weight represents the duration
of the activity. The vertices represent beginnings and end-
ings of activities and are the events in the program (e.g.,
sendheceive and process creation/termination events). A
dummy activity in a PAG is an edge with zero weight that
represents only a precedence relationship and not any real

1620

I

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15, NO. 12. DECEMBER 1989

action in the program. More than one edge can exist be-
tween the same two vertices in a PAG.

The critical path for the execution of a distributed pro-
gram is defined as the longest weighted path in the pro-
gram activity graph. The length of a critical path is the
sum of the weights of edges on that path.

A program activity graph is constructed from the data
collected during a program’s execution. Two classes of
activity considered in our model of distributed computa-
tion are computation and communication. For computa-
tion activity, basic PAG events are computation (process)
creation and scheduling events. The communication
events are based on the semantics of our target system. In
Charlotte, the basic communication primitives are mes-
sage Send/Rcv and message Wait system calls [2]. A
Send/Rcv call issues a user communication request to the
system and returns to the user process without blocking.
A Wait call blocks the user process and waits for the com-
pletion of previously issued Send/Rcv activity. Corre-
sponding to these system calls are four communication
events defined in the PAG: send-call, rcv-call, wait-
send, and wait-rcv. These primitive events allow us to
model communication activities in a program. We show,
in Fig. 3, a simple PAG for message send and receive
activities in a program.

The weights of message communication edges in Fig.

delivery time for different activities. Message delivery
time is different for local and remote messages, and is also
affected by message length. A general formula for calcu-
lating message delivery times is: t=Tl + T2 X L , where
L is the message length, and TI and T2 are parameters of
the operating system and the network. We have conducted
a series of tests to measure values of these parameters for
Charlotte. We calculated average TI and T2 for different
message activities (intra- and intermachine sends and re-
ceives) by measuring the round trip times of intra- and
intermachine messages for 10,000 messages, with mes-
sage lengths from 0 to the Charlotte maximum packet size.
These parameters are used to calculate the weight of edges
when we construct PAG’s for application programs.

C. Algorithms of Critical Path Analysis
An important side issue is how to compute the critical

path information efficiently. After a PAG is created, the
critical path is the longest path in the graph. Algorithms
for finding such paths are well studied in graph theory.
Since all edges in a PAG represent a forward progression
of time, no cycles can exist in the graph. To find the long-
est path in such graphs is a much simpler problem than in
graphs with cycles. Also, most shortest path algorithms
can be easily modified to find longest paths, because of
the acyclic property of our graphs. Therefore, in the fol-
lowing discussion, we consider those shortest-path algo-
rithms to be applicable to our longest-path problem.

1) Diffusing Computation on Graphs: Diffusing com-
putation on a graph, proposed by Dijkstra and Scholten
[8], is a general method for solving many graph problems.

3 (tsend, trcv7 twait-send, and twait-rev)? represent the message

c c
Fig. 3. Construction of simple program activity graph.

All of our algorithms for the longest path problem are
variations of this method.

We define a root vertex of a directed graph as a vertex
in the graph that has only out-going edges, and a leaf ver-
tex of a directed graph as a vertex in the graph that has
only in-coming edges. A diffusing computation on a graph
can be described as follows:

From all root vertices in the graph, a computation
(e.g., a labeling messaie) diffuses to all of its des-
cendant vertices and continues diffusing until it
reaches all leaf vertices in the graph.

We distinguish two variations of the diffusing compu-
tation: synchronous execution and asynchronous execu-
tion. In synchronous execution, a nonroot, nonleaf vertex
will diffuse the computation to its descendant vertices only
after it receives all computations diffused from all in-com-
ing edges. In asynchronous execution, a nonroot, nonleaf
vertex will diffuse the computation to its descendant ver-
tices as soon as it receives a new computation from any
one in-coming edge. Synchronous execution can deadlock
in a graph with cycles. However, the computational com-
plexity of synchronous execution is linear in the number
of edges and vertices. On the other hand, asynchronous
execution does not need explicit synchronization spots in
its execution. Potentially, this will provide more concur-
rency for the computation in a distributed environment.

2) Test of Different Algorithms: We chose the PDM
shortest-path algorithm as the basic for our implementa-
tion of centralized algorithm which are used for compar-
ison with distributed algorithm [6]. An outline of the PDM
algorithm are given in Appendix 1. More detailed discus-
sion of the algorithm can be found in [6]. Our implemen-
tation of the distributed longest path algorithm is based
on Chandy and Misra’s distributed shortest path algorithm
[4]. Every process represents a vertex in the graph in their
algorithm. However, we chose to represent a subgraph
instead of a single vertex in each process because the
number of total processes in the Charlotte system is lim-
ited and we were testing with graphs having thousands of
vertices. The algorithm is implemented in such a way that
there is a process for each subgraph, and each process has
a job queue for the diffusing computation (labeling the
current longest length of the vertex). Messages are sent
between processes for diffusing computations across
subgraphs (processes). Each process keeps individual
message queues to its neighbor processes. An outline of

11 1

YANG AND MILLER: PERFORMANCE MEASUREMENT FOR PARALLEL AND DISTRIBUTED PROGRAMS

3 .

21

I

1621

the two versions of the distributed algorithm appears in
Appendix 2. A detailed discussion of the algorithm is
given by Chandy and Misra [4].

