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As the sizes of high-end computing systems continue to grow to massive scales, efficient
bootstrapping for distributed software infrastructures is becoming a greater challenge. Dis-
tributed software infrastructure bootstrapping is the procedure of instantiating all pro-
cesses of the distributed system on the appropriate hardware nodes and disseminating
to these processes the information that they need to complete the infrastructure’s start-
up phase. In this paper, we describe the lightweight infrastructure-bootstrapping infra-
structure (LIBI), both a bootstrapping API specification and a reference implementation.
We describe a classification system for process launching mechanism and then present a
performance evaluation of different process launching schemes based on our LIBI
prototype.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

In high-performance computing (HPC) environments, system sizes continue to grow dramatically. On the most recent Top
500 list [1], 254 (or 50.8%) of the entries have over 13,000 cores, compared to seven (or 1.4%) just 5 years ago. On the most
recent list, five have over 200 K cores, ten others have over 128 K cores, and nineteen more have over 64 K cores. Lawrence
Livermore National Laboratory (LLNL) has a 1.6 million core system, Sequoia [2]. Further, exascale systems are projected to
have on the order of tens to hundreds of millions of cores within the current decade [3]. Capability class and other very large
application instances that utilize large portions of the entire system, as well as HPC system software and tools, must scale to
these massive sizes.

All distributed software systems require a bootstrapping phase in which their processes are started and some basic infor-
mation is exchanged. As Fig. 1 depicts, given an allocation of physical computational nodes, we define distributed software
infrastructure bootstrapping as the procedure of instantiating the infrastructure’s composite processes on the specified com-
putational nodes and exchanging the information that these processes require to complete their setup and to enter their pri-
mary operational phases.1

An efficient bootstrapping process can be critical, and inefficiencies in this process can become an impediment for soft-
ware deployment and utility. For example, a few seconds are generally the upper bound on acceptable delay for interactive
operations. At current scales, it can take several minutes to deploy an interactive software tool, when often the tool can per-
form its key functions much more quickly. Our experiences with our own Stack Trace Analysis Tool (STAT) [4] demonstrated
. All rights reserved.
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the processes act upon exchanged information; this final activity is infrastructure-dependent.
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Fig. 1. Distributed application bootstrapping.
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this problem: a full-scale instance of STAT on the Lawrence Livermore National Laboratory’s BlueGene/L system could take
minutes to start-up and subsequently, less than a single second to perform its analysis. Efficient bootstrapping can also be
critical in the many-task computational model. In this model, applications are decomposed into many (thousands and some-
times millions of) tasks, and processes are launched continuously on the available computational resources throughout the
application’s execution. The finer-grained the tasks, the greater the impact of inefficient bootstrapping.

In this work, we design and develop a set of abstractions and mechanisms that address the challenges of scalable software
system bootstrapping and deficiencies in current bootstrapping approaches. We present the lightweight infrastructure-boot-
strapping infrastructure (LIBI), a reference implementation of our system for launching distributed applications. LIBI is not
intended to replace existing resource managers (RMs); LIBI is designed to provide a more intuitive and flexible system boot-
strapping interface and mechanisms for portably leveraging RMs. LIBI also provides very efficient and scalable rsh-based pro-
cess launch for situations in which RMs are unavailable or cannot be used for one reason or another. In this article, we
describe LIBI’s design and implementation and make the following contributions:

� We offer a system for classifying process launching and bootstrapping mechanisms (Section 3). This classification gives us
a way to compare different bootstrapping facilities, particularly with respect to performance and scalability;
� we describe the architecture, design and implementation of our LIBI software prototype (Section 4); and
� we present an evaluation of our LIBI prototype, which demonstrates how LIBI can improve large scale software system

bootstrapping (Section 5).

2. Distributed software system bootstrapping

As previously described, software bootstrapping generally entails starting or launching a set of processes and propagating
some information to these processes. In this section, we present a background of the existing mechanisms and services avail-
able for process launching and start-up information propagation.

