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Abstract

Accurate performance diagnosis of parallel
and distributed programs is a difficult and
time-consuming task. We describe a new
technique that uses historical performance
data, gathered in previous executions of an
application, to increase the effectiveness of
automated performance diagnosis. We
incorporate several different types of historical
knowledge about the application’s
performance into an existing profiling tool, the
Paradyn Parallel Performance Tool. We gather
performance and structural data from previous
executions of the same program, extract
knowledge useful for diagnosis from this
collection of data in the form of search
directives, then input the directives to an
enhanced version of Paradyn, which conducts
a directed online diagnosis. Compared to
existing approaches, incorporating historical
data shortens the time required to identify
bottlenecks, decreases the amount of unhelpful
instrumentation, and improves the usefulness
of the information obtained from a diagnostic
session.

1  INTRODUCTION

Accurate performance diagnosis of parallel and distrib-
uted programs is a difficult and time-consuming task.
Recent research [1, 2, 14, 3, 4] examines possible
approaches for automating, and thereby simplifying,
the process of diagnosing a single program run. This

paper describes how historical performance data, i
data gathered in one or more previous executions of
application, can be used to increase the effectivenes
automated performance diagnosis. To test our ideas
incorporate several different types of historical know
edge about an application’s performance into an exi
ing diagnostic research tool, the Paradyn Paral
Performance Tool [5].

Paradyn’s Performance Consultant perform
online, automated bottleneck detection in a single ex
cution of a parallel or serial code. The general sear
strategy used in the Performance Consultant wor
well for studying new and unfamiliar applications. I
provides systematic investigation of an application th
does not depend on any assumptions about the appl
tion or the runtime environment, so it yields usefu
information for a wide range of programs. In practice
we noticed that the second time we sat down with t
same application, it would miss data for interestin
events and possibly stop before completion due
inherent instrumentation cost limits. There is a natur
tension between a generally useful, single butt
approach to performance diagnosis and a more appli
tion-specific, knowledge-dependent approach. O
goal is not to replace the Performance Consultant’s s
gle button model, rather, to augment the search strate
in cases where prior knowledge of the program bei
studied is available.

The goals for our research are:

1. Shorten the time required to identify important
bottlenecks. We evaluate this strategy by mea-
suring and comparing the total time to find bot-

1. This work is supported in part by Department of Energy Grant DE-FG02-93ER25176, NASA GSRP grant NGT-51368, NSF grants CDA-9623632

and EIA-9870684, and DARPA contract N66001-97-C-8532. The U.S. Government is authorized to reproduce and distribute reprints for Govern-

mental purposes notwithstanding any copyright notation thereon.
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tlenecks with and without historical
information.

2. Decrease the amount of unhelpful instrumenta-
tion. There is a practical limit to the total
amount of instrumentation in place at one time,
to minimize inaccuracy of results due to per-
turbation. Decreasing unhelpful instrumenta-
tion in some cases will allow the search to
continue where it might otherwise reach a limit
and halt. We evaluate this strategy by measur-
ing the total amount of instrumentation and the
time to find bottlenecks.

3. Determine the precise location of all signifi-
cant bottlenecks. Results most useful for per-
formance tuning are obtained when testing
identifies a reasonably small number of well-
defined potential problem areas. Practical lim-
its on the total amount of instrumentation can
result in important bottlenecks not being fully
explored because of the “noise” of less useful
bottlenecks being tested. We measure this by
identifying a set of “important” bottlenecks for
a particular execution, then evaluating the
effect of historical information on finding the
bottlenecks in that set.

We save performance and structural data from suc-
cessive executions of an application, then extract
knowledge useful for diagnosis from this collection of
data, in the form of search directives. There are three
types of directives:prunes, which cause the Perfor-
mance Consultant to ignore some bottleneck tests com-
pletely; priorities, which provide an ordering for the
tests; andthresholds, which provide a level against
which to test the application’s performance. Last, we
perform online performance diagnosis with an
enhanced version of Paradyn, using the directives to
guide the search. We evaluated our technique by testing
an MPI application on the IBM SP/2, with reductions
of 31% to 98% in the time needed to locate perfor-
mance bottlenecks.

2  PARADYN’S PERFORMANCE CONSULTANT

Our testbed for the studies is an enhanced version of
Paradyn. Paradyn is an application profiler that uses
dynamic instrumentationto insert and delete measure-
ment instrumentation as a program runs. This approach
results in a relatively small amount of data, in contrast
to most tracing methods that may result in (possibly
unusably) large data files. Paradyn’s Performance Con-

sultant (PC) [2] capitalizes on this dynamic instrume
tation to automate bottleneck detection during
program execution. The PC starts searching for bott
necks by issuing instrumentation requests to colle
data for a set of pre-defined performance hypothes
for the whole program. Each hypothesis is based on
continuously measured value computed by one or mo
Paradyn metrics, and a fixed threshold. For examp
the PC starts its search by measuring total time spen
computation, synchronization, and I/O waiting, an
compares these values to predefined thresho
Instances where the measured value for the hypothe
exceeds the threshold are defined asbottlenecks. The
full collection of hypotheses is organized as a tre
where hypotheses lower in the tree identify more sp
cific problems than those higher up.

We represent a program as a collection of discre
program resources. Possible resources include the p
gram code (i.e. modules and functions), applicatio
processes, machine nodes, synchronization points, d
structures, and data files. Each group of resources p
vides a distinct view of the application. We organiz
the program resources into trees calledresource hierar-
chies. The root node of each resource hierarchy
labeled with the hierarchy’s name. As we move dow
from the root node, each level of the hierarchy repr
sents a finer-grained description of the program.
resource nameis formed by concatenating the label
along the unique path within the resource hierarc
from the root to the node representing the resource. F
example, the resource name that represents func
verifyA (shaded) in Figure 1 is <Code/testutil.C/verifyA>.

For a particular performance measurement, w
may wish to specify certain parts of a program. Fo
example, we may be interested in measuring CPU tim
as the total for one entire execution, or as the total fo
single function. Thefocusconstrains our view of the
program to a selected part. Selecting the root node o
resource hierarchy represents the unconstrained vi
the whole program. Selecting any other node narro
the view to include only those leaf nodes that a
descendents of the selected node. For example,
shaded nodes in Figure 1 represent the constraint: fu
tion verifyA of processTester:2 running on any CPU,
which is labeled with the focus:
< /Code/testutil.C/verifyA, /Machine, /Process/Tester:2 >.

Each node in a PC search represents instrumen
tion and data collection for a (hypothesis:focus) pair. If a
node tests true, meaning a bottleneck is found, the P
formance Consultant tries to determine more speci
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Figure 1: Representing programTester.There are three resource hierarchies:Code, Machine, and Process.

Figure 2: A Performance Consultant search in progress.The three items belowTopLevelHypothesis have been added
as a result of refining the hypothesis. NodesExcessiveSyncWaitingTime andExcessiveIOBlockingTime have tested false, as

indicated by node color (light grey in this figure), and nodeCPUbound (dark grey) has tested true and has been expanded by
refinement. The nodesbubba.c, channel.c, anneal.c, outchan.c, and graph.c all tested false, whereas the nodesgoat and

partition.c tested true and were refined.
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information about the bottleneck. It considers two
types of expansion: a more specific hypothesis, and a
more specific focus. A child focus is defined as any
focus obtained by moving down along a single edge in
one of the resource hierarchies. Determining the chil-
dren of a focus by this method is referred to asrefine-
ment. If a pair (h : f) tests false, testing stops and the
node is not refined. The PC refines all true nodes to as
specific a focus as possible.

Each (hypothesis : focus) pair is represented as a
node of a directed acyclic graph called the Search His-
tory Graph (SHG). The root node of the SHG repre-
sents the pair (TopLevelHypothesis : WholeProgram), and
its child nodes represent the refinements chosen as
described above. Paradyn displays the SHG in list box
form; we show an example in Figure 2.

Depending on the number of resources needed to
represent an application, the number of hypothe-
sis/focus pairs to be explored might be quite large. To
prevent the PC data requests from overwhelming the
system capacity or perturbing the application to a point
where reliable results cannot be determined, the cost of
instrumentation enabled by the PC is continually moni-
tored. Search expansion, which generates new instru-
mentation requests, is halted when the cost reaches a
critical threshold, and restarted once instrumentation
deletion (initiated when nodes test false) causes the
cost to return to an acceptable level.

3  HARVESTING HISTORICAL DATA

We investigated three mechanisms for including histor-
ical data in a diagnostic tool:pruning directivesthat
tell the tool to ignore some resources entirely;priori-
ties that tell the tool which aspects of the application
and runtime environment to look at first; andthresholds
that tell the tool specific values against which to mea-
sure the application’s actual performance. These direc-
tives are described in Section 3.1. In order to use search
directives extracted from one run in a new diagnosis
session, it is necessary to perform a mapping on the
resource names. We describe this mapping in
Section 3.2.

3.1 Types of Search Directives

Pruning directivesinstruct the diagnostic tool to ignore
a subtree of a resource hierarchy in its evaluation of a
specific hypothesis. They are a mechanism for convey-
ing information about insignificant parts of an applica-
tion. The total number of hypothesis/focus pairs tested
by the Performance Consultant may become large if

the total number of resources is large. In practice, th
is frequently true. The top-down approach taken by t
PC has the effect of excluding part of the potential
huge search space, since false nodes are never refi
Prunes further shrink the size of the search space.
example, we can avoid the overhead of instrumenti
small, infrequently executed functions by pruning the
from the search. Pruning directives can also be used
customize the search strategy for a particular enviro
ment. For example, the static process model of M
version 1 leads to a one-to-one corresponden
between process and machine node. It is not necess
to investigate relative performance by both process a
machine, so we can prune out the machine hierarc
Pruning does not dictate the overall search strate
employed – what to examine first or next – rather
reduces the size of the total search space. One poss
side effect of pruning is incorrectly eliminating some
thing important. For this reason we also investigat
other methods with better robustness. We investiga
pruning based on historical data, such as functions w
short execution time and redundant hierarchies (e
machine hierarchy if processes and machines map o
to-one) or sections of hierarchies. We also investigat
pruning based on general rules, such as pruning
/SyncObject hierarchy from all but synchronization-
related hypotheses.

Priorities assign a relative level of importance to
specified focus-hypothesis pairs. This allows resourc
more likely to be responsible for behaviors of intere
to be studied first, allowing data to be collected for
longer time interval. Unlike prunes, priorities do no
exclude any foci from consideration; they instruct th
diagnostic tool to consider certain hypothesis-foc
pairs first. Each hypothesis-focus pair is given priorit
High if it tested true in at least one previous executio
Low if it tested false in all previous executions; othe
wise, Medium. High priority pairs are instrumented a
search start and are persistent (i.e., testing contin
throughout the entire program run, regardless
whether a true or false conclusion is reached). Start
up high priority pairs immediately, rather than waitin
for the default top down search order to refine down
them, results in more control over the overall sear
order. By comparison, setting priority to medium o
low only ensures an ordering between the node and
siblings.

Thresholdsare the values used to determine if
hypothesis is true or false for a given focus. In the sta
dard version of Paradyn, there is a threshold value
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each hypothesis that can be set by the user. The goal is
to keep the number of bottlenecks reported in a practi-
cally useful range. Reporting a large number of differ-
ent bottlenecks yields inadequate guidance to the
tuning effort, i.e., what to look at first, and also drives
up the cost of instrumentation. Reporting only one or
two bottlenecks, or failing to refine the bottlenecks to a
detailed level, provides less information than might
reasonably be obtained through simple visualization.
We investigated automatically setting the thresholds
based on historical data.

3.2 Mapping Resource Names Between Different
Executions

Resources can change from one run of a program to the
next. For example, an 8-node application might run on
nodes 0-7 during one run and on nodes 123-130 on the
next run. Similarly, process ID’s are likely to be differ-
ent for each run. If we are to relate performance results
from a previous run to the current run, we must be able
to establish an equivalency between (map) the differ-
ently named resources.

The issue of mapping can also appear for code
(module or function) resources. In Section 4.3, we
present results from multiple implementations of a
Poisson function decomposition program. The different
version have different names for their main function

and kernel function
After each run of the Performance Consultant, w

have the search history graph and the program
resource hierarchies. These results are used to gene
search directives to be used in subsequent runs.
added new functionality to the Performance Consulta
to map focus names found in these directives on
names valid in the current environment. Mappin
allows us to link resources from different execution
with different names, so Paradyn treats them as equi
lent. One example to motivate the need for mapping
the common case of executing on differently name
nodes of a machine in different runs. Mapping is impl
mented as a set of directives of the form “ma
resourceName1 resourceName2” specified by the user
in an input file. After starting Paradyn, we apply th
specified mappings to the list of extracted search dire
tives, then read the directives into the Performan
Consultant. For increased efficiency, we apply spe
fied pruning directives, if any, to the resulting list o
search directives before we read it into the Performan
Consultant

Figure 3 shows combined resource hierarchies
two versions of an MPI application, Versions A and B
Each resource is tagged with execution identifier 1,
or 3 if the resource is found in Version A,Version B, o

Mappings Used

map /Code/exchng1.f /Code/nbexchng.f
map /Code/exchng1.f/exchng1 /Code/nbexchng.f/nbexchng1
map /Code/oned.f /Code/onednb.f
map /Code/sweep.f /Code/nbsweep.f
map /Code/sweep.f/sweep1d /Code/nbsweep.f/nbsweep

Figure 3: Mappings for Versions A and B.On the left we show the execution map for Versions A and B of the
Poisson decomposition application, with the Code hierarchy expanded. Each resource is tagged with
execution identifier: resources unique to version A are labeled with “1,” those unique to version B are labele
with “2,” and those common to both are labeled with “3.” We map unique nodes which refer to code that wa
modified between versions, including a change of name. The mapping directives we used are shown on the rig
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both, respectively.Resources unique to one execution
are candidates for mapping. For example, the module
containing function main is named “oned.f” in Version
A, and “onednb.f” in Version B. We map these two
resources,/Code/oned.f andCode/onednb.f, so that search
directives extracted from runs of A may be used in
diagnosing runs of B. The full set of mappings we used
in this example is shown to the right of the resource
hierarchies.

4  RESULTS

We performed a set of experiments to evaluate the use
of prior knowledge in the form of pruning, prioritiza-
tion, and threshold directives. The first section reports
on the effectiveness of adding pruning and priority
directives to the Performance Consultant. The second
section explores the advantages of using application-
specific thresholds formulated using historical data.
The final section studies the use of pruning, prioritiza-
tion, and generated thresholds with different versions
of the same application, to simulate the common prac-
tice of performance tuning successive versions of an
implementation.

4.1 Using Pruning and Priority Directives

We ran our enhanced version of the Performance Con-
sultant on an MPI application that solves the 2-D Pois-
son problem[6], running on four nodes of an IBM SP/2.
First we ran the PC on the application with no modifi-
cations, and saved the resource hierarchies, search his-
tory graph, and performance results. This run forms our
base case and was allowed to run to completion to
identify the complete (100%) set of possible bottle-
necks. Then we tested three variations of directed
searching: first we generated only pruning directives,
second only priorities, and third a combined version
with both prunes and priorities. Identical search thresh-
olds were used in all runs. In each experiment, we

recorded the time each bottleneck was reported by
tool. The times we recorded are the timestam
assigned by Paradyn to the data, and reflect applicat
execution time. Since Paradyn performs dynam
instrumentation, the starting timestamp is determin
by the instant of the instrumentation request, plus t
time required to actually insert the instrumentation in
the application code. Each conclusion about a perf
mance hypothesis is determined once a set time int
val of data has been received from the runnin
application. The results are reported in Table 1.

The first experiment investigated the performan
advantages obtained using pruning directives. We us
data from previous runs to generate a list of prunin
directives. Then we ran Paradyn, providing the list
pruning directives as input to the modified Performan
Consultant. The combined search pruning directiv
result in a reduction of 93.5% in time to locate all tru
bottlenecks. We ran further tests to evaluate the effe
of each of the two types of pruning: general prune
such as pruning the /SyncObject hierarchy from all b
synchronization-related hypotheses, are not specific
a particular application or environment; histori
prunes, such as pruning a specific function with lo
execution time, are formulated based on data gathe
in one or more previous executions of the same app
cation. We see a substantial improvement with eith
type of pruning, and also see that the combinati
yields the best results: adding historic prunes result
in execution times 28% shorter than using only gene
prunes.

In the second experiment, we studied the effects
ordering the search for bottlenecks using priorities. W
used historical data to generate priorities for ea
hypothesis/focus pair as outlined in Section 3. W
expected that, compared to using the PC with no hist
ical data, we would reduce the time required to find th

%
B’necks
Found

No
Directives

Prunes Only
General
Prunes
Only

Historic
Prunes
Only

Priorities Only
Priorities & All

Prunes

25% 115.2 80.0 (-30.6%) 102.4 108.8 80.0 (-30.6%) 51.2 (-55.6%)

50% 182.4 83.2 (-54.4%) 121.6 204.8 124.8 (-31.6%) 57.6 (-68.4%)

75% 1011.2 140.8 (-86.1%) 169.6 281.6 211.2 (-79.1%) 86.4 (-91.4%)

100% 2611.2 169.4 (-93.5%) 236.8 470.4 560.0 (-78.6%) 147.2 (-94.4%)

Table 1: Time (in seconds) to Find all True Bottlenecks with Search Directives
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major (true) bottlenecks, and see no change in the
amount of instrumentation. We obtained a reduction of
79% in time to locate all true bottlenecks. The
improvement is more modest than the reduction of
93.5% we obtained using pruning directives. However,
reordering the search does not introduce the possibility
of missing bottlenecks, which is an important advan-
tage to the method.

In the final experiment, we tested a combination of
prunes and priorities. Our goal was to improve on the
time reduction obtained using only priorities, yet avoid
the possibility of pruning important tests from the
search. We included pruning of redundant and irrele-
vant hierarchies, but did not include prunes for previ-
ously false hypothesis/focus pairs. This combined
approach may result in some retesting of false nodes,
however, it will never miss new behaviors due to prun-
ing. We obtained a reduction of 94.4% for finding
100% of the true bottlenecks, which is a reduction of
20 seconds from pruning without priorities.

4.2 Using Thresholds Determined from Historical
Data

We studied the behavior of the Performance Consultant
with varying threshold values for the 2-D decomposi-
tion application of Section 4.1 run across four nodes of
an IBM SP/2. This sample application is strongly dom-
inated by synchronization waiting time, which
accounts for approximately 75% of the total execution
time. 45% of the total execution time for all four pro-
cessors is spent waiting in functionexchng2, and 20%
in function main. This wait is split between three mes-
sage tags,3/0, 3/1, and 3/-1 (27%, 19%, and 20%

respectively). Individual processes3 and 4 are domi-
nated by wait time (81% and 86%) and significan
waiting also occurred in processes 1 and 2 (46% a
47%).

We investigated the quality of the PC’s diagnos
by checking for the number of these areas reported
bottlenecks, either individually (e.g., functionmain) or
in combination (e.g., message tag3/0 for function
main). Full results are shown in Table 2. When a thres
old setting greater than 10% was used, bottlenecks
previously determined to be significant were no
reported by the PC. When the threshold was set to 1
the tool reported close to the full set of bottlenecks; th
default Paradyn setting of 20%, in contrast, resulted
7 of the 26 bottlenecks being missed. The third colum
shows how much instrumentation was used to diagno
the program run. Setting the threshold to 12% (shade
yields good results and also uses noticeably less ins
mentation than a setting of 10% or 5%. The final co
umn shows an efficiency metric determined by dividin
the number of bottlenecks found by the number
hypothesis/pairs tested. Efficiency decreases w
thresholds below 12%, an indication that lowering th
threshold below 12% increases the amount of instr
mentation but does not improve the result.

In earlier studies we found similar results for a
ocean circulation modeling code using PVM, runnin
on SUN SPARCstations. We found an optimal syn
chronization threshold at 20%, from a starting point
30% (which yielded an incomplete diagnosis). Effi
ciency decreased below 20%, for example the numb
of metric-focus pairs instrumented was 326 for 20

Synchronization
Bottleneck Threshold

Setting (% of total
execution time)

Number of Bottlenecks
Reported by the

Performance
Consultant

Total Number of
Hypothesis/Focus Pairs

Tested

Efficiency
(Bottlenecks Found Per

Pair Tested)

30% 9 30 0.3

20% 19 66 0.29

14% 22 76 0.29

12% 25 85 0.29

10% 26 107 0.24

5% 26 105 0.25

Table 2: Bottlenecks Found with Varying Threshold Values.Number of bottlenecks reported are rounded,
averaged values calculated from repeated tests.



Karavanic and Miller “Improving Online Performance Diagnosis by the use of Historical Performance Data”

c-
a
or
ce
ch
e
run
e
lso
nt

ull
is-
nt
-
ini-
l
ion
l-

the
he
es,

a
nt
fore

e
it

irst
m

,

17
ata
d at
and jumped to 373 for 10%. The useful threshold in
this case differs from that found for the MPI applica-
tion, showing the advantage of application-specific his-
torical performance data.

4.3 Using Historical Data with Different Code Ver-
sions

We studied the use of historical application knowledge
where the application has been revised over time.
While tuning an application, a developer repeats
through a cycle of profile-analyze-change. We per-
formed a series of performance diagnoses using differ-
ent versions of an MPI application on the IBM SP/2.
The application implements an iterative Poisson func-
tion decomposition. We used several of the different
versions of the implementation presented by Groppet
al[6]. In each step of the study, we used results from
previous runs of the Performance Consultant to direct
subsequent PC runs. There were four versions of the
application: Version A is a 1-dimensional version that
uses blocking send and receive operators; Version B is
a non-blocking 1-dimensional version; Version C per-
forms a 2-dimensional decomposition; and Version D
runs the same code as Version C across 8 nodes (all
others run on 4 nodes). We changed all versions to
compute a fixed number of iterations, rather than stop-
ping as soon as a solution is reached.

We started by running the Performance Consultant
on Version A without search directives, resulting in a
time to locate true bottlenecks of 2272 seconds. Next,
we repeated the same diagnosis on the same version,
this time including search directives generated from the
previous execution, and decreased the diagnosis time

by approximately 92%.
Next we examined Version B using search dire

tives extracted from runs of Version A, and found
98% improvement in diagnosis time. We continued f
Versions C and D, each time running the Performan
Consultant with search directives extracted from ea
individual prior run. We mapped each pair of machin
resources so that search directives generated in one
could be meaningfully used to refer to machin
resources discovered in a subsequent run. We a
mapped functions and modules between the differe
code versions, as described in Section 3.2. The f
results are shown in Table 3. In every case, adding h
torical knowledge to the Performance Consulta
greatly improved its ability to quickly diagnose perfor
mance bottlenecks: diagnosis time was reduced a m
mum of 75% in all executions using historica
knowledge. In Table 3, each row represents the vers
of the application currently being diagnosed. Each co
umn represents the source from which we extracted
search directives used. The first column contains t
time to reach a diagnosis using no search directiv
and subsequent columns contain the time to reach
diagnosis using search directives from differe
sources. We used dedicated machine time and there
saw relatively low variability in run time for repeated
executions of the same version.

After completing the test runs, we analyzed th
Performance Consultant behavior to determine how
was affected by the search directives we added. F
we examined the effects of using search directives fro
the base run of A,a1, to diagnose a second run of A

Source of Search Directives

None A B C D

A
pp

lic
at

io
n

Ve
rs

io
n

A 2272 183 (-92%)

B 4454 96 (-98%) 135 (-97%)

C 1021 186 (-82%) 173 (-83%) 256 (-75%)

D 3411 554 (-84%) 810 (-76%) 438 (-87%) 429 (-87%)

Table 3: Time (in seconds) to find all bottlenecks with search directives from different application versions.
Times reported are median values for several runs, reported in seconds. Standard Deviations range from 3 to 

seconds. Each row contains the data for a particular application version, A through D. Each column contains the d
for a particular source of the search directives used with the Performance Consultant. For example, the cell foun
row “C” and column “B” contains the time to diagnose C using directives from a previous run of B. Time relative to

the base version (column “None”) is shown in parentheses.
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a2. 81 hypothesis/focus pairs tested true ina1, result-
ing in 81 search directives that set priority to high. In
a2,a total of 103 hypothesis/focus pairs tested true. 78
were pairs that tested true ina1 (and were included in
the 81 search directives); of the remaining 25, 3 had
been set to low priority, 6 were intermediate level
nodes not tested ina1,and the remaining 16 were more
detailed/refined answers not tested ina1 due to cost
limits. In this case, using search directives resulted in a
more detailed diagnosis than could be performed with-
out the directives.

Although we had anticipated search directives
from different versions would not be as effective as
search directives from the same version, the results
showed only small differences in most cases. We exam-
ined the different runs of Version C, noting the differ-
ences in the sets of search directives extracted from the
base runs of Versions A, B, and C. As shown in
Table 4, 36% of the priorities were common across all
three sets of directives, 41% were unique to a single
set, and the remaining 23% occurred in two of the three
sets. High priority settings have a bigger impact; for
this category, 43% were common to all three, 30%
were unique to one, and the remaining 27% were com-
mon to two.

The list of bottlenecks found did not vary between
the runs of C that used search directives extracted from
Versions A, B, or C. Of 115 total bottlenecks diagnosed
as true by the Performance Consultant in any of these
runs, 113 were common across all three, and the
remaining 3 were common to two of the three.

We conclude that, for this example, despite modifi-
cations to the communications primitives (blocking or
non-), and modifications to the algorithm (1-d or 2-d
decomposition), the bottleneck locations remained the
same. So although total synchronization time and total

execution time varied between versions, the set
resources responsible for the time was similar.

We also investigated using results from multipl
previous runs to guide the current run. We looked
two different approaches to combining search dire
tives from different versions: sets to a high/low
priority only those hypothesis/focus pairs that teste
true/false inboth Versions A and B. sets to a
high priority those hypothesis/focus pairs that test
true in either A or B, and sets to low priority those
hypothesis/focus pairs which tested false in either ve
sion and did not test true in A or B. We used the resu
ing set of directives to diagnose Version C. In th
particular example, the lists of priorities that resu
from the two methods of combination have 59 commo
directives, with 38 additional directives unique t

. The resulting diagnosis times were 176 fo
and 179 for . This difference is too smal

for us to conclude the superiority of one combinatio
method over the other. Which performs better is relat
to the similarity of the sets of directives generate
using data from runs A and B, not the similarity in cod
or platform of the versions.

5  RELATED WORK

We know of no other existing tool for automated pe
formance diagnosis that adapts its testing strate
using historical performance data. Chitra[7] generat
a parameterized empirical model fitting all observe
data from one or more program runs to predict futu
program performance. The CMon and PSpec tools
gather data from multiple executions and produce
single summary of application behavior, checking fo
particular metric values at predetermined executi

Priority
Setting

A only B only C only A, B only A, C only B, C only A, B, C TOTAL

High 16 13 3 10 10 9 46 107

Low 32 72 24 28 20 13 92 281

Both 48 85 27 38 30 22 138 388

Table 4: Similarity of Extracted Priorities Across Code Versions.Each column represents the source(s) of the
priority directives: a run of one or more of versions A, B, and C. The rows contain data for high priority, low priority,
and the complete set of both. The values are the number of priority directives for the particular category. For examp
of the total 107 different high priority directives, 16 were unique to version A and 46 were common to versions A, B

and C.

A B∩

A B∪

A B∪
A B∪ A B∩
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points. There is no widely used set of benchmarks to
measure effectiveness or correctness of parallel and
distributed performance diagnosis. Francioni [9] pro-
posed a test suite for debugging/performance analysis
tools called SWAMP. Malony [10] conducted a detailed
study of performance perturbation due to instrumenta-
tion. Hondroudakis and Procter [11] classify the tasks
involved in parallel performance tuning based on
extensive user survey. Their results support the need for
performance data storage across multiple executions
and across different tuning studies. A recent study by
Smith et al [12] investigates relevant parameters for
predicting application run times from historical infor-
mation. Our goal is not to predict run time, rather to
harvest directives for a runtime tool to measure behav-
ior at a more detailed level.

6  CONCLUSIONS AND FUTURE WORK

We have described a new approach to automated per-
formance diagnosis that incorporates knowledge from
previous runs of the same application. The result is a
performance tool that learns from each diagnostic pro-
gram run, adapting its search strategy to obtain more
useful diagnoses more quickly. We show performance
gains of up to 98% obtained by incorporating historical
knowledge into the Performance Consultant’s search
strategy. The results presented demonstrate the utility
of our approach for repeated performance diagnosis of
similar program runs, a common scenario when tuning
parallel applications.

Harvesting useful historical knowledge requires an
available store of performance data gathered from one
or more previous program runs. This work is part of an
ongoing research effort in which we are designing and
developing an infrastructure for storing, naming, and
querying multi-execution performance data. Our repre-
sentation for the space of executions, and techniques
for quantitatively and automatically comparing two or
more executions, are described in a previous paper
[13].

We are currently extending this research in several
directions. We are studying additional approaches for
mapping resources from different executions. Our goal
is to automate the mapping to the furthest extent possi-
ble, while continuing to allow user-specified mappings.
We have demonstrated resource mapping performed at
the start of each new execution, and we hope to extend
this to cover cases in which new resources are discov-

ered later in an application run. We are also extendi
the ability to extract search directives to the case whe
results in the form of a Search History Graph from
previous PC run are not available, but we do have t
raw data needed to test hypotheses postmortem. T
would allow us to study use of search directive
extracted from results gathered with different monito
ing tools.
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