
The Integration of Application and System Based Metrics

in a

Parallel Program Performance Tool

Jeflrey K. Hollingsworth R. Bruce Irvin Barton P. Miller
hollings@cs.wise.edu rbi@cs.wise.edu bart@cs.wise.edu

Computer Sciences Department
University of Wiseonsin-Madison

1210 W. Dayton Street
Madison, Wisconsin 53706

Abstract

The IPS-2 parallel program measurement tools pro-
vide performance data from application programs, the

operating system, hardware, network, and other sources.
Previous versions of IPS-2 allowed programmers to collect
information about an application based only on what could
be collected by software instrumentation inserted into the
program (and system call libraries). We have developed an
open interface, called the “external time histogram”, pro-
viding a graceful way to include external data from many
sources. The user can tell IPS -2 of new sources of perfor-
mance data through an extensible metric description
language. The data from these external sources is automat-
ically collected when the application program is run. IPS-2

provides a library to simplify constructing the external data
collectors.

The new version of IPS-2 can measure shared-
memory and message-passing parallel programs running on
a heterogeneous collection of machines. Data from C or
Fortran programs, and data from simulations ean be pro-
cessed by the same tool. As a result of including the new
external performance data, IPS-2 now can report on a
whole new set of performance problems.

We describe the results of using IPS-2 on two real
applications: a shared-memory database join utility, and a
multi-processor interconnection network simulator. Even
though these applications previously went through careful
tuning, we were able to precisely identify performance
problems and extract additional performance improvements
of about 30%.

Research supported in part by National Science Foundation
grant CCR-8815928, Office of Naval Research grant NOOO14-
89-J-1222, a grant from Sequent Computer Systems Inc., end a

Digital Equipment Corporation External Research Grant.

Permission to copy without fee all or part of this material is

granted provided thet the copies ere not made or distributed for
direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requirea a fee
and/or specific permission.
01991 ACM 0-89791-390-6/91 1000410189...$1.50

1. Introduction

A performance tool should provide as complete a
picture as possible of a program’s execution. The IPS-2

parallel program performance tools[l, 2] allow a program-
mer to monitor and analyze the performance of application
programs running in both shared-memory and message-
passing environments. The performance of an application
program can be studied at varying levels of detail, from the
whole program down to art individual procedure or syn-
chronization variable. IPS-2 provides a powerful, interac-
tive, graphic user interface for both specification of the pro-
gram to be studied and for disptay of the performance
results. These tools use software instrumentation to collect
the necessary tmce data. The standard data collected by
IPS-2 relates only to the performance of the application
program, as opposed to the system on which the application
is running. We have extended IPS-2 with a new facility
that allows us to include performance information from
sources other than standard instrumentation. Data relating
to operating system, hardware, network, or user-defined
performance metrics is now integrated into the JR-2 data

analyses and displays.

The original implementation of IPS-2 provided a sin-
gle interface between the performance data that was col-
lected and the tools that analyzed the data. This interface
was the trace log. As the application program runs, traces
are generated for interesting events; these events include
procedure entry and exit, synchronization operations, pro-
cess operations, and 1/0 operations. The analysis tools
would process thk log and allow the user tQ interactively
study the performance of the program execution. The
separation of the trace generation and analysis allows the
programmer to (optionally) save the traces, with the possi-
bility of archiving and future study. In addition, other
tools, such as simulations, also generate tmces using the
IRS-2 format, providing these users with the full power of
IRS-2’S analysis and display facilities.

We have added a new external interface to IPS-2,
based on the time histogram. Each time histogram is a
data structure that describes the value of a single perfor-
mance metric over time. IPS -2 uses this data structure to

189

summarize the information contained in the trace log. The
summarized information allows for the efficient display of

graphs and tables. We now allow a wide variety of exter-
nal sources for these time histograms. These external
sources can generate performance data for metrics beyond
the standard ones supported by IPS-2. When the applica-
tion programmer describes a program to be run, they also
can describe external data collector processes that will
produce time histograms. These external processes may
obtain their data from the opaating system (such as disk
I/O or context switch rates), special hardware facilities
(such as bus traffic or cache hit rates), the network (such as
Ethernet collisions), or high level, user defined metrics
(such as transaction commit/abort rates).