2.1. Bootstrap process creation

In the basic approach for distributed infrastructure bootstrapping, a master process sequentially uses a remote process
creation mechanism, like rsh or ssh, to instantiate the other processes. The master process then communicates directly
with each to deliver the required initialization information. Fig. 2 shows the time to launch a set of processes sequentially
using rsh on LLNL’s Atlas cluster. This approach does not scale; extrapolation suggests instantiation of 2048 processes would
take over 14 s. Additionally, each process requires a small amount of resources, which places a limit on the maximum num-
ber of sequentially launched processes.

When available, applications and tools can leverage RMs like LoadLeveler [5], LSF [6], PBS [7] and SLURM [8] for process
creation. Typically, an RM uses persistent daemons on each computational node to support efficient process starting. How-
ever, RMs do not generally provide facilities to disseminate application data to complete the infrastructure-bootstrapping
process. Also, while the myriad of RMs provide similar process starting services, they have different, incompatible interfaces
that require different job launching scripts.

For improved portability, many infrastructures implement custom mechanisms to launch their processes. For example,
MRNet [9] (which we further describe in Section 4.1.1) uses a hierarchical approach in which the master process starts a
small subset of the processes which in turn start other processes, and so on, until all processes of the system are instantiated.
This approach is more portable than RM-based approaches and more scalable than basic, centralized approaches. However,
such mechanisms still are limited by the mechanism used to start the processes (again, usually rsh or ssh) and the fan-out
of the process starting. Also, other distributed infrastructures cannot leverage these mechanisms since they are embedded
into the specific systems.



Fig. 2. Sequential process instantiation.

J.D. Goehner et al. / Parallel Computing 39 (2013) 167–176 169
2.2. Bootstrapping inter-process communication

Many libraries and services implement group communication operations. In high-performance computing environments,
the MPI standard [10] specifies the most popular of these services. Generally, MPI implementations provide a wide variety of
group communication operations, most of which are not needed for bootstrapping. Furthermore, MPI’s focus on general
application data communication render it a heavyweight solution if it is to be used only for bootstrapping. Lastly, MPI imple-
mentations often rely on a distributed set of cooperating daemons that themselves need to be launched and configured. In
the remainder of this section, we describe lower-level communication services that directly target the bootstrapping process.

2.2.1. PMI
The communication mechanisms used by the Process Management Interface (PMI) [11] are based on the storage and re-

trieval of key-value pairs from a key-value space (KVS). PMI defines three operations: Put, Get, and Fence. Put stores a set of
key-value pairs in the KVS, Fence synchronizes the KVS of every process, and Get retrieves the values of a given set of keys.
The KVS is also used for bootstrapping additional processes. If an additional set of processes needs to connect to the currently
running processes the new processes can query the KVS associated with the running processes in order to acquire their con-
nection information.

2.2.2. PMGR
The PMGR collective library takes a different approach to parallel library bootstrap communication [12]. PMGR provides

seven group communication operations: barrier, broadcast, gather, scatter, allgather, alltoall, and allgat-

herstr. Other than allgatherstr, these operations perform the same functionality that is defined by the MPI operations
of a similar name. Allgatherstr performs a similar function as allgather except the data in question are null terminated
strings, whose length can vary from string to string.

Unfortunately, using these operations makes setting up connections between two distinct sets of processes more difficult.
With the Put, Fence, and Get operations of PMI, this task is simple. The second set of processes can simply access the KVS of
the first. To accomplish this task through PMGR, the first set of processes must explicitly create connection setup data, and
then somehow make it available to the new processes.

3. Classification of bulk process launching frameworks

Generally, there are two models for process launching: individual and bulk. The difference between the individual and the
bulk launch model is the number of processes that a single request can launch; individual launchers can only launch a single
process (for example, rsh/ssh-based mechanisms), while bulk launchers can launch multiple processes at once. In this sec-
tion, we offer a classification of bulk launching frameworks.

