
Abstract
A primary problem in the performance measurement of
high-level parallel programming languages is to map low-
level events to high-level programming constructs. We dis-
cuss several aspects of this problem and presents three
methods with which performance tools can map perfor-
mance data and provide accurate performance informa-
tion to programmers. In particular, we discuss static
mapping, dynamic mapping, and a new technique that
uses a data structure called the set of active sentences.
Because each of these methods requires cooperation
between compilers and performance tools, we describe the
nature and amount of cooperation required. The three
mapping methods are orthogonal; we describe how they
should be combined in a complete tool. Although we con-
centrate on mapping upward through layers of abstrac-
tion, our techniques are independent of mapping direction.

1 INTRODUCTION

When application programs are built on multiple layers of
abstraction, performance tools must consider how the ele-
ments of one layer relate to the elements of the other lay-
ers. Mapping provides a way to represent the relations
between abstraction levels for the performance character-
istics of program elements. Any performance information
that is measured for at one of abstraction is relevant not
only to itself, but also to the other levels to which it maps.

. This work is supported in part by Wright Laboratory Avionics Director-
ate, Air Force Material Command, USAF, under grant F33615-94-1-1525
(ARPA order no. B550), and CDA-9024618, and Department of Energy
Grant DE-FG02-93ER25176. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and conclusions con-
tained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either
expressed or implied, of the Wright Laboratory Avionics Directorate or
the U.S. Government.

To identify performance characteristics that are com-
mon across programming models, we have developed a
framework within which we can discuss performance
characteristics of programs written in these programming
models. This framework is called the Noun-Verb (NV)
model for parallel program performance explanation. In
the NV model,nouns are any program elements for which
performance measurements can be made, andverbs are
any potential actions that might be taken by a noun or per-
formed on a noun. For example, in CM Fortran[11] nouns
include programs, subroutines, FORALL loops, arrays,
and statements. Verbs in CM Fortran include statement
execution, arrayassignment andreduction, subroutineexe-
cution, and fileI/O.

An instance of a program construct described by a
verb is called asentence. A sentence consists of a verb, a
set of participating nouns, and a cost. The cost of a sen-
tence may be measured in terms of such resources as time,
memory, or channel bandwidth.Performance information
consists of the aggregated costs measured from the execu-
tion of a collection of sentences.

The collection of nouns and verbs of a particular soft-
ware or hardware layer defines alevel of abstraction.
Nouns and verbs from one level of abstraction are related
to nouns and verbs from other levels of abstraction with
mappings. A mapping expresses how high-level language
constructs are implemented by low-level software and
hardware. With mappings, performance information col-
lected at arbitrary levels of abstraction can be related to
language level nouns and verbs.

To build mappings layers of abstraction, performance
tools must collect mapping information; such information
can take many forms in real systems. Many compilers emit
symbolic debugging information, which allows program-
ming tools to map memory addresses to source code lines
and data structures. However, common symbolic debug-
ging information seldom provides the complete set of
mapping data needed by performance tools. For example,
a list of data structures used on each line of code (which is
useful for mapping execution activity to data structures) is

Mechanisms for Mapping High-Level Parallel Performance Data

R. Bruce Irvin Barton P. Miller
rbi@informix.com bart@cs.wisc.edu

Informix Software, Inc.
921 SW Washington St.

Portland, OR97205

Computer Sciences Department
University of Wisconsin
1210 W. Dayton Street

Madison, WI 53706-1685



typically not available. Other mapping information is
stored only in application data-structures during execution.
For example, a run-time system may determine data-to-
processor mappings at run time after it has knowledge of
available hardware resources; run-time systems usually
keep this information in the program’s address space. Tra-
ditionally, there has been no well-defined way for run-time
systems and application programming libraries to commu-
nicate mapping information to performance tools.