We used two application programs to generate PAGs
for testing the longest path algorithms. The total number
of vertices in the graphs varies from a few thousand to
more than 10,000. Application 1 is a master-slave struc-
ture, and Application 2 is a pipeline structure. Both pro-
grams have adjustable parameters. By varying these pa-
rameters, we vary the size of the problem and the size of
generated PAG's. All of our tests were run on VAX-11/
750 machines. The centralized algorithms ran under 4.3
BSD UNIX, and the distributed algorithms ran on the
Charlotte distributed operating system [2].

3) Discussion: Speed-up (S) and efficiency (E) are
used to compare the performance of the distributed and
centralized algorithms. Speed-up is defined as the ratio
between the execution time of the centralized algorithm
(T,) to the execution time of the distributed algorithm
(T d) : S = T,/Td. Efficiency is defined as the ratio of the
speed-up to the number of machines used in the algo-
rithm: E = S / N .

We used input graphs with different sizes and ran the
centralized and distributed algorithms on up to 9 ma-
chines. Speed-up and efficiency were plotted against the
number of machines. The results are shown in Figs. 4, 5 ,
6, and 7. We have observed a speed-up of almost 4 with
9 machines in synchronous execution of the distributed
algorithm. The distributed algorithm with larger input
graphs and more machines resulted in greater speed-up
but less efficiency. The sequential nature of synchronous
execution of diffusing computations determines that the
computations in an individual machine have to wait for
synchronization at each step of the diffusion. As a result,
the overall concurrency in the algorithm is restricted, and
the communication overhead with more machines offsets
the gain of the speed-up.

The complexity of the synchronous version of the dif-
fusing algorithms is linear with respect to the number of
vertices and edges in the graph, because the diffusing
computations go through each edge and vertex exactly
once. In asynchronous execution, at the worst case, the
computation will be proportion to the total number of all
possible paths from the source to each vertex in the graph.

Asynchronous execution can increase concurrency in a
distributed computation by generating more diffused com-
putations in the job queue and releasing the synchroniza-
tion requirements among executions. However, in this
case we sacrifice economy of work because the asyn-
chronous algorithm does less careful bookkeeping. Our
test results indicate that the work in the asynchronous ex-
ecution grows so fast that even a parallel algorithm is not
viable.

V. DESIGN AND IMPLEMENTATION OF IPS
MEASUREMENT TOOL

We have implemented a pilot performance measure-
ment system for distributed programs, IPS, based on our

Speed-up
APPLICAlION I

I lVl=10284

IVI=3014 I
0 1 . . . 1 7 . , . I

I 2 3 4 5 6 7 R 9 IC1
Machine*

Fig. 4. Speed-up of distributed algorithm.

BIliciencv

0.5-

. - - ~ ~ --:-:* lVl-4414
IVI=3014

0 1 . . . , . , . . .
I 2 3 1 5 6 7 8 9 IO

U hladtiner

Fig. 5 . Efficiency of distributed algorithm.

speed-up

APPLICATION 2

I 2 3 4 5 6 7 8 9 IO n Machimes

Fig. 6. Speed-up of distributed algorithm.

hierarchical measurement model. IPS operates in two sep-
arated phases-data collection and data analysis. During
the first phase, the program is executed and trace data is
collected. All necessary data are collected automatically

1622

Efficiency

'h APPUCATION 2

04 1

I 2 3 4 5 6 7 8 9 10
Y Muhiner

Fig. 7. Efficiency of distributed algorithm.

I

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15, NO. 12, DECEMBER 1989

during the execution of the program. There is no mecha-
nism provided (or needed) for the user to specify the data
to be collected. During the second phase, programmers
can interactively access the measurement results. This
section describes the design and implementation of IPS
on the Charlotte distributed operating system.

A . The Charlotte Distributed Operating System
The Charlotte operating system was used for the initial

implementation of IPS. Charlotte is a message-based dis-
tributed operating system designed for the Crystal multi-
computer network [7]. Crystal consists of 18 VAX-11I
750 node computers and several host computers con-
nected with an 80MB/sec Pronet token ring [3]. The
Charlotte kernel supports the basic interprocess commu-
nication mechanisms and process management services.
Other service such as memory management, file server,
name server, connection server, and command shell are
provided by utility processes [2].

B. Basic Structure
IPS consists of three major parts: agents, data pools,

and analysts (see Fig. 8). Each of the three parts is dis-
tributed among the individual machines in the system. The
agent is the collection of probes in the operating system
kernel and the language run-time routines for collecting
trace data when a predefined event happens. The data pool
is a memory area in every machine for the storage of trace
data and for caching intermediate results from the analyst.
The analyst is a set of processes for analyzing the mea-
surement results. There is one master analyst that pro-
vides an interface to the user and acts as a central coor-
dinator to synthesize the data sent from the different slave
analysts. The slave analysts reside on the individual ma-
chines for local analysis of the measurement data.

In our scheme, the raw data is kept in the data pool on
the same machine where the data was generated. Slave
analysts exist on each machine, instead of a single global
analyst. The local data collection and (partial) analysis
has several advantages. Trace data are collected on the

USER
Fig. 8. Basic structure of measurement tool.

machine where they were generated. Local storage of trace
data should incur less measurement overhead than trans-
mitting the traces to another machine. Sending a message
between machines is a relatively expensive operation. Lo-
cal data collection in IPS will use no network bandwidth
and little CPU time.

A second advantage to local data collection is that we
can distribute the data analysis task among several slave
analysts. Low level results can be processed in parallel at
the individual machines and sent to the master analyst
where the higher level results can be extracted. It is also
possible to have the slaves cooperating in more complex
ways to reduce intermachine message traffic during anal-
yses (such as in the critical path analysis).