Generally, bulk launch frameworks are implemented using a system of daemons, background processes that are not un-
der direct user control. When used in a bulk launch framework, daemons communicate with each other to propagate and to
execute the requested commands. We classify such bulk launch frameworks according to two dimensions: framework per-
sistence and framework connection topology.

3.1. Framework persistence

The set of daemon processes that comprise the framework and the set of connections that inter-connect these processes
define the organization of a bulk launch framework. The persistence of a bulk launch framework can be mapped to the per-
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sistence of these two components between subsequent jobs. Therefore, persistence is a spectrum from completely impersis-
tent (no daemons or connections exist between jobs) to completely persistent (all daemons and connections exist between
jobs).

The MPD bootstrapping service [13] is an example of a completely persistent bulk launcher. To service a job launch re-
quest, MPD only needs to distribute the process creation command to the relevant daemons using existing connections. Bulk
launch frameworks that use persistent daemons and connections are the most responsive since they do not create new dae-
mons or connections at request time. However, they use more resources than necessary: not every process and every con-
nection is needed for every request.

Services like SLURM [8] and ALPS [14] fall in the middle of the persistence spectrum: only daemon processes persist be-
tween jobs. These services need two steps to launch a job: (1) create connections between the relevant daemons and (2) dis-
tribute the process creation command. Persistent daemons still provide fast bulk launch, but do not maintain unnecessary
connections. However, their deployment requires system administrator privilege so the daemons persist. Thus, users cannot
easily choose which bulk launcher to use or to configure the bulk launcher. As we describe in latter sections of this article,
customizing a bulk launcher (particularly with respect to its inter-connection topology) can significantly impact
performance.

Bulk launch frameworks that have no persistent daemons (or connections) between subsequent uses, like ScELA [15],
generally allow for the highest degree of user customizability and use no unnecessary resources. However, such services
are the least responsive and require three steps to launch a job: (1) create relevant daemons, (2) create connections between
the daemons and (3) distribute the process creation command.
3.2. Framework connection topology

A second way in which bulk launch frameworks differ is the connection topology used to launch the processes. In this
article, we focus on tree topologies, which are best-suited for process launching.2 The shape of the tree determines the sca-
lability and efficiency of process launch operations. In general, the scalability and efficiency of a tree is determined by how pro-
ductive each node in the tree is during a launch or communication operation. Higher node productivity leads to better
performance. We discuss four types of connection trees: sequential, chain, k-ary trees, and greedy trees.

The least scalable connection trees occur at the extreme ends of the tree shape spectrum, the broadest trees and the tall-
est trees. The sequential tree, Fig. 4a, is the broadest possible tree. The root is the parent of and communicates with all other
processes. Therefore, launch or communication operations using this tree require n� 1 steps, where n is the number of nodes
in the tree. The chain tree, Fig. 4b, in which each process but the leaf has exactly one child, also requires n� 1 steps for
launch or communication operations. While these topologies do not scale well, they are often used because they are easy
to set up and work sufficiently well at small scales.

Many bulk launch frameworks, including ScELA, SLURM and ALPS, use k-ary trees, Fig. 4c, in which each process has at
most k children and the height of the tree is minimized. K-ary trees offer good scalability executing operations in at most
logknd e steps. Scalability can be adjusted by adjusting k, but improper choice of k can lead to poor performance, and in cur-

rent practice, this choice generally is made in an ad hoc manner.
In other related work, we studied optimal trees for bulk process launch and designed a greedy algorithm that maximizes

the overall productivity of the process launch tree [16]. Our greedy algorithm accounts for environment-specific features and
is based on two key parameters, the time it takes to launch a process remotely and the necessary delay between subsequent
remote launches by a single process. We proved that our greedy algorithm outputs a tree topology that would launch a set of
processes in a minimal amount of time. We call this topology the greedy topology, Fig. 4d.
4. LIBI overview

We have designed and developed the lightweight infrastructure-boostrapping infrastructure (LIBI) to address the various
challenges previously described including (1) a myriad of available resource management services with incompatible
interfaces and varying levels of scalability, (2) the general unavailability of communication services for software system
bootstrapping and (3) scenarios in which resource management services are unavailable or undesirable. LIBI is both a set
of abstractions and a set of services for the efficient and scalable bootstrapping of extreme scale software systems. In this
section, after describing the primary usage scenarios that motivated LIBI’s design, we present the LIBI API and its
implementation.

We have two primary goals for LIBI: First, LIBI’s abstractions and API should serve as a model for the process launch and
communication services needed for general software bootstrapping. Second, LIBI should provide a framework which offers
portability and the best available performance to the application that uses it. When used on a platform that provides bulk-
launch and/or group-communication services, LIBI should use these when adequate. Otherwise, LIBI should provide a suit-
able alternative.
2 Indeed, some services, use non-tree topologies. For example, MPD uses a ring topology, but for the purposes of an individual job launch, the communication
topology is effectively a chain, a tree in which every process has at most one child.
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Fig. 3 shows how LIBI is intended to be interposed in an HPC system software stack. Software infrastructures can use LIBI
services for bootstrapping themselves. LIBI leverages the best resource management and communication services available
to deliver an efficient bootstrapping service. LIBI is designed to access these lower-level services via LaunchMON [17] or di-
rectly when LaunchMON is unavailable or not suitable for the application at hand. Alternatively, LIBI offers self-contained
mechanisms that do not rely on external job launch or communication services. This ensures maximum portability and
flexibility.

4.1. Motivating use cases

We have identified three general modes of infrastructure bootstrapping based on the number of different executable files
used for launching the processes and whether some processes cannot be created by our infrastructure, for example, because
they are already running or must be created by some specific third party service like mpirun. In the basic case, we can create
all processes from a single image. This case supports distributed systems based on the single program, multiple data (SPMD)
model that do not rely on special environmental features (like those provided by MPI).

In the second case, we can create all processes, but from multiple images. A concrete example of this latter scenario is
given below. Currently, we focus on these two cases. In the future, we plan to support the third case in which a subset of
the processes are started by a separate service. In this situation, we need ‘‘out-of-band’’ mechanisms for communicating with
those processes to give them the information needed to properly join into a single distributed system session.

4.1.1. A concrete bootstrapping example
In this section, we describe a real distributed bootstrapping scenario. Specifically, we describe the MRNet instantiation

process. MRNet, the multicast-reduction network, is a prototypical tree-based overlay network (TBON), a network of hierar-
chically organized processes that leverages the scaling properties of the tree organization to provide scalable data multicast,
data gather, and in-network aggregation. The root of the MRNet tree is called the front-end; the leaves are called back-ends,
and the intermediate processes are the internal processes. The MRNet start-up process entails instantiating the MRNet inter-
nal and back-end processes and propagating information such that each process can establish a connection with its parent in
the tree. After MRNet instantiation is complete, MRNet-based applications can use MRNet’s communication and aggregation
services.
Fig. 3. Connection trees of 15 daemons.

Fig. 4. The LIBI Architecture.
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MRNet’s primary bootstrap mode implements a parent-creates-children scheme in which process instantiation and infor-
mation dissemination are integrated. The front-end uses a remote shell mechanism, like rsh or ssh, to create its children
processes for the first level of the tree. As command line arguments during this creation process, each parent propagates
the information necessary for their children to connect back to it, for example, parent IP address and port number. Each new-
ly created child process establishes a connection back to its parent process and receives the portion of the topology config-
uration relevant to that child. Each child then uses this information to instantiate its immediate children. This procedure is
repeated until the entire tree of communication and application processes is created. As a final step in this start-up proce-
dure, MRNet propagates the complete topology information to all processes (for fault-tolerance purposes).

By concurrently instantiating processes in disjoint branches, the MRNet start-up procedure is much more efficient than
the baseline sequential approach. However, this procedure still suffers from serialization bottlenecks due to each parent’s
responsibility to instantiate its children. For example, with a fan-out of 64, we frequently experience start-up times on
the order of tens of seconds for our STAT tool [4,18].

4.2. LIBI API

LIBI provides services for both process instantiation and rudimentary data communication. We present the core LIBI API
functions, simplified for presentation.

LIBI’s primary abstraction is a session, which encapsulates the set of processes to be created. There are several abstractions
related to the session: the session member, a process within the session, a session master, one session member designated to
manage the others, and the session front-end, the process that launches the session. The session front-end communicates
with the session master, who then in turn communicates with the other session members.

Many bulk launchers use a distribution concept to specify how processes should be placed on computational nodes, for
example, block or cyclic (aka round-robin) distributions. Accordingly, LIBI uses a process distribution to specify how and
where to create the requested processes. A process distribution is a 5-tuple, {sid, exe, args, hd, env}, where sid is a session
handle, exe is the path to an executable file, args are the arguments to pass to the executable during process creation, hd is a
host distribution, and env is the environment to use for the created processes. A host distribution is a 2-tuple {hostname,
num-procs}, which defines how many processes to create on the named host.

Since LIBI targets only a scalable lightweight bootstrapping service, LIBI only supports mechanisms for communication
between the session master and the other session members. In other words, non-masters cannot communicate directly with
each other via LIBI. For bootstrapping, the goal is typically to disseminate some configuration information from the session
front-end, to the session members. A summary of LIBI’s launch and communication abstractions can be found in Table 1.

4.3. A LIBI example

The code snippets in Fig. 5 outline the two parts of a simple software system that we refer to as the LIBI micro benchmark.
They show the creation and launch of a process distribution. Once the process distribution has been launched, the front-end
waits for the session to complete the group communication operations. Once complete, the session master sends a message
to the front-end, signaling that it is done.

4.4. LIBI implementation

This section discusses the two implementations of LIBI. The first implementation integrates with LaunchMON. The second
implementation uses an individual launch based approach to launch and connect the requested processes.

4.4.1. Integration with LaunchMON
LIBI is a follow-on project to our earlier LaunchMON work which was intended to provide a more intuitive and flexible

system bootstrapping interface and mechanism for leveraging RMs in a portable manner. With LaunchMON, we aimed to
provide an abstraction layer to wrap resource management services. LaunchMON’s abstractions explicitly targeted HPC tools
and were shaped primarily by existing RM mechanisms. These design decisions meant that LaunchMON is not always flex-
ible and ideal for more general use cases. For example, LaunchMON supports the capability to deploy tool processes on the
Table 1
The LIBI launch and communication abstractions.

launch (process-distribution-list) instantiate the appropriate sets of processes according to the input process distributions.

[send—receive] (msg) transfers data between the session master and the session front-end. The session members wait until the data transfer is
complete.

broadcast (sendbuf, nbytes) transfers nbytes bytes of data from sendbuf at the session master to all other session members.

[scatter—gather] (sendbuf, nbytes, receivebuf) transfers nbytes bytes of data from/to the session master to/from all session members.

barrier () blocks until all session member calls this routine.



Fig. 5. LIBI micro benchmark front-end and session member code.
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same nodes of already running MPI applications. The mechanisms to support such capabilities can encumber using Launch-
MON in cases where the capabilities are not needed. LIBI is designed to alleviate these issues. (In Section 6, we describe how
this work will culminate eventually in a re-factorization of LaunchMON’s services. Our first version of LIBI was implemented
completely on top of LaunchMON. In this case, the LIBI API was mainly a pass through wrapper for LaunchMON’s launch and
communication mechanisms.

4.4.2. Individual launch based implementation
For maximum portability and efficiency, LIBI must provide efficient, scalable, lightweight and self-contained launch and

communication mechanisms when scalable versions of these are not available on a target system. Therefore, in our second
version of LIBI, we added scalable rsh-based launching and communication support. In this approach, LIBI launches its pro-
cesses in three phases. During the first phase, the front-end launches the master process and specifies a connection tree
topology – LIBI can be made to use any connection tree topology. During the second phase, LIBI uses rsh to launch and con-
nect, one process per node. These processes will be launched and connected in a manner defined by the specified connection
tree. During the third phase, the processes created in phase two will be used to launch any collocated processes on their local
node. By using only one individual launch per node, LIBI eliminates all of the additional network connections that would
have been created for each co-located process. This approach has been used in previous bootstrapping services, with good
results [15,19].

During the individual launch, LIBI will pass the current node’s name, and the port number used by LIBI, to the new pro-
cess, as command line arguments. Once the new process is running, it will connect back to the process which launched it. In
this way, LIBI’s launch topology will also be used as its communication topology.
5. LIBI evaluation

In previous work [20], we demonstrated the performance improvements of an early prototype of LIBI which completely
leveraged available resource management services via the LaunchMON framework. In this evaluation, we focus on LIBI’s
extensible framework that allows one to control the topology LIBI uses to launch jobs and communicate initialization infor-
mation. A secondary goal is to demonstrate the performance boost that can be attained by replacing an existing bootstrap-
ping mechanism with LIBI. First, we evaluate LIBI by doing some basic process launching and information dissemination.
Then we demonstrate the improvements in bootstrapping performance of MRNet using LIBI.

We ran all experiments on Lawrence Livermore National Laboratory’s Atlas system, a cluster of 1,152 AMD Opteron
nodes. Each node has 8 2.4 GHz CPUs, and the nodes are interconnected via a double data rate InfiniBand network. To in-
crease test scales, we placed up to eight processes on a single node in our testing configurations.

5.1. Micro benchmark experiments

For our micro-benchmark experiments, we use our rsh-based LIBI implementation to launch a test application numerous
times and measure process launch time and the time to perform some basic collective operations amongst the processes.
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Specifically, we measure (a) the time to start the processes, (b) the time required for all processes to arrive at a barrier, (c) the
time to broadcast 128 bytes of data followed by a gather of 128 bytes from each process and (d) the time to scatter 128 bytes
of data to each process and gather 128 bytes from each process.

For these experiments, we designed a small, standalone, LIBI-based software system (shown in Fig. 5), comprised of two
executables. The first executable uses LIBI to launch the second executable, which is 238 KB in size. These executables were
compiled to be statically-linked executables.

All experimental runs were executed on the same allocation of nodes. Primarily, this strategy simplifies the batch sched-
uling requirements of our managed cluster environment. This also allows every test to execute in roughly the same time
frame and on the same resources, minimizing environmental variations, for example due to varied levels of network conges-
tion. Furthermore, this strategy ensures that test runs do not occur concurrently, eliminating possible inter-test interferences
and contentions, for example, contending for the same executable files on the same file system.

For these experiments, we deploy a single process per node, the maximum process count is limited by the system’s max-
imum job size limit: 386 nodes. We test chain, sequential, greedy, 2-ary (or binary), 16-ary and 32-ary trees. (Recall these
topologies were defined in Section 3.2.) Each scenario was executed ten times and averaged after removing outlying points.
Fig. 6a–d shows the results for increasing numbers of processes using different connection trees. These results show that the
connection topology of bulk launching frameworks impacts bootstrapping performance. LIBI’s framework allows a user to
readily customize the topology LIBI uses therefore allowing for optimal choices to be made.
5.2. Macro benchmark experiments

To demonstrate the performance of LIBI in a real context, we replace MRNet’s traditional bootstrap mechanism, which
uses a process launch topology based on the topology MRNet should use for its runtime operation, with LIBI. We modified
Fig. 6. Micro benchmark results.



Fig. 7. Macro benchmark bootstrapping results.
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MRNet to use LIBI for process creation and for disseminating the topology information needed by child processes to connect
to their parent process. Previously, MRNet’s start-up process integrated process launch and information dissemination:
when a parent created its children, it passed on the command line the necessary port information the children needed to
establish a connection with the parent. LIBI completely separates the process launch and information dissemination inter-
actions. In the new LIBI-based MRNet, the session master gathers the relevant information and scatters it to the other session
members.

Our macro benchmark experiments used MRNet’s current bootstrapping method as well as our rsh-based and srun-based
LIBI implementations. We launch an MRNet tree, with a fanout of 16, and measure (1) the total bootstrapping time, (2) the
time required to parse the mrnet topology, (3) the time required for LIBI preparation, (4) the time required to launch all pro-
cesses, (5) the time required to disseminate configuration information and (6) the time required to form MRNet’s TBON.

Figs. 7a and b compare these times for increasing numbers of processes using different bootstrapping methods. MRNet
over LIBI performs the best, for all connection trees, followed by the current version of MRNet, and LIBI over LaunchMON
over SLURM. That being said, all of the bootstrapping conditions appear to scale linearly. The cause of the linear scaling is
apparent when viewing the breakdown in Fig. 7b. The largest portion of MRNet’s bootstrapping performance is the time
to parse the topology file and the TBON formation, which entails the launched process creating TCP socket connections to
their peers in the MRNet runtime tree. These operations do not use LIBI. The ‘‘LIBI Greedy Launch’’ component scales less
than linearly and the ‘‘LIBI Communication’’ component never took more than an eighth of a second.

Perhaps most surprisingly, ‘‘LaunchMON over SLURM’’ performs much worse than we expected. Especially considering
that SLURM uses persistent daemons, we expected that the SLURM launch time would be smaller than the LIBI’s best rsh-
based launch time. There are several factors that could account for this result. First, the LaunchMON executables are more
than double the size of the LIBI executables. This would require additional time to transfer the file from the NFS server. Sec-
ond, the administrators of the Atlas system have added some plugins to SLURM which perform tasks like detecting if a node
has run out of memory. These additional plugins incur extra overheads. Third, LaunchMON is using SLURM for bulk launch-
ing with a completely independent communication topology. After the daemons have been launched, the communication
topology has to independently be setup. The launch and connection tasks are separate under LaunchMON while they are
integrated for the rsh-based LIBI implementation.
6. Conclusion and future work

The goal of this paper was to improve the current state of software-system bootstrapping. Our approach was to create LIBI
to facilitate bootstrapping portability for software systems as well as provide the best performance available on a given plat-
form. In this paper, we presented the description and an evaluation of a LIBI prototype. We created a system for classifying
bulk-launch strategies based on framework persistence and inter-connection topology. This classification can be used to
compare existing bulk-launch strategies as well as inform the design and development of new ones. We also demonstrated
the improved bootstrapping performance and portability of MRNet through the use of LIBI.

There are a number of key research and development issues that we plan to address in the future. We conclude this paper
by highlighting some of these key issues. A major goal of this project was to use our LaunchMON experiences to shape how
distributed system bootstrapping should be interfaced and implemented. As its name suggests, LaunchMON provides facil-
ities for both application/tool launching and application monitoring. One of the lessons learned is that while many tools need
both these services, many tools and applications do not. We are in the process of revisiting LaunchMON’s design to refactor
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and separate these two functionalities. Our plan is to reverse the relationship between LaunchMON and LIBI, such that
LaunchMON’s launching mechanisms becoming a part of LIBI proper and LaunchMON relies on LIBI for process launching
and communication. One current challenge we face in this process is the fact that certain architectures, like BlueGene-based
systems, make it difficult to separate launching from monitoring capabilities for the tools that need both.

Currently, LIBI requires that applications input a list of previously allocated nodes in the form of the host distributions
described in Section 4.2. We will design more flexible mechanisms that do not require a previous allocation. In this mode,
LIBI will efficiently combine the acquisition of the necessary nodes and the instantiation of the specified processes.

We will also explore improving LIBI’s launch efficiency with scalable file distribution mechanisms. Filesystem contention
is a common problem in high-end computing systems. We have previously developed the Scalable Binary Relocation Service
(SBRS) [18] to alleviate this problem. When a common file (like an executable image) is needed by many processes on dif-
ferent nodes, SBRS allows a single process to access the filesystem. The process can then transmit the file to the other pro-
cesses in a scalable fashion.
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