The inclusion of the external metrics adds a new
dimension to the type of information that can be used to
study a program’s performance. The cause of a perfor-
mance problem may not lie directly in the application pro-
gram; it might be caused by resource contention in the
operating system (with other programs) or by hardware
limitations (such as bus contention). The external metrics
allow us to include these factors and present them to the
programmer. Constructing these external data collectors is

a simple activity. We provide a library of routines that
insulates the programmer from all of the details of the data
structures.

The usefulness of a performance tool is determined
by how much it can improve real programs. To illustrate
how our tool works, we present two case studies in tuning
parallel programs. These examples show step by step the
process of using JPS-2, and include screen dumps showing
the output produced by the tool.

The next section presents an overview of the basic
IN-2 system. In this section we describe the program and

measurement model of the IPS-2 system. The design of the

external histogram interface is described in Section 3. Sec-
tion 4 describes the implementation of the external histo-
grams and metrics, and describes three External Data Col-
lectors that we have written. Section 5 describes a
mechanism for defining new metrics derived from a combi-
nation of existing ones. Section 6 presents two case studies
that use IPS-2. Section 7 presents our conclusions and
ongoing research.

2. Overview of’ IPS-2

The system currently runs on versions of the UNIX
operating system, and handles programs written in both C
and Fortran. Programs can run on VAX, DECstation, and
Sequent Symmetry machines (or a combination of these
machines). The power of the IRS-2 user interface comes
from the abstraction of a parallel program that is presented
to the application programmer. The next section describes
this abstraction, and Section 2.2 outlines how the system
implements this abstraction.

2.1. User’s View

IPS-2 presents information about programs to the

user in a hierarchical form. This presentation permits the
user to start at the top of the hierarchy and see the global
view of the program, and work down to lower levels get-
ting more detailed information at each lower level. The
tool provides a large amount of performance information,
and using this approach makes getting information easier
and more intuitive. By working down the program hierar-
chy, the user can refine their view of the program as they
search for performance bottlenecks.

There are four levels in the hierarchy. Program level
is the highest level, and includes information for the entire

I ips2 I

Figure 1.
A Sample Program Tree Hierarchy.

190

parallel program. Machine Level level includes information
about each machine. The Process Level includes informa-
tion about specific processes that ran on each machine. The
lowest level in the hierarchy is the Procedure Level. This
level includes information about each procedure that was
called during the program’s execution. A sample program
tree appears in Figure 1.

For each level in the hierarchy there are many per-
formance metrics that can be displayed. For example, the
amount of CPU time used can be displayed for the whole
program or for individual machines, processes and func-
tions. The performance metrics are available in several
types of displays: tabular summary, time histograms, Criti-
cal Path profiles, and sorted profile tables. In additicm, an
experimental version of IRS-2 exists that provides an
implementation of the Quartz Normalized Processor Time
metric[3].

The simplest kind of metric in IPS-2 is a table
metric. A table metric has a single value for the (entire
length of the program’s execution. For example, tabular

CPU time at the procedure level is how long a particular
procedure ran, and at the process level it is the total CPU
time for that process. At the higher levels, it is the sum of
the CPU time of the lower levels.

Time histograms show how a metric changes during
a program’s execution. Histograms are displayed in al win-
dow that can be panned and zoomed to permit both global
and detailed views of the information. Figure 4 shows a
sample histogram. Several histograms can be plotted on
the same axis. This permits correlation of different
metrics. Like tables, histograms are available at any level
in the program tree hierarchy.

Critical Path analysis is based on identifying the path
through the program’s execution that consumed the most
time[4]. This technique identifies the part of the program
that was responsible for its length of execution. To calcu-
late a program’s Critical Path, we build a graph of the
program’s execution. This graph consists of the events in

each prwess and the synchronization dependencies (e.g.
interprocess communication, locks, or semaphores)
between the processes. By finding the longest t.ime-
weighted path through this graph we are able to determine
which components of the program’s execution were
responsible for the program’s runtime. Critical Path data is
presented in tabular form sorted by contribution In the
longest path though the graph. This information is avail-
able at any level in the program tree hierarchy. For exam-
ple, at the procedure level each procedure is listed along
with its contribution to the Critical Path. Critical Path
analysis also provides a what-if mechanism that permits
users to judge the effect of improving a component on the
Critical Path. We permit users to change the weight of a
component on the Critical Path to zero and then recalculate
the Critical Path. This only provides an approximation of
the new run time of the program, but it does help to assess
the impact of improving sections of code.

Profile tables are similar to the type of information
presented by the standard UNIX profiling tool Gprof[5].

At the procedure level, profile tables list procedures sorted
by the amount of CPU time used. In addition, profile tables
list the time each procedure spent in synchronization waits.
At higher levels, profile tables summarize the information
from the lower levels. Information from all of the

processes in the application progmm are integrated into a
single table for each level in the hierarchy.

2.2. Implementation

IPS-2 consists of four parts: the User Interface, Mas-
ter Analyst, Slave Analyst, and instrumentation probes.
The Master and User Interface are a single process. The
User Interface, built using the X Window system, provides
a graphical representation of the program hierarchy and
generates the various performance displays. It supports
both monochrome and color screens. The Master Analyst
aggregates the information from Slave Analysts and pro-
vides it to the user interface.

The instrumentation probes are implemented as a
replacement for the standard C library. They produce trace
records for each interesting event in a program’s execution.
Interesting events include procedure calls and returns, mes-
sage passing, synchronization events (e.g. semaphores and
spin locks), 1/0, and process creation. Trace reeords
include a time-stamp for the event (both process and wall
clink time) and event specific information.

There is one Slave Analyst on each machine running
the application. Slave Analysts start the application
processes, wait for the application to finish, and then read
the trace logs produced by the instrumentation library. The
Slave Analysts also build time histograms based on infor-
mation in the trace logs.

3. Design of External Histograms

The time histogram is a major internal format within
IPS-2. It provides detailed information about how a metric
varies over time. In addition, each time histogram can be
summarized into a single value, to provide a cumulative
view of a particular metric. For example, a time histogram
for the number of file operations can be summed over all
intervals to produce the total operations during the pro-

gram. A time histogram of virtual memory usage cart be
averaged to show the average virtual memory in use during
the program’s execution. Time histograms also provide a
natural interface for importing data from external sources.

There are three steps in creating a time histogram for
an external performance metric. First, the metric is
specified, including the type and source of data. Second,
the data is colleeted (into histogram data structures) during
the application program’s execution. Third, the Slave
Analysts process the data for display.

To smoothly integrate external information into IPS-

2, each external metric needs to be attached at an appropri-
ate node in the program tree hierarchy. For example, sys-
tem memory bus contention only makes sense at the
machine level, since it is based on the total activity running
on the machine. The level at which an external metric is

191

placed in the tree depends on the type of the metric and
granularity of the data. Once the data is collected, IPS-2
aggregates metrics from their initial level in the hierarchy
up to the higher levels. The type of aggregation requkd
(summation or averaging) depends on the metric.

External histogram data is collected by processes
called external &ta collector units (EDCU). The EDCUS
are the interface between the source of the &ta (operating
system, hardware, network, or application) and IPS-2. An
EDCU consists of two parts the metric specific part and
the histogram generation part, The metric specific part
must know how to collect samples of the da@ this might
be via calls to the operating system, reading special device
registers, or reading special memory locations. The histo-
gram generation part, storing and summarizing the data, is
made simple by use of the EDCU library. The EDCU col-
lects the metric (or set of metrics), and periodically calls a
function in the EDCU library to indicate the current value
of the metric. From these sample values, the EDCU library
creates the histograms, and at the termination of the appli-
cation it stores them in files.

External metrics can also be generated directly by
the application program. The programmer may want to
monitor an activity whose semantics are understood by the

program. For example, to record the number (and fre-
quency) of commits and aborts in a transaction system, the
programmer would insert EDCU library calls into the

t The interface to theappropriate place in their program .
EDCU library is the same as for a standard EDCU, except
that the data is coming from the application process and not
from a separate collector process.

An IPS-2 user who wishes to collect external &ta
simply creates an EDCU node while editing the IPS-2 pro-
gram tree (see nodes “monEDCU and “hwEDCU in Fig-
ure 1). An EDCU node is similar to a process node in that
it appears at the process level of the tree and contains a
command line to execute.

When the application program terminates, the Slave
Analyst collects the various histogram files. Based on the
data in each histogram, the Master Analyst places the
metric in the appropriate node in the program tree. Once
placed in the tree, the fact a metric is external becomes
transparent to the tool user who is free to display histo-
grams and tables consisting of both external and internal
data.

4. Implementation of External Histograms

We have extended IPS-2 in several ways to handle
externally generated performance data. The EDCU library
provides the interface between EDCUS and IPS-2. Metric
description tiles allow EDCU programmers to describe
external metrics to IRS-2. The control structure of IPS-2
handles the execution and termination of EDCUS. Finally,

T This is the only type of data collection in IPS-2 that

requires the application program to be moditie~ and thk

approach is not required for normal use of IPS-2.

IPS-2 allows external data to be inserted at any node in the
program tree and alIows users to select and display these
metrics with the same menus, tables and graphs as built-in
metrics.

4.1. Writing an External Data Collector

A typical EDCU contains an initialization section
and a main body. During initialization, an EDCU allocates
histograms for each metric that it will collect. An EDCU

consists of a main loop which collects data samples and
deposits them into histograms. Since the duration of an
EDCU’S execution is generally not known ahead of time,
the main loop iterates indefinitely until the process receives
a termination signal from IRS-2. The EDCU library
catches the signal, writes the histograms to a file and ter-
minates the EDCU. The EDCU library simplifies writing
an EDCU by providing data abstractions for histograms
and timestamps, and by handling all communication with
the Slave Analyst. Therefore, the programmer need only
understand the interface presented by the library to write an
EDCU, and the Slave is insured that the data generated is
stored in a compatible format.

Each data sample must include a timestamp. The
user may furnish timestarnps or ask the EDCU library to
collect them. If a data sample’s timestamp exceeds the
pre-allocated time limit of the histogram, the library
automatically compacts the histogram and expands its time
limit to accommodate the new sample. The histograms can
therefore expand dynamically in time without allocating
more memory.

In addition to providing a means for collecting exter-
nal data, an EDCU programmer must also describe each
metric to the Master Analyst. These descriptions are con-
tained in a metric description file that is read when IPS-2
starts a measurement session. A metric description
includes a metric’s name, the tree level of the metric, how
the metric is to be labeled in menus, tables, and graphs,
how the metric is to be calculated for tables, and how
higher levels should aggregate the metric from lower levels
(see Figure 2). When creating a histogmm during execu-
tion, an EDCU must specify a name for the metric and the
node in the IPS-2 program tree to which it will be attached.
The name given for the histogram’s metric must be defined
in the EDCU’S metric description file.

metric prod_bus util

class exter;al;
level machine;
aggregation sum;
tablecalc average
title “Productive Bus Utilization”;

xlabel “ (Prod. Bus Util.) “;
units percent bus;
tabletitle “A~erage Bus Utilizationtv;

1

Figure 2.

A Sample Description of an Ext;rnal Metric.

192

4.2. Current External Data Collectors

To date we have written three external data coiiec-
tors: one that filters information from the UNIX utility
“vmstat”, one that collects information from har(iware
counters in the Sequent Symmetry, and one that caWcts
kernel level information in the Dynix operating system
(Sequent’s parallel version of the UNiX). We anticipate a
core set of data collectors that will beeome standardl, and
will be provided with the IPS -2 tools. Additional collectors
will be created by users for more specialized uses.

The Sequent Symmetry[6] is a shared memory
multi-processor. Each processor has a set-associative
cache, and connects to main memory via the systeml bus.
The hardware data collector (“hwEDCU”) collects
metrics from special hardware monitors in the Sequent
Symmetry, including utilization of the system bus, and
cache miss information for each processor.

The kernel data EDCU samples kernel tables to
gather information about the state of the system. It collects
data about the utilization of the processors, virtual memory
system, network traffic, and disk system. The collector is
implemented as a user process. To efficiently collect these
metrics, it maps sections of the kernel’s memory into its
address space. Samples are collected at only 10 mil-
lisecond intervals, which provides sufficiently accurate
information without causing much bus traffic.

4.3. Executing External Data Collectors

When the user runs their application, the LPS-2 Mas-
ter sends EDCU and process command lines to the Slaves.
Each Slave Analyst starts the EDCU processes before start-
ing any application processes. When ail application
processes under its control are finished, the Slave Analyst
terminates each EDCU and then reads the histogram files.

Upon reading an external histogram file a Slave
attempts to insert it into a node in the program tree. If a
histogram belongs to a tree node that is not under the
Slave’s control, it sends the histogram to the Master. In this
way, a Slave can handle external data for other machines or
for the program level of the tree (e.g. network statistics).
Once a Slave has finished collecting and placing external
histograms, it forms aggregate histogmms at the process
and machine levels using the aggregation attributes found
in the metric descriptions. Finally, the Slave reports to the
Master, listing the metrics that are defined at each node.
The Master uses this information to generate menus fctr the
user interface. An ED(X.J is only one method of collecting
external histograms. An IPS-2 user may collect data that is
pertinent to a particular application by modifying the appli-
cation to create and fill histograms. The Slaves read user
defined histograms when they process program trace lc~gs.

5. Derived Metrics

IPS-2 provides direct access to many different
metrics – those that are built-in and those collected from
external sources. IPS-2 also provides an added degree of
flexibility. The tool user can specify new metrics, dei’~ved

metrics, that are combinations of existing metrics. For
example, IPS-2 provides a metric for file operations per
second and a metric for message operations per second.
‘ile user could specify a new metric that is the sum of
these two built-in metrics. Like any other metric, a derived
mernc is associated with a node in the program tree hierar-
chy. It is defined by simple expressions composed of arith-
metic operators and previously defined metrics (from any

of the three sources).

Derived metrics are defined in a metric description
file. A derived metric description is identical to an external
metric description except that it includes a formula for
deriving the metric. For example, the metric share shown
in Figure 3 divides the process time of the application (use-
ful CPU time plus busy waiting) by the total time the
machine spent in user mode to compute the share of the
machine’s user time used by the application. Cpu_time
and busy waits are built-in metrics and sys user_time is—
an extem~ metric.

metric share {
class derived;
level machine;
aggregation sum;
tablecalc average;
title “Share of User Time”;

xlabel “ (Share) “;

units percent_cpu;
tabletitle “Average Share”;

formula (CPU time + busy_waits)
/ sys_user <ime;—

}

Figure 3.

A Sample Description of a Derived Metric.

When a user wishes to view data for a particular
node in the IPS-2 program tree, the user interface presents
a menu that contains built-in, external, and derived metrics.
Ail classes of metrics can be displayed simultaneously in

graphs and tables by simply selecting them from the
menus. If the user selects a built-in or external metric for
display, the Master checks to see whether it has already
received or aggregated the data, and if necessary, the Mas-
ter requests the data from the appropriate Slave. When the
user selects a derived metric, the Master evaluates the
expression given in the metric description, requesting the
operands of the expression from the Slaves as needed.

6. Case Studies

To test the ability of our system to improve pro-

grams, we picked two real programs (not written by us) to
see how much we could improve their running times. Both
of these programs had previously been tuned by their
authors and they had reached the point where they were
unable to identify further opportunities for improvement.
The first program is an implementation of a join function
for a relational database. The second program simulates a

193

memory-to-processor interconnection network in a multi-
processor computer.

For each of these programs, we iterated through a
cycle of running the programs using our tools and improv-
ing a component of the program. Because our instrumenta-
tion of a program could perturb its performance, we also
ran each iteration of the program without instrumentation
to confirm the validity of the guidance that our tool was
providing. This exercise showed that while the absolute
numbers might change between instrumented and un-
instrumented versions, trends and the percent improvement
in the program were similar. All histograms and Critical
Path Tables presented in this section are screen dumps of
actual displays produced by our tool. The values presented
in the percent improvement tables are based on programs
compiled without IRS-2 instrumentation and with the
compiler’s optimizer enabled.

6.1. Shared Memory Join Program

The shared memory join application (shm~”oin) is an
implementation of the join function for a relational data-
base. It implements a hash-join algorithm[7] using shared
memory for inter-process communication. The program

was written to study shared-memory and shared-nothing
join algorithms and, as a result, contains a large number of
tunable parameters that effect the algorithm’s performance.
For the purpose of our performance study, we used a fixed
set of parameters and attempted to improve the algorithm’s
implementation. IPS -2 can also be used to tune the perfor-
mance of the program by adjusting these parameters. The
test data consisted of the Wisconsin Benchmark Join
ABPrime[8] query with a 50,000 tuple inner and a 50,000
tuple outer relation.