C. Data Collection
Local data collection requires that each machine main-

tains sufficient buffer space for the trace data. The ques-
tion arises whether we can store enough data for a rea-
sonable analysis. Procedure call events happen at a much
higher frequency than interprocess (message) events.
Event tracing for procedure calls could produce an over-
whelming amount of data. We have measured the mes-
sage and procedure call frequencies of several programs
running on the Charlotte and Unix operating systems. The
procedure call rates are over 6000 /second-almost three
orders of magnitude greater than interprocess events [27].
Due to this high frequency, we use a sampling mechanism
combined with modifying the procedure entry and exit
code. Because we are using sampling at the procedure
level, results at this level will be approximate. Sampling
techniques have been used successfully in several mea-
surement tools for sequential programs, such as the XE-
ROX Spy [25] and HP Sampler/3000 [30].

We set a rate, ranging from 5-100 ms, to sample and
record the current program counter (therefore the current
running procedure). We also keep a call counter for each
procedure in the program [14]. Each time the program
enters a procedure, the counter of that procedure is incre-

11

I1 I

YANG AND MILLER: PERFORMANCE MEASUREMENT FOR PARALLEL AND DISTRIBUTED PROGRAMS

mented. At the sampling time, a record which includes a
time stamp, the current procedure PC, and the procedure
call counter is saved in the trace data. The sampling fre-
quency can be varied for each program execution. A
higher sampling rate will give better precision to the sam-
ple results. However, the sampling overhead also in-
creases with the sampling frequency.

Data gathering for interprocess events is done by agents
in the Charlotte kernel. Each time that an activity occurs
(most appear as system calls), the agent in the kernel will
gather related data in an event record and store it in the
data pool buffer.

Our implementation for data collection stops at the pro-
cedure level, although the hierarchical model itself can be
easily extended to include low level information such as
that of per statement or per instruction execution. How-
ever, the huge amount of data involved in such low level
activities prevents any simple solution. Our data collec-
tion facility also supports a multiprogramming environ-
ment. Processes under monitoring need first to register to
the system (via a system call), and only those processes
which have registered are under consideration for data
collection.

D. Data Analysis
The general structure for data analysis in our measure-

ment tool is shown in Fig. 9. Analysis programs in the
master and slave analysts cooperate to summarize the raw
data in response to user queries. The master analyst can
reside on any machine as long as communication channels
between master and slave analysts can be established. In
our implementation, the master analyst is a process run-
ning on a host UNIX system. An independent user inter-
face is separated from the implementation of the master
analyst, so that different interfaces between the user and
the master analyst can be adopted for different environ-
ments.

Since the amount of the trace data is usually quite big,
it is too expensive to process all user queries directly from
those data. We create a set of intermediate result tables
(IRT) in master and slave analysts to store information
preprocessed from the trace data.

There are three different query processing categories.
The first category contains queries that only need the in-
formation in the IRT at master analyst. The master analyst
can easily handle these queries by accessing appropriate
entries in the IRT. The second category contains queries
that require intermediate results stored in the IRT’s at
slave analysts. The master analyst has to communicate
with corresponding slave analysts to retrieve information
in the IRT’s of slave analysts. The last category of user
queries needs direct access to the raw data of the slave
analysts, e.g., a query for a list of the event traces in
certain time interval. User queries in this category will
cause the trace data to be scanned at the time of the query
processing.

The processing costs for queries in various categories
differ significantly. Queries in first and second categories

1623

involve only table searching in master or slave analysts,
whereas, queries in the third category are much more ex-
pensive due to processing of the large amount of raw data.
The choice of data stored in IRT’s can have a large affect
on the costs of user query processing.

Most user queries fall into the first two categories; how-
ever, users may occasionally need direct access to the
trace data. One such example is when the needed infor-
mation is not provided by the metrics, e.g., the commu-
nication patterns among different processes. Another ex-
ample is when a user needs to scrutinize the details about
program’s execution, e.g., to check why a process is
blocked during a given time period. These queries will
fall into the third category and involve extra costs for pro-
cessing the raw data.

The metric information about the process and procedure
levels is preprocessed by slave analysts and kept in local
IRT’s. The metric information about the program and ma-
chine levels is preprocessed by the master analyst based
on low-level information sent from all slave analysts and
saved in IRT’s at the master analyst. The master analyst
gets queries from the user and decides how to distribute a
query among slave analysts. The query processing here is
similar to the query processing in a distributed database
system.

The calcilation of performance metrics in the IPS de-
pends upon the ordering of different events in the system.
For most metrics, the mdering only involves events oc-
curring in the same machine (e.g., metrics for individual
machine and process). For other analysis (such as the crit-
ical path analysis in Section IV), we need information
about partial ordering among events in different ma-
chines. Only a few metrics depend upon the information
of total ordering among events across machines. One such
example arise when calculating the elapsed time of the
whole program. Maintaining total ordering among events
in a distributed environment requires synchronizing clocks
on different machines. In our implementation, we adopted
a simple approximation method based on the TEMPO al-
gorithm [16].

VI. MEASUREMENT TESTS WITH IPS

The IPS measurement system provides a wide range of
performance information about a program’s execution.
This information includes performance metrics at differ-
ent levels of detail, histograms of the basic metrics, and
guidance information for the critical path in a program’s
execution. In evaluating the usefulness of our system, we
have been able to obtain some interesting results in the
studies we have performed. More time is needed, how-
ever, to fully evaluate the models, methods, and tools
presented in this paper. This section describes a sample
performance measurement session of a distributed appli-
cation to show the effectiveness of the information pro-
vided by the IPS, and to show how this information helps
us to better understand the performance behavior of a pro-
gram.