Mappings can be one-to-one, one-to-many, many-to-
one, and many-to-many, as shown in Figure1. This figure
shows examples of each type of mapping. One-to-one
mappings (shown in the first row of the table in Figure1)
are relatively simple to handle in a performance tool. Any
performance information measured for one sentence is
associated with the one sentence to which it maps. How-
ever, when a sentence maps to several other sentences
(one-to-many, shown in the second row), the correct
assignment of performance data is more difficult. In this
case, many tools split the measured data equally across all
sentences to which the measured sentence maps [1,9].
However, such splitting assumes an equal distribution of
low-level work to high-level code. It is often better to han-
dle one-to-many mappings by merging the sentences to
which the measured sentence maps [6]. The latter tech-
nique (used in the Paradyn Performance Tools[8]) makes
no assumption about the distribution of performance data
and helps to identify high-level programming constructs
whose implementations have been merged by an optimiz-
ing compiler. It also avoids misleading the programmer
with overly precise information.

Many-to-one and many-to-many mappings (shown in
the third and fourth rows of Figure1) can be reduced to
the two types of mappings described above. In each case,
we aggregate (either sum or average) the performance data
for the low-level sentences and then treat the result as a

one-to-one or one-to-many mapping. We show examples
of each of these cases in Sections3 and 4.

2 TYPES OF MAPPING INFORMATION

Mapping information may include noun and verb defini-
tions as well as detailed descriptions of how particular
nouns and verbs map to other nouns and verbs. In this sec-
tion we describe a generic interface for communicating
mapping information to performance tools. In following
sections we describe how this information may be commu-
nicated from compilers to tools both prior to application
execution (static information) and during execution
(dynamic information)

The table in Figure3 shows three components of
mapping information. Noun and verb definitions describe
to a performance tool the set of nouns, verbs, and levels of
abstraction contained in an application. Mapping defini-
tions are equivalence classes for performance data. Perfor-
mance data collected for the source sentence can be
presented in relation to either the source sentence or the
destination sentence.

Our simple definition of mapping information can
handle all the types mappings listed in Figure1. For exam-
ple, we can build a many-to-one mapping by defining
many mappings from different source sentences to one
destination sentence. We can build one-to-many and
many-to-many mappings from similar combinations of our
basic one-to-one mapping definition. The differences
among the four types of mappings can then be exploited
and interpreted by any performance tool that uses the map-
pings.

3 STATIC MAPPING INFORMATION

Static mapping information is any mapping information

Type of Mapping Example
How to assign low-level costs to high-level

structure

One-to-One Low-level message send S imple-
ments high-level reduction R.

Measurements of S are equivalent to mea-
surements for R.

One-to-Many Low-level function F implements
reductions R1, R2, ...

(1) Cost of F is split evenly over all R, or
(2) Merge all R into one
set and assign cost of F to entire set.

Many-to-One Low-level functions (F1, F2, ...)
implement one source line L.

First aggregate costs of F1,F2,... then
assign cost to line L.

Many-to-Many Many source code lines L1, L2, ...
are implemented by an overlapping
set of low-level functions F1, F2,...

First aggregate costs of F1, F2, ..., then
treat as a one-to-many mapping to L1, L2,
...

Figure 1: Types of Upward Mappings



provided to a performance tool prior to the execution of an
application program. To illustrate how we might use static
mapping information, we present an example in Figure2.
This figure shows a subset of static mapping information
for a CM Fortran program. The mapping information
defines a mapping between a compiler generated function
and two CM Fortran source code lines. The first three
records define two source-level nouns (line1160 and
line1161) and a source-level verb (Executes). The next two
records defines a Base level noun (the compiler generated
function cmpe_corr_6_()) and verb (CPU Utilization).
Finally, the last two records define mappings between
CPU Utilization in the base level function and execution of
the source code lines.

The mapping information indicates that the two state-
ments on lines 1160 and 1161 of the source code are
implemented by a single low-level routine, and that if our
performance measurement tool can measure CPU Utiliza-
tion for cmpe_corr_6_(), then it can present that informa-
tion as Execution of the corresponding source code lines.
A performance tool may then split the execution costs
between the two source code lines, merge the two lines

into an inseparable unit, or make other interpretations of
the mappings.

Static mapping information may be kept in an appli-
cation program’s executable image, in a separate file, in an
auxiliary database, or in some other static location.
Regardless of its location, the mapping information must
be communicated to performance tools before they can use
mappings for high-level abstractions.

The method of communicating static mapping infor-
mation discussed in this section provides a simple method
with which compilers can describe important language-
specific and program-specific information to performance
tools. Because such information is defined statically, per-
formance tools can process it before or after the execution
of the application program and avoid competition for
resources with the application program. However, static
mapping information usually cannot provide information
about mappings that are determined during application
execution.

NOUN
name = line1160
abstraction = CM Fortran
description = line #1160 in source file /usr/src/prog/main.fcm

NOUN
name = line1161
abstraction = CM Fortran
description = line #1161 in source file /usr/src/prog/main.fcm

VERB
name = Executes
abstraction = CM Fortran
description = units are “% CPU”

NOUN
name = cmpe_corr_6_()
abstraction = Base
description = compiler generated function, source code not available

VERB
name = CPU Utilization
abstraction = Base
description = units are “% CPU”

MAPPING
source = {cmpe_corr_6_(), CPU Utilization}
destination = {line1160, Executes}

MAPPING
source = {cmpe_corr_6_(), CPU Utilization}
destination = {line1161, Executes}

Figure 2: Examples of Static Mapping Information



4 DYNAMIC MAPPING INFORMATION

Dynamic mapping information includes any mapping
information that is generated during application execution.
It includes the same types of information as static mapping
information (see Figure 3), and differs with static mapping
information only in that is communicated to performance
tools during program execution. For example, if an appli-
cation dynamically allocates parallel data objects, then the
application must dynamically communicate the definition
of the corresponding noun to the performance tool. If the
application dynamically distributes the data object across
parallel processing nodes, then the application must
dynamically define a mapping between the object and pro-
cessor nodes for the performance tool. The performance
tool can use the dynamic mapping information during or
after run time to relate performance measurements to
abstract program constructs and activities.

In this section we discuss two important techniques
for collecting dynamic mapping information. The first
uses dynamic instrumentation [5] to reduce the perturba-
tion effects of collecting dynamic mapping information,
and the second uses a data structure called the Set of
Active Sentences to discover verb mappings that are other-
wise difficult to detect.

4.1 Using Dynamic Instrumentation

A mapping point is any function, procedure, or line of
code in an application where dynamic mappings may be
constructed. For example, if we have a run-time system
routine that allocates parallel data objects and distributes
them across processors, then the return point of the routine
would be defined as a mapping point; the mapping of data
objects to processor nodes will be determined just prior to
that point. Our goal is to identify all such mapping points
in an application, and instrument them with code that
reports mapping information to our performance tool. We
can instrument all such points by adding source code that
calls our performance tool, or we can use dynamic instru-

mentation to insert the mapping instrumentation at run
time.

Dynamic instrumentation[5] is a technique whereby
an external tool changes the binary image of a running
executable to collect performance data. The basic tech-
nique defines points at which instrumentation can be
inserted, predicates that guard the firing of the instrumen-
tation code, and primitives that implement counters and
timers. Dynamic instrumentation provides an advantage
over traditional static techniques because it allows perfor-
mance tools to instrument only those points that are cur-
rently needed to provide performance data. Any point that
does not contain instrumentation does not cause any exe-
cution perturbations.

For dynamic mapping instrumentation, we can define
a subset of points consisting of all those points that gener-
ate mapping information. Typically, the subset is different
for each language, or programming library and includes
the return points for all subroutines in which data struc-
tures are allocated or in which distributions to parallel pro-
cessors are determined. As an application executes, a
performance tool can either insert mapping instrumenta-
tion once at the beginning of execution and leave it in, or it
can insert and delete mapping instrumentation throughout
execution. The latter technique reduces run-time perturba-
tion but may miss mapping decisions or noun/verb defini-
tions.