Figure 4 shows a histogram for the initial version of
the shm~”oin application running on a four processor

Sequent Symmeme ~U TimerY. The three curves shown in the figure
, Productive Bus Utilization, and Page

Faults. Productive Bus Utilization was collected by the
hardware data collector, and Page Faults was collected by
the kernel monitor EDCU. We have divided the program’s
execution into four phases (labeled “A” through “D” at
the top of the histogram). Each phase represents a different
part of the program’s execution, and the characteristics of
the metrics is different in each.

Phase “A” is the creation of the shared memory
heap and synchronization variables. This phase shows lit-
tle CPU utilization and initially low bus utilization and
page faults. This phase is totally sequential, and contains a
large amount of system CPU time. This was discovered by
plotting a hiskygmm of system time (not shown). At the end
of this phase, the page fault and bus utilization rates
increase as the application brings in the code and data
required for execution of the second phase.

The second phase (phase “B”) involves initializa-
tion of the private data in each process. There is almost no
sharing of information. This can k seen by the relatively
low bus utilization. The end of this phase is marked by a
stair step decline in useful CPU time. This is caused by
processors finishing their part of the data, and waiting at a
barrier before proceeding to the next phase.

Phase’ ‘C”, the partitioning of tuples by processor, is
characterized by high rates of page faults and bus utiliza-
tion. Peak CPU rates are less than in phase “B”. In this
phase, new data pages are being used by the processes
resulting in overhead (as seen in the page fault rate) that
limits the useful amount of work that can be done. Appli-

~ CPU time is useful time onlv and does not include time–.
spent busy waiting.

%CPU Pa9es/ssc %SW

404- 3500- 60

350. 3000- 50

300- 2500-
250- 40

2000.
200- 30

1500-
150-

1000-
20

100-

5fJ- 500- 10

0- 0- 0

0 2 4 G 10 i2 14
6w00nds

16

— :prog: ips2(CPU Tins)

------ :PW: @Q(PweF~ltSJ
,.,.,,.,,... :w0wim2(Prductive M Utilization)

Figure 4.
Histogram of ~he initial version of the shared memory join application

showing built-in {CPU time) and external metrics.

194

cation metrics alone were not enough to show wlhy the
CPU utilization is less than the number of processors work-
ing on the problem. During this phase sustained bus utili-
zation reaches its highest level. The application creates
large amounts of bus traffic by creating, zeroing and then

transferring pages between processors.

The final phase of the program’s execution, phase
“D”, shows a moderate page fault rate (between the levels
in phases “B” and “C”). The initial spike in the page
fault rate is most likely due to data (and possibly code)

being brought into memory for use during this phase. The
peak in page faults in the middle of phase “D” is caused
by the join algorithm moving to a new bucket of tupk:s, and
the resulting change in the pages being used. The bus utili-
zation remains about the same (even after the page fault
rate drops) due to sharing of pages between processes. The
spike in the Bus Utilization at the end of the phase is
caused by an increase in disk writes (curve not shown) at
the end of the program’s execution.

To improve the performance of this program,, three
major changes were made. The first two changes improved
the implementation of the major procedures of phases “B”
and “D”. The third change improved the running time of
phase “C” by reducing the page faulting rate. This was
accomplished by making changes to phases “A” and
“B”. Each of these changes is described in detail IAow.

c: Rocedwe-le.el Critical Path ~s —

machine: fmcess func name tires %t1ss3

TOTRLLENOTH

i PS2:shin-j oin. base #2

ips2:s4un-.join. basa If2

ips2:stwn-join. base H3

ips2:shm-join,base #0

ips2:shm_join.base #l

ips2:sh+t_join. basa *2

ips2: stwjoin.base %2

ips2:sFm_join.base #2

ips2:shm.join. bssa *O

ips2:shm_join.baae III

ips2:shm-join.base S2

ips2: s+w.ioin. base #3

10.67

effect-join 2.35 22.W

random-stwffle 1.44 13.5)

psrtitica 0.96 9.0)

p.srtitim 0.81 7.5!3

pwt.iticn 0.76 7.31

pat-titisn 0.74 6.84

init-relaticm 0.43 4.03

witeblk 0.37 3.47

exchange-buffers 0.30 2.61

exchange_buffers 0.28 2.62

get-output_buffwe 0.26 2.44

excharwduffem 0.24 2.2%

Figure 5.
Critical Path table for initial version of

shared memory join application.