1624 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15, NO. 12, DECEMBER 1989

1

1- - - -- -1-

I I

I I

I I

I . . I

I I

I I

I I

I I

I I

I I

I I

I I

I I

Fig. 9. General structure for measurement results analysis.

A . Interactive Measurement Session
The program we have chosen for measurement tests on

the IPS system is an implementation of the Simplex
method for linear programming [5] . The configuration for
our test is set as follows: the input matrix size is 36 x
36, the program has a controller process and 8 calculator
processes, and these processes run on 3 node machines.

IPS provides an interactive user interface for the mea-
surement of programs. The interface supports a command
menu from which users can choose appropriate actions.
The menu contains two groups of commands. One group
includes the commands for.maneuvering through different
levels of the hierarchy-for example, going up one level,
going down one level, and selecting other items in the
same level. Another group consists of the commands for
selecting different measurement actions, such as present-
ing metrics and displaying histograms and critical path
information.

The measurement session starts at the program level.
We can select a command from the menu to display per-
formance information at this level. Fig. 10 shows the met-
r i c ~ at the program level. These metrics are defined in
Section 111-B, and reflect various aspects of the perfor-
mance behavior of the program. The information found
in various histograms can help users investigate a pro-
gram's behavior during a stretch of time. Fig. 11 shows
a histogram of CPU time at the program level.

The performance information at the program level gives
us a general characterization of the program's execution.
For example, as we can see from Fig. 10, the total mes-
sage waiting time (Block-sync Time) for the entire pro-
gram is large, and the overall parallelism (speed-up) un-

Metrics for Program Level
of Machines: 3
of Processes: 9
Elapsed T h e (ms) : 27670
CPU Time(ms): 31870
Block-sync Time(ms): 203794
Block-cpu Tme(ms): 9679
Message Traffic(#): 687
Message TraKic(bytes): 2220080
of Procedure: 58
of Procedure Calls: 938
P~wdlelisni: 1.15
Load Factor: 1.30

Fig. 10. Metrics at program level.

0 5 10 15 20
Elapscd Time (seconds)

Fig. 1 1 . Histogram of CPU time at program level.

L 25

der this configuration is only 1.15. These results raise
questions about why the speed-up of the program's exe-
cution is so limited and where the bottlenecks in the pro-
gram might be.

For more detailed information, we continue our study
at the machine and process levels. Fig. 12 shows the met-
rics at the machine level. Each machine has 3 processes.

YANG AND MILLER: PERFORMANCE MEASUREMENT FOR PARALLEL AND DISTRIBUTED PROGRAMS

Metricr Machine1 Machinef Machine)
of Process:’ 3 3 3
Elapsed Time(=): 27636 27541 27500
CPU Time(ms): 16233 7911 7726
Block-sync Time(=): 58507 72911 72376
Block-cpu Time(=): 7273 1034 1372

Meaaage Tr&c(bytes): 1383104 418488 418488

of Procedure Calls: 626 156 156

Load Factor: 1.45 1.13 1.17

Fig. 12. Metrics at machine level.

Message Tr&c(#): 429 129 129

of Procednns: 22 18 18

Utilisation: 0.59 0.28 0.28

However, Machine 1 has performance results different
from those of Machines 2 and 3. This is because Machine
1 runs with the controller process and 2 calculator pro-
cesses, whereas Machines 2 and 3 run with three calcu-
lator processes each. The process level information of
machine 1 is shown in Fig. 13. Two calculator processes
(processes 4 and 5) in machine 1 have similar perfor-
mance behavior. All other processes in machines 2 and 3
are calculator processes and have similar performance re-
sults as in machine 1. We can also check histograms of
the different metrics at machine and process levels.

We can go further, to the procedure level, to investigate
the behavior within each process. Fig. 14 shows this in-
formation for the controller and one of the calculator pro-
cesses. The profiling information here is presented in the
same format as in conventional profiling tools [25], [30].
The information about the distribution of CPU time in
different procedures can help users determine which part
of the program code dominates the execution.

B. Information from Critical Path Analysis
The information from various metrics and histograms

gives us a general picture of the program’s execution. We
have learned about many aspects of the program’s behav-
ior from this information; for instance, that parallelism of
the program is not high, that there is considerable com-
munication between the controller and calculator pro-
cesses, and that each calculator process has light work
load and spends most of the time in waiting for messages.
Howeb-er, all this information is .mainly applicable to in-
dividual activity in the program. It tells us little about the
interactions among different parts of a program, and about
how these interactions affect the overall behavior of a pro-
gram’s execution. Therefore, it is still difficult to discover
why the parallelism is low, how much communications
affect the program’s execution, and which process (con-
troller or calculator) has a bigger impact on the program’s
behavior. More sophisticated analysis techniques are
needed for a measurement system that will help users in
analyzing performance results.

The critical path analysis technique in IPS provides
guidance for finding possible bottlenecks in a program’s
execution. The critical path information is represented by
the percentages of communication and CPU time of the
various parts of the program along the total length of the
path. Fig. 15 gives the critical path information at the

Metrics Process S Process 4 Process 6
Process Name: control[ll calcs[3] calcs[6]
Elapsed Tme(ms): 27240 27352 27421
CPU Time(ms): 9988 3187 3058
Block-sync Time(ms): 12230 22911 23366
Block-cpu Time(ms): 5022 1254 997
MeMage Traffic(#): 343 43 43
Measage Traffc(bytes): 1104112 139496 139496
of Procedures: 10 6 6
of Procedure Calls: 522 52 52
Response Ratio: 2.60 8.55 8.55
Load Factor: 1.50 1.39 1.32

Fig. 13. Metrics at process level (in Machine 1).

1625

program level. We can see that the communication cost
(including intermachine and intramachine messages) is
more than one third of the total length of the critical path.
This reflects the fact that the communication overhead in
Charlotte is relatively high compared to other systems [2].

The critical path information at the process level (see
Fig. 16) gives us more details about the program’s exe-
cution. The execution of the controller process takes 58
percent of the whole length of the critical path, while the
execution of all calculator processes take less than 5 per-
cent of the whole length. The ratio between the execution
of controller process and all calculator processes in the
critical path is more than 10 : 1, whereas the measurement
result in Section VI-A indicates that the ratio between the
execution of controller and each calculator is only about
3 : 1. Therefore the critical path information shows more
clearly the domination of the execution of the controller
process. Such domination of the controller in the critical
path restricts the overall concurrency of the program. This
explains why the parallelism for the current configuration
is so low. From the length of the critical path, we can
calculate the maximum parallelism of the program [lo],
[28], which equals the ratio between the total CPU time
and the length of the critical path. This maximum paral-
lelism depends upon the structure and the interactions
among the different parts of the program. The maximum
parallelism for the program under our tests (with 8 cal-
culators running on 3 machines) is only l .91. The com-
munication costs and the CPU load effects in different ma-
chines lower the real parallelism to l . 15.

Finally, we display critical path information at the pro-
cedure level in Fig. 17. This information can be useful in
locating performance problems across machine and pro-
cess boundaries. The top three procedures, that take 49
percent of the entire length of the critical path, are in the
controller process. Procedure MainLoop in the calculator
processes, which is in charge of communications between
calculators and the controller, takes 33 percent of the en-
tire execution time of each calculator process (see Fig.
14). However, they are much less noticeable in the criti-
cal path because of the dominance of the controller pro-
cess.

C. Remarks
We have seen that the execution of the controller pro-

cess dominates the performance behavior. This is be-

1626 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15, NO. 12, DECEMBER 1989

ProcedureNuoe Counter Time(%)
MainLool, 1 44
Init
S e n d c h i
madl
CheckWaItig

main
Getarg

PeCV

s&uD
ConvertNum 3 *
Totd 304 100

dorowop 15 50
M a i n h p 1 33
selecttherow 15 10
I d i d 1 1
setup 1
main 1
Total 34 100

(a) Contr6lle.r
(* denotes 1- than 1%)

Fig. 14. Execution profiling of controller and calculator.

Inter-machine Msg

Totd 16667 100
Intra-madiie Mag 1360

Fig. 15. Critical path information at program level.

P(1,3) CPU
P(1,3)->P(3,5) Msg
P(3,5)->P(1,3) Msg
P(1,3)->P(2,5) Msg
P(2,5)->P(1,3) Mag
P(3,4)->P(1,3) Msg

P(1,3)->P(2,4) Mag
P(2,4)->P(1,3) Msg
P(1,3)->P(1,5) M.g
P(1,5)->P(1,3) Msg

P(l,4)->P(ls3) Msg
P(1,3)->P(3,3) Msg
P(3,3)->P(1,3) Msg

P(lJ)->P(3,4) Mag

P(1,3)->P(1,4) Msg

P(3,5) CPU

P(3,4) CPU

P(1,5) CPU
P(2,5) CPU

P(2,4) CPU
P(1.4) CPU
pi3;3j CPU
Total

9740 58
840 5
8 4 0 5
480 3
4 8 0 3
4 8 0 3
480 3
4 4 0 3
4 4 0 3
4 0 8 2
4 0 8 2
272 2
272 2
240 I
2 4 0 1
159 I
loo I
8 8 1
7 9 4
67
0 4 4
42 *

l a 7 lo(

(P(i,j) denotes p r o c e ~ ~ j in machinei, denoted less than 1%)

Fig. 16. Critical path infomation at process level.

cause, in our test configuration, the controller process
serves too many (8) calculator processes, but each cal-
culator process is lightly loaded. One way to cope with
the problem is to reduce the number of calculator pro-
cesses in the program. We have conducted a set of mea-
surement tests with programs having 2 to 8 calculator pro-
cesses for the same 36 X 36 input matrix, running on 3
machines. The test results are shown in Fig. 18(a). We
can observe that, to a certain extent, for this fixed initial
problem, having fewer calculator processes gives a better
result. The execution time has its minimum when the pro-
gram runs with 3 calculators. However, if the number of
calculator processes gets too small (2 in this case), each

I M a i n h p (Mach 1, Roc 3) 21 I
Scndchid

Checkwaiting
M a i n h p

M a i n h p
M a i n h p
M a i n h p
M a i n h p

Totd CPU

(Mach 1, Roc 3)
(Mach 1, Roc 3)
(Machl, Proc 3)
(Mach 1, Roc 3)
(Mach 3, Proc 4)
(Mach 1, Proc 3)
(Mach 3, Proc 5)
(Mach 1, Proe 5)
(Mach 2, Roc 4)
(Mach 1, Proc 4)
(Mach 2, Roc 5)

17

02

(* den& h.. than 1%)

Fig. 17. Critical path information at procedure level.

calculator has to do too much work and creates a bottle-
neck. Note that the test using 2 calculator processes is
the best with respect to the assignment of processes to
machines (only one process per machine). While in the 3
calculator case the controller process is running on the
same machine as a calculator process. Therefore, the con-
tention for CPU time among processes is not the major
factor that affects the overall execution time of the pro-
gram.

The critical path information for these tests (shown in
Fig. 18(b)) supports our observation. For the configura-
tion of 3 calculator processes, the controller and calcula-
tor process have the best balanced processing loads, and
the lowest message overhead. This coincides with the
shortest execution time in Fig. 18(a). The Simplex pro-
gram has a master-slave structure. The ratio between
computation times for the controller and calculator pro-
cesses on the criticaE path reflects the balancing of the
processing loads between the master and slaves in the pro-
gram. We have observed that when the master and slave
processes have evenly distributed processing loads (dy-
namically, not statically), the program shows the best turn-
around time. Otherwise, if the master process dominates
the processing, the performance suffers due to the serial
execution of the master process. On the other hand, if the
slave processes dominated, it would be possible to add
more slaves. Appendix 3 contains a proof that supports
our claim that for programs with the master-slave struc-

YANG AND MILLER: PERFORMANCE MEASUREMENT FOR PARALLEL AND DISTRIBUTED PROGRAMS 1627

for all U in G do
DIU] := 0;

end
initialize Q to contain
SOURCE only;
while Q is not empty do

U do

delete 9's head vertex U'
for each edge (U,.) siarting at

ifD[v] < DIU] + wur then

PP1 iz "I D v - D u] + w '

else

end

if U waa never in g'then
insert U at the tail of Q;

insert U at the head of Q;

end
end

end

Calculator Procwes
(a)

forall U in G do
Com"&= #of in-coming edges;
D[u] .-

end
'hitialiie Q to contain
SOURCE only;
while Q is not em ty do

U do

delete 9's hezwfvertex U;
for each edge (U,.) starting at

dec(Count rn .
ifD U] D\uy; wue then

D\v\ := DIU] + wu,;
end
ifComt[w] = 0 then

insert U at the tail of Q;
end

L v : = U '

end
end

Fig. 18. Program elapsed time and components of the critical path. (a)
Elapsed time. (b) Critical path components.

ture, the length of the critical path in the program's exe-
cution is at its minimum when the path length is evenly
distributed between master and slave processes.

The measurement tests given here shows that the data
of the critical path provides extra information for the eval-
uation and analysis of program's behavior in their exe-
cution. This information can be used as guidance to adjust
the structure of the program for better performance. Such
adjustment involves, e.g., restructuring (decomposing or
combining) individual processes in the program, regroup-
ing or replacement of processes on different processors
and rearranging procedures or even statements in a pro-
cess, etc. Nevertheless, because of the inherent complex-
ity with a parallel or distributed program, such restruc-
turing will not be an easy job, and could be application
dependent. Much more study needs to be done in respect
to the future direction of automatic guidance techniques
for the performance measurement of parallel and distrib-
uted programs.

VII. CONCLUSIONS
We have described a structured and automatic approach

to the design and implementation of a performance mea-
surement system for parallel and distributed systems.
This approach is based on a hierarchical model as a
framework for the measurement system and the integra-
tion of the traditional performance metrics with automatic
guidance techniques. A prototype, the IPS system, based

. on our approach has been built on the Charlotte distrib-
uted system. Experiments in measuring real application
programs on IPS demonstrate that our measurement hi-
erarchy intuitively maps performance information to the
program's structure, and gives a multilevel view of the
behavior of a program's execution. The abstraction of the
hierarchy helps users easily focus on places of interest,
while the technique of critical path analysis provides extra
information. for performance debugging and directs users
to possible bottlenecks in the program.

-
~ TI 1 -

1628

I

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15, NO. 12, DECEMBER 1989

APPENDIX 2
DISTRIBUTED ALGORITHM FOR CRITICAL PATH ANALYSIS

The following is a sketch of the distributed algorithm
for critical path analysis (see Section IV):

for d U in sub-graph G do
Countcr[u] := 0;
Dlul:= 0;

end
initialise Q to include SOURCE or empty;
rhik not termination do

rhik Q i not empty a d
mag queua noI hU do

dekte 0’. h c d element;
fekment = (Length. Pred) thm

ifDIu] < Length thm
if Counterlu] > 0 thm

end

DIU] := Length;

put Act[P[u]] in Q or mag queue;

PIU1 := Pred;

for each edge (U,.) that starb at
U do
put kngth mag:
(D[uI+wm~,Pred=U) in Q
a msg queue for U ;

m d

f(laanter[u] = 0 thm

end
rlu

end

dec(:(Coonter[u]);
YCounterluJ = 0 then

m d

caunter[u] += x 0fo.t-gOkg edw;

put A&[P[u[] in Q a mag queue;

put Ack(Pned] in Q or m g queue;

elle

pot Ack(P[ul] in Q a m g queue;

m d
m d
h d d mag queoa that are not empty;
&e&e from .U neigh& pmessa;
if get any m g from other p m m then

processing mag and put length mag
mdachinQ;

m d
end

(a): AspLhmnaus Vmion

for d U in sub-graph G do
Couutu[u] := # of insoming edges;
DIU] := 0;

m d
initialise 4 to include SOURCE or empty;
while not local-turnination do

while 0 m not empty and
m g queua not full do

dekk Q’s head: (Length,Pred);
dec(Countcr[u 1);
i fD[u] < Length then

D[u[:= Length;
end
fCoonter[u] = 0 thm

PIU] := Bed;

for each edge (U ,U) that atart. at
U do
pot kngh mag:
(D[u[+wu.,Pred=u) in Q
a mag queue fo U;

end
m d

end
Send d mag queu- that are not empty;
h e h e fmm d neighbor procaul;
if get any msg fmm other pm- then

pmessing m g and put Length mag in Q ;
end

end
exchange m g with neighbaa to get
consensus of global-termination

(b): Sprhmnoua Veraion

APPENDIX 3
A PROOF OF THE MINIMUM CRITICAL PATH LENGTH
In the following discussion, we give a simple proof to

support our claim that for programs with the master-slave
structure, the length of the critical path in the program’s
execution reaches the minimum when the whole path
length is evenly distributed between master and slave pro-
cesses. Our proof applies the related study in Mohan’s
thesis [29] to the aspect of critical path length.

Assume that a general master-slave structure is repre-
sented as N slave processis working synchronously under
the control of a master process (see Fig. 19). Let a com-
putation have a total computing time of C, consisting of
the time for master C, and the time for slaves Cs (for
simplicity, all times are deterministic). The computation
time in the master process includes one part for a fixed
processing time (e.g., initialization, result reporting time)
F, and another part of per slave service time (e.g., job
allocating, partial results collecting) c,. Therefore,

C, = Nc, + F,.

Assume F, is negligible compared to Nc,, i.e., F, <<
Nc,; we have:

C, = Nc,.

The nature of the synchronization pattern in the master-
slave structure determines that the execution of the master

Fig. 19. Processes of master-slave structure.

process is serialized with the concurrent execution of N
slave processes. Hence, the length of the critical path in
the program’s execution, L, (N), is:

CS CS L c (N) = C, + - = Nc, + -.
N N

To find the minimum of L, (N), we have:

and

N = E .

Since (d 2 (L , (N)) / d N 2) > 0 when N = a,
L, (N) has its minimum value at the point. Therefore, the
minimum length of the critical path is:

min (L , (N)) = NC, + 2 = + JC,C,.
In this equation, both master and slaves have the same
amount of share (m) in the length of the critical path.
This result indicates when the length of the critical path
reaches to the minimum, the entire length is evenly dis-
tributed in master and slave processes.

ACKNOWLEDGMENT
Many thanks are due to M. Solomon, R. Finkel, and

M. Livny for their continuous support and constructive
suggestions. In the prototype implementation at Univer-
sity of Wisconsin-Madison, we are also grateful to the
members of the Crystal and Charlotte Projects, in partic-
ular, B. Gerber, N. Hall, B. Kalsow, M. Litzkow, B.
Rosenburg, M. Scott, and T. Virgilio, whose efforts make
it possible for the completion of this research.

REFERENCES
[l] M. Abrams and A. K. Agrawala, “Performance study of distributed

resource sharing algorithms,” Dep. Comput. Sci., Univ. Maryland,
Tech. Rep. TR-1521, July 1985.

[2] Y. Artsy, H.-Y. Chang, and R. Finkel, “Interprocess communication
in Charlotte,” IEEE Sofhvare, vol. 4, no. 1 , pp. 22-28, Jan. 1987.

[3] Proteon Associates, Operation and Maintenance Manual for the
ProNet Model plO00 Unibus, 1982.

-1

YANG AND MILLER: PERFORMANCE MEASUREMENT FOR PARALLEL AND DISTRIBUTED PROGRAMS 1629

141 K. M. Chandy and J. Misra, “Distributed computation on graphs:
Shortest path algorithms,” Commun. ACM, vol. 25, no. 11, pp. 833-
837, Nov. 1982.

151 G. B. Dantzig, Linear Programming and Extensions. Princeton, NJ:

1271 B. P. Miller and C.-Q. Yang, “IPS: An interactive and automatic
performance measurement tool for parallel and distributed pro-
grams,” in Proc. 7th Int. Con$ Distributed Computing systems, IEEE
Comput. Soc., Sept. 21-25, 1987, pp. 482-489.

Princeton University Press, 1963.
N. Deo, C. Y. Pang, and R. E. Lord, “Two parallel algoritnms for
shortest path problems,” in Proc. 1980 lnt. Conf. Parallel Process-
ing, Aug. 1980, pp. 244-253.
D. DeWitt, R. Finkel, and M. Solomon, “The Crystal multicompu-
ter: Design and implementation experience,” IEEE Trans. Software
Eng., vol. SE-13, no. 8, pp. 953-967, 1987.
E. W. Dijkstra and C. S. Scholten, “Termination detection for dif-
fusing computations,” Inform. Processing Lett., vol. 1 1 , no. 1 , pp.

W. E. Duckworth, A. E. Gear, and A. G. Lockett, A Guide to Op-
erational Research. New York: Wiley, 1977.
D. L. Eager, J. Zahorjan, and E. D. Lazowska, “Speedup versus
efficiency in parallel systems,’’ Dep. Comput. Sci., Univ. Washing-
ton, Tech. Rep. 86-08-01, Aug. 1986.
D. Ferrari and V. Minetti, “A hybrid measurement tool for minicom-
puters,” in Experimental Computer Performance and Evaluation.
Amsterdam, The Netherlands: North-Holland, 1981, pp. 217-233.
H. Fromm, U. Hercksen, U. Heaog, K. H. John, R. Klar, and W.
Kleinoder, “Experiences with performance measurement and mod-
eling of a processor array,” IEEE Trans. Comput., Vol. C-32, no. 1 ,
pp. 15-31, Jan. 1983.
I. Gertner, “Performance evaluation of communicating processes,”
Ph.D. dissertation, Dep. Comput. Sci., Univ. Rochester, May 1980.
S. L. Graham, P. B. Kessler, and M. K. McKusick, “gprof A call
graph execution profiler,” in Proc. SIGPLAN ’82 Symp. Compiler
Constmction, 1982, pp. 120-126.
F. Gregoretti and Z. Segall, “Programming for observability support
in a parallel programming environment,’’ Dep. Comput. Sci., Car-
negie-Mellon Univ., Tech. Rep. CMU-CS-85-176, Nov. 1985.

1-4, Aug. 1980.

[28] B. P. Miller, “DPM: A measurement system for distributed pro-
grams,” IEEE Trans. Comput., vol. 37, no. 2, pp. 245-247, Feb.
1988.

[29] J. Mohan, “Performance of parallel programs: Model and analyses,”
Ph.D. dissertation, Dep. Comput. Sci., Carnegie-Mellon Univ., Tech.
Rep. CMU-CS-84-141, 1984.

[30] A. Rafii, “Structure and application of a measurement tool-SAM-
PLER13000,” in Proc. 1981 ACM SIGMETRICS Conf. Measurement
and Modeling of Computer Systems, Sept. 1981, pp. 110-120.

[31] M. L. Scott and R. A. Finkel, “LYNX: A dynamic distributed pro-
gramming language,” in Proc. 1984 Int. Con$ Parallel Processing,

[32] Z. Segall, A. Singh, R. T. Snodgrass, A. K. Jones, and D. P. Sie-
wiorek, “An integrated instrumentation environment for multipro-
cessors,” IEEE Trans. Computers, vol. C-32, no. 1 , pp. 4-14, Jan.
1983.

[33] Z. Segall and L. Rudolph, “PIE: A programming and instrumentation
environment for parallel processing,” IEEE Software, vol. 2 , no. 6,

[34] N. Vanderlipp, J. Callahan, M. Abrams, and A. Agrawala, ‘Imple-
mentation and measurement of a distributed dining philosophers al-
gorithm on ZMOB,” Dep. Comput. Sci., Univ. Maryland, Tech. Rep.

[35] C.-Q. Yang and B. Miller, “Critical path analysis for the execution
of parallel and distributed programs,” in Proc. 8th Int. Conf. Dis-
tributed Computing Systems, June 13-17, 1988, pp. 366-373.

Aug. 1984, pp. 395-401.

pp. 22-37, NOV. 1985.

TR-1530, Aug. 1985.

R.-Gusella and S. Zatti, “TEMPO: Time services for the Berkeley Cui-Qing Yang received the undergraduate de-
local network,” Dep. EECS, Univ. California, Berkeley, PROGRES gree in computer engineering from Nanjing Insti-
Rep., Dec. 1983. tute of Technology, China, and the M.S. and
G. Hamilton, “Logic analyzer gives programmers real-time view of Ph.D. degrees in computer sciences from the Uni-
software performance,” Electronics, pp. 117-122, May 5, 1983. versity of Wisconsin-Madison.
R. Klar, “Hardware measurements and their application on perfor- He has been an Assistant Professor in the De-
mance evaluation in a processor-array,” Cornput. Suppl., vol. 3, pp. partment of Computer Sciences at the University
65-88, 1981. of North Texas, Denton, since 1987. His research

1191 T. J. LeBlanc and S. A. Friedberg, “Hierarchical process composi- interests include parallel and distributed computer
tion in distributed operating systems,” in Proc. 5th Znt. Con$ Dis- systems, operating systems, performance mea-
tributed Computing Systems, May 1985, pp. 26-34. surement, object-oriented programming, and

[20] S. J. Leffler, W. N. Joy, and M. K. McKusick, UNIX Programmer’s computer networks.
Manual, 4.2 Berkeley Software Distribution, Dep. Comput. Sci.,
Univ. California at Berkeley, Aug. 1983.

[21] B. Lint and T. Agerwala, “Communication issues in the design and
analysis of parallel algorithms,” IEEE Trans. Software Eng., vol.
SE-7, no. 2, pp. 174-188, Mar. 1981.

[22] K. G. Lockyer, An Introduction to Critical Path Analysis. New
York: Pitman, 1967.

[23] C. Maples, ‘Analyzing software performance in a multiprocessor en-
vironment,” IEEE Software, pp. 50-63, July 1985.

[24] M. V. Marathe, “Performance evaluation at the hardware architec-
ture level and the operating system kernel design level,” Ph.D. dis-
sertation, Dep. Comput. Sci., Carnegie-Mellon Univ., Dec. 1977.

[25] G. McDaniel, “The Mesa Spy: An interactive tool for performance
debugging,” in Proc. 1982 ACM SIGMETRICS Conf. Measurement
and Modeling of Computer Systems, 1982, pp. 68-76.

[26] B. P. Miller, S. Sechrest, and C. Macrander, “A distributed program
monitor for Berkeley Unix,” Software-Practice & Experience, vol.
16, no. 2, Feb. 1986; also appears in short form in the 5th Int. Con5
Distributed Computing Systems, Denver, CO, May 1985.

Dr. Yang is a member of the IEEE Computer Society.

Barton P. Miller (M’85) received the B.A. de-
gree in computer science from the University of
California, San Diego, in 1977, and the M.S. and
Ph.D. degrees in computer science from the Uni-
versity of California, Berkeley, in 1979 and 1984,
respectively.

Since 1984, he has been an Assistant Professor
in the Department of Computer Sciences at the
University of Wisconsin-Madison. His research
interests include parallel and distributed debug-
ging, parallel and distributed program measure-

ment, network management and naming services, distributed operating
systems, and user interfaces.