4.2 The Set of Active Sentences

Some dynamic mapping information is difficult to deter-
mine by simply instrumenting mapping points in an appli-
cation. Verb mappings between layers of abstraction are
often difficult to detect because the implementation of one
layer is usually hidden from other layers for software engi-
neering reasons. In this section we describe the Set of
Active Sentences (SAS), a data structure that allows us to
dynamically map concurrent sentences between layers of
abstraction. We describe the SAS with an example taken
from High Performance Fortran, describe the kinds of
questions that might be asked and answered with the SAS,
and describe limitations of the SAS approach.

4.2.1 Description of the SAS

The Set of Active Sentences (SAS) is a data structure that
records the current execution state of each level of abstrac-
tion similar to the way a procedure call stack keeps track
of active functions.Whenever a sentence at any level of

Type of Information Description

Noun definition name
level of abstraction
descriptive information

Verb definition name
level of abstraction
descriptive information

Mapping definition source sentence
destination sentence

Figure 3: Types of Mapping Information

1 ASUM = SUM(A)
2 BMAX = MAXVAL(B)

Figure 4: Example HPF Code



abstraction becomes active, it adds itself to the SAS, and
when any sentence becomes inactive, it deletes itself from
the SAS. Any two sentences contained in the SAS concur-
rently are considered to dynamically map to one another.

For example, consider the example HPF code frag-
ment in Figure4. In this code, we are concerned with the
following problem: how to relate a low-level message to a
high-level array reduction. TheSUM reduction on line 1
and theMAXVAL reduction on line 2 of the code imply that
messages must be sent between processors on a distributed
memory parallel computer. We assume that each node of a
parallel computer holds subsections of arraysA andB, and
each node reduces its subsections before sending its local
results to other nodes to compute the global reductions.
We assume that a performance tool can measure the low-
level mechanisms for message transfer (e.g., message send
and receive routines), and can monitor the execution of the
high-level code (e.g., which line of code is active, which
array is active, what reduction is being performed on the
array).

We want to answer such questions as:

• How many messages are sent for summations ofA?
For finding theMAXVAL of B?

• How much time is spent sending messages for sum-
mations ofA?

Although these questions are specific to data-parallel
Fortran and in particular to the HPF code in Figure4, they
are representative of questions that we would like to ask
for any language built on multiple layers of abstraction. In
any such system, we want to explain low-level perfor-
mance measurements in terms of high-level programming
constructs (and vice versa). .

In the SAS approach to dynamic mapping, we defer
the asking of performance questions until run time, and
then only measure those sentences that help to satisfy at
least one performance question. As explained above, the
SAS keeps track of all sentences that are active at any level
of abstraction. Whenever any sentence becomes active,
monitoring code notifies the SAS, and the SAS remembers
all such active sentences. When a low-level sentence is to
be measured (whether by a counter, timer, or any other
means), monitoring code queries the SAS to determine
what sentences are currently active and thereby relates
low-level sentences to active sentences at higher levels.
Figure5 shows the contents of a hypothetical SAS for our
example HPF code

The figure represents a snapshot of the SAS at the
moment when a message is sent as part of the computation
of the sum of arrayA. It shows that three sentences are
active, two at the HPF level of abstraction, and one at the
base level. Any part of an application (e.g., user code, pro-
gramming libraries, or system level code) may add and
remove sentences from the SAS and need not know about
the existence of other layers to do so.

Our use of the SAS resembles the way in which some
performance tools for sequential programs make use of a
monitored program’s function call stack [2,3,4,7,10]. A
program’s function call stack records the functions that are
active at any given point in time. By exploring the call
stack, a performance tool can relate performance measure-
ments for a function to each of its ancestors in the pro-
gram’s call graph. Users of such a performance tool can
then understand how function activity relates to the
dynamic structure of their programs. The SAS, however,
may recordany active sentence, regardless of whether the
sentence could be discovered by examining the call stack.

As defined, the SAS containsall sentences that are
active. If we wish to reduce the size of the SAS, we can
also take advantage of run-time requests for performance
information [8] to eliminate uninteresting sentences from
the SAS. For example, if we only ever request measure-
ments for arrayA, then the SAS may avoid keeping sen-
tences that do not containA.Figure 5: The SAS When a Message is Sent

HPF: line #1 executes

HPF: A sums

Base: Processor sends a message

(each line represents
one active sentence)

Performance Questions Meaning

{A Sum} Cost of summations of A?

{Processor_P Send} Cost of sends by processor P?

{A Sum}, { Processor_P Send} Cost of sends by Pwhile A is being summed?

{? Sum}, { Processor_P Send} Cost of sends by Pwhile anything is being summed?

Figure 6: Example Performance Questions



4.2.2 Performance Questions

The SAS can also keep track of performance questions if
they are asked using nouns and verbs. We define a perfor-
mance question to be a vector of sentences. The meaning
of a performance question is that performance measure-
ments (of resource utilization) should be made only when
all of the sentences of the question are active. Figure6
shows a few of the possible performance questions (and
their meanings) for our example HPF code. Although the
questions in the figure consist of sentences that contain
one noun and one verb, we can easily generalize questions
to use more complex sentences without altering the opera-
tion of the SAS.

Monitoring code may use the SAS to answer the types
of questions listed in Figure6. Each component of a per-
formance question represents a predicate that must be sat-
isfied before monitoring code can measure CPU time,
wall-clock time, channel bandwidth, or any other execu-
tion cost for the question.

We can make the SAS more flexible by extending our
definition of performance questions. This extension would
include boolean disjunction and negation incurring only
the added cost of evaluating more complex expressions.

4.2.3 Distributed Memory

We have defined the SAS to be a global data structure. If
our target hardware systems support shared global mem-
ory, then we can use globally shared memory to store the
SAS. However, many of today’s parallel systems do not
use globally shared memory, and even for those that do,
we may not want to pay the synchronization cost of con-

tention for such a globally shared data structure. Fortu-
nately, we can still use the SAS approach if we duplicate
the SAS on each node of a parallel computer, just as appli-
cation code is duplicated for Single Program Multiple
Data (SPMD) programs. Each individual SAS can operate
independently of others as long performance questions are
not asked that require information from several SASs. For
example, all of the performance questions listed in
Figure6 can be answered without sharing any information
between nodes.

Of course, some interesting performance questions
can only be answered using information about sentence
activity on more than one node. For example, in a distrib-
uted database system, if a server process performs disk
reads on behalf of clients, then we may wish to measure
server disk reads that correspond to a particular client or a
particular query. The SAS information that is necessary to
answer such a performance question (server reads from
disk, client query is active) would be distributed between
the SAS on the client and the SAS on the server. The cli-
ent’s SAS and the server’s SAS would need to communi-
cate before the performance question could be answered.
In particular, the client’s SAS would need to send one sen-
tence (i.e.,client query is active) to the server’s SAS
whenever that sentence became active or inactive.

4.2.4 Limitations of the SAS Approach

The SAS approach to relating low-level performance
information to high-level activities has at least three limi-
tations.

Figure 7: Asynchronous Sentence Activations and the SAS (time advances downward)

User Process Kernel

func() {
..
write();..}

disk_write()
disk_write()
disk_write()

SAS

func() executes

kernel writes to disk

active
inactive



First, the SAS approach does not handle asynchro-
nous activation of sentences. For example, in a UNIX sys-
tem we may want to measure kernel disk writes that occur
on behalf of a particular function in a user process.
Figure7 shows time-lines for a hypothetical UNIX pro-
cess and kernel. The user process makes awrite() sys-
tem call to the kernel and the kernel later writes the
information to disk. The actual writes to disk do not occur
until later. The third column of the figure shows how the
SAS records each of these activities. As the figure shows,
the SAS may not contain both the function execution sen-
tence and the kernel disk write sentence at the same time,
and therefore kernel disk writes on behalf of function
func() could not be measured with the help of the SAS
alone.

Second, sentence activity notifications that are
ignored by the SAS cause unnecessary execution costs.
For our example code from Figure4, if we only ask per-
formance questions about arrayA, then all activation noti-
fications about arrayB are ignored by the SAS. But we
must pay the run-time cost of the notification. We could
eliminate this cost by dynamically removing such notifica-
tions from the executing code [5].

Third, sentences are not ordered in performance ques-
tions. For our current definition of performance question,
the question “How many messages are sent for the sum-
mation ofA?” is syntactically equivalent to the question
“How many summations ofA occur when messages are
sent?” If we were to take advantage of sentence order in
performance questions, then we could distinguish between
these two very different performance questions.

5 STUDY: CM-FORTRAN AND PARADYN

Paradyn is a performance measurement tool that uses
dynamic instrumentation to measure only the performance
data requested by users. Paradyn starts an application exe-
cuting, waits for user requests to measure performance
metrics, instruments the running application (usually by
rewriting the application’s executing binary image), and
then sends a stream of performance measurements back to
the user. By limiting its instrumentation to only requested
data, Paradyn can greatly reduce instrumentation intrusion
and allows users to measure large, long-running applica-
tions on large-scale parallel computers. Paradyn includes
performance display modules that allow users to view per-
formance metric streams graphically during the execution
of their applications. Paradyn also includes an automated
module (called the Performance Consultant) to help users
find performance problems in their applications.

Paradyn receives information about new levels of
abstraction, new resources, and new metrics from two
mapping information interfaces. Paradyn daemons import

static mapping information via Paradyn Information For-
mat (PIF) files just after they load each application execut-
able. PIF files are emitted by compilers, programming
environments, or other external sources that wish to define
source-level language code and data objects that are con-
tained in an application. PIF files allow such tools to
explain to Paradyn how it should map requests for high-
level language resources and metrics into requests for base
resources and metrics such as functions and CPU time.
The PIF format also allows external tools to communicate
descriptive information about resources and metrics to
Paradyn. In this way, language-dependent and application-
dependent visualization modules can receive descriptive
information to add meaning to visual displays.

The Paradyn dynamic instrumentation library sends
dynamic mapping information to the Paradyn daemon pro-
cess using the same communication channel used for per-
formance data. The dynamic instrumentation library,
linked into every application program that is measured by
Paradyn, contains interface procedures that allow the
application to describe mappings while it executes. The
dynamic instrumentation library sends the mapping infor-
mation to the Paradyn daemons, and the daemons forward
the mapping information to the Data Manager. The Data
Manager uses the dynamic mapping information in exactly
the same way as it uses static mapping information..

Paradyn uses dynamic performance instrumentation
techniques to turn on or turn off the flow of dynamic map-
ping information. Dynamic instrumentation allows appli-
cations to avoid the cost of emitting mapping information
when they are not run with Paradyn and allows Paradyn
users to turn off mapping information collection when it is
not needed. Currently, Paradyn allows users to turn on or
turn off all dynamic mapping instrumentation points at
once. Eventually, we could tie the enabling and disabling
of individual mapping instrumentation points to requests
for performance information.

6 CM FORTRAN-SPECIFIC RESOURCES
AND METRICS

Using the static and dynamic mapping interfaces described
in Sections3 and 4, Paradyn measures important resources
and metrics that are unique to CM Fortran and the CM
Runtime System (CMRTS). In this section we describe the
details of how Paradyn measures performance data for CM
Fortran’s parallel assignment statements and parallel
arrays and measures CMRTS-specific activities such as
Broadcast Messages, Point-to-Point Messages, Reduc-
tions, and Argument Processing.



6.1 Performance Data for Parallel Arrays

Arrays are the fundamental source of parallelism in data-
parallel CM Fortran. They are the only data objects that
use memory on the nodes of a CM-5 system, and the per-
formance of any particular CM Fortran program depends
greatly on its efficiency of computation and communica-
tion of arrays.

Paradyn measures CM Fortran arrays in a two step
process. First, Paradyn’s dynamic instrumentation library
detects array allocations (and deallocations) and forwards
resource and mapping information to Paradyn. When an
array is allocated (via a call to a particular CMRTS alloca-
tion routine) the dynamic instrumentation library notifies
Paradyn of the new array, establishes a unique identifier
for the array, and tells Paradyn (via the dynamic mapping
interface described in Section 5) which subregion of the
array is stored on which node of the system. Paradyn uses
this information to build a CMFarrays hierarchy as shown
in Figure 8. The figure shows that the module bow.fcm
contains six functions, and one of those (CORNER) con-
tains five arrays. One of the arrays within CORNER
(called TOT) has been expanded to show its subregions

The second step occurs when the user requests a per-
formance metric for a particular array. When the user
chooses an array to measure, Paradyn’s Data Manager
maps the array to the proper CMRTS identifier and system

node, and sends a message (via the same parallel debug-
ging interface used for dynamic instrumentation) to a Set
of Active Sentences (or SAS, described in Section 4.5)
module located on the appropriate node of the system. The
SAS module then sets a boolean variable to true whenever
the requested array is active and sets the variable to false
when the array becomes inactive. The CMRTS node code
block dispatcher notifies the SAS of array activation/deac-
tivation by sending the input arguments for each node code
block to the SAS. The SAS only searches the arguments
for those arrays that are requested by Paradyn.

To collect metrics, Paradyn dynamically inserts
instrumentation code into node-level subroutines. If a met-
ric is to be measured for an array, then the dynamically-
inserted instrumentation code checks the array’s node-glo-
bal boolean variable (discussed above), before measuring
the metric. Paradyn can thereby constrain any metric to an
array of interest.

Paradyn can easily use its existing visualization mod-
ules (time plots, bar charts, and tables) for visual display
of performance information for data objects. These visual-
ization modules simply treat a data object as a resource
like any other. However, Paradyn’s visualization interface
is open; we could build specialized visualization modules
to take advantage of properties (such as geometric struc-
ture) that are unique to arrays.

Figure 8: CMF-Level Where Axis



6.2 Parallel Code Constructs

Parallel code constructs allow CM Fortran programmers to
manipulate parallel arrays. Code constructs include paral-
lel assignment statements,FORALL iterators, and intrinsic
operations such asSUM, MIN, andTRANSPOSE.

Paradyn measures parallel code constructs by map-
ping each statement to the node code blocks that imple-
ment it. Paradyn receives this mapping information via
PIF files as described in Section 5. We create CM Fortran
PIF files with a simple utility that parses CM Fortran com-
piler output files. The utility scans the compiler output
files for lists of parallel statements, parallel arrays, and
node-code blocks. It then produces a PIF file that defines
the statements and arrays for Paradyn and describes the
mappings from statements to code blocks.

Paradyn’s user interface displays statements in the
CMFstmts hierarchy within the where axis display, as
shown in Figure8. Users may interact with the where axis
display to choose resources from the CMFstmts hierarchy,
from the CMFarrays hierarchy, or from a combination of
the two hierarchies. Users may also choose resources from
hierarchies for the CMRTS-level of abstraction, or the
base level of abstraction.

6.3 CMRTS Metrics

Paradyn’s dynamic instrumentation system includes a lan-
guage for describing how to measure new metrics. This
language (called Metric Description Language, or MDL)
allows users to precisely specify when to turn on/off pro-
cess-clock timers and wall-clock timers and when to incre-
ment and decrement counters. Paradyn compiles the
descriptions into code that is inserted into running applica-
tions at precisely the moment when the particular metric is
requested.

We have used MDL to define many new metrics that
are specific to CM Fortran and CMRTS. Some of these are
shown in the table in Figure9. The table lists the name of
each metric and a brief description of what the metric
measures. Each of these metrics can be constrained to par-
allel arrays, subsections of arrays, parallel assignment
statements, or combinations of assignment statements and
arrays. Together, the metrics cover most of the activities
(or verbs) necessary to understand the performance of CM
Fortran applications.

7 SUMMARY

We have described the important problems of collecting,
storing, communicating, and using mapping information
in performance tools for high-level parallel programming
languages. We have described a format and interface for
static and dynamic mapping information, and we have pre-

sented the Set of Active Sentences as a method for identi-
fying complex dynamic activity mappings.

8 BIBLIOGRAPHY
[1] V.S. Adve, J.-C. Wang, J. Mellor-Crummey, D.A. Reed, M.

Anderson, and K. Kennedy. An integrated compilation and
performance analysis environment for data parallel pro-
gramming. Technical Report 94513-S, CRPC, 1994.

[2] A. J. Goldberg and John Hennessey. Performance debug-
ging shared memory multiprocessor programs with mtool. In
Supercomputing 1991, pages 481–490, November 1991.

[3] S.L. Graham, P.B. Kessler, and M.K. McKusick. Gprof: A
call graph execution profiler. InACM SIGPLAN Symposium
on Compiler Construction, June 1982.

[4] Anoop Gupta, Margaret Martonosi, and Tom Anderson.
Memspy: Analyzing memory system bottlenecks in pro-
grams.Performance Evaluation Review, 20(1):1–12, June
1992.

[5] JeffreyK. Hollingsworth, BartonP. Miller, and Jon Cargille.
Dynamic program instrumentation for scalable performance
tools. In Scalable High Performance Computing Confer-
ence, May 1994.

[6] R. Bruce Irvin and BartonP. Miller. A performance tool for
high-level parallel programming languages. In KarstenM.
Decker and ReneM. Rehmann, editors,Programming Envi-
ronments for Massively Parallel Distributed Systems, pages
299–314. Birkhauser Verlag, 1994.

[7] Alvin R. Lebeck and DavidA. Wood. Cache profiling and
the spec benchmarks: A case study.IEEE Computer,
27(10):15–26, October 1994.

[8] BartonP. Miller, MarkD. Callaghan, JonathanM. Cargille,
JeffreyK. Hollingsworth, R.Bruce Irvin, KarenL. Karavan-
ic, Krishna Kunchithapadam, and Tia Newhall. The Paradyn
parallel performance measurement tools.IEEE Computer,
28(11), November 1995.

[9] Steve Sistare, Don Allen, Rich Bowker, Karen Jourdenais,
Josh Simons, and Rich Title. Data visualization and perfor-
mance analysis in the Prism programming environment. In
Programming Environments for Parallel Computing, pages
37–52. North-Holland, 1992.

[10] Pure Software Incorporated, Menlo Park, CA.Quantify Us-
er’s Guide, 1993.

[11] Thinking Machines Corporation, Cambridge MA.CM For-
tran Reference Manual, January 1991.



Metric Description
C

M
-F

o
rt

ra
n

 (
C

M
F

) 
L

ev
el

Computations
Computation Time

Count of computation operations.
Time spent computing results.

Reductions
Reduction Time
Summations
Summation Time
MAXVAL Count
MAXVAL Time
MINVAL Count
MINVAL Time

Count of array reductions.
Time spent reducing arrays.
Count of array summations.
Time spent summing arrays.
Count of MAXVAL reductions.
Time spent computing MAXVALs.
Count of MINVAL reductions.
Time spent computing MINVALs.

Array Transformations
Transformation Time
Rotations
Rotation Time
Shifts
Shift Time
Transposes
Transpose Time

Count of array transformations.
Time spent transforming arrays.
Count of array rotations.
Time spent of rotations.
Count of array shifts.
Time spent shifting arrays.
Count of array transposes.
Time spent transposing arrays.

Scans
Scan Time

Count of array scans.
Time spent scanning arrays.

Sorts
Sort Time

Count of array sorts.
Time spent sorting arrays.

C
M

-R
u

n
ti

m
e 

(C
M

R
T

S
) 

L
ev

el Argument Processing Time Time spent receiving arguments from CM-5 control processor.

Broadcasts
Broadcast Time

Count of broadcast operations.
Time spent broadcasting.

Cleanups
Cleanup Time

Count of resets of node vector units.
Time spent resetting node vector units.

Idle Time Time spent waiting for control processor.

Node Activations Count of node activations by control processor.

Point-to-Point Operations
Point-to-Point Time

Count of inter-node communication operations.
Time spent sending data between parallel nodes.

Figure 9: Paradyn metrics for CM Fortran Applications