Figure 5 shows the Critical Path for the initial ver-
sion of the urofzram. The toD function on that l[ist is
effec(~”oin w~ic~ accounts for ‘22Y0 of the Critical Path.
When this procedure was examined, we discovered tlhat its
major activity was copying data. The copying was done
using the standard C library function bcopy. Bcop:y is a
general purpose routine that permits arbitrary bytes of
memory to be copied, and is implemented as a function, not
inline code. By replacing the call to bcopy with a hand-
coded assembly macro that copies in long-word (four
bytes) increments, we reduced the running time of the pro-
gram by about 15%. Further investigation revealed that

two additional procedures, writeblk and readblk, also did a
large number of long-word aligned copies. Inserting our
macro into these routines further reduced the program’s
running time by 4%. The cumulative effect of these
changes was to decrease the running time of the program

by about 19%. In addition, as Figure 6 shows, effectd”oin
is no longer at the top of the Critical Path table. Notice that
the total Critical Path length was reduced 31.8% (from
10.67 to 7.27), but the running time was ordy reduced by
19%. This is due to the large amount of the running time
that is due to system time in phase “A”.

~ Prossdwe+vel Gitlcal Path ~

I nachins:fromss fulw Mm% tins Xtims

TOTIILLEt4tTH 7.27

ips2:shm-jOin.beOfy, ips ●3 rsn&m.slwffle 1,50 20.63

ips2:4wj0in.*. ips *O effect-join 0.22 12.65
ips2:shm-jOin.*. ips M partition 0.45 U9

ips2:skj0in.bcwi. @s ~3 init-relation 0.44 6.03

ips2:shaJ0in.lmp~,ips *3 partition 0.44 6.05 [

Figure 6.
Critical Path table showing improvement in

effectd”oinji.mtion.

The next step was to try to improve the new top of
the Critical Path, the procedure random_shufle. This pro-
cedure is part of the initialization phase “B” (see Figure
4). Investigation of this function showed that it is com-
posed of a single for loop consisting of a call to a ran-
dom number generator, and an exchange of elements in an
array. Since the exchange was implemented as a swap of
pointers, we decided to try to improve the random number
generation. The easiest thing to do was to make code for
the fimction in-line. This reduced the running time of the
program by 3.5%. It also reduced the Critical Path to 7.02
‘&&ds (~ble not shown).

~ Metric Table - Phase C ~

prog
ips2

CPUTime 9.81

Elapsed Time 5.09

Pages Feulted 6358.22

Speedup 1.93

Zero Pages Crestad 5599.%

Figure 7.
Table showing p&allelism (speedup)

and pa~e fault activity.

After the ftrst two steps, we decided to move onto the
third item on the Critical Path. This procedure, partition, is
called during the third phase of the program’s execution.
During this phase, the effective parallelism (shown in Fig-
ure 7 as speedup) is only 1.93. This is due to the large
number of zero page creates (also summarized in Figure 7).
Zero page creates occur on the first reference to a page in

195

the shared heap. These pages were previously allocated
(but not created) by calls to shmalloc (the shared memory
allocation routine). To improve this phase, we tried to
force the operating system to create these pages during oth-
erwise wasted CPU time. Recall from Figure 4 that phase
“A” consists of only sequential processing. It is desirable
to use this time to create the pages in the shared heap.
However, this phase allocates these pages using shmalloc.
Further investigation showed that phase “B”, local &ta
initialization, did not depend on the memory being setup in
phase “K’. So, we decided to have three processes do
their local initialization while the fourth process allocated
the shared memory. When the memory had been allo-
cated, the fourth process would start its local initialization.
This left time for the other three process, after they finished
their local initialization, to create the pages just allocated
by the first process. To force the operating system to create
the pages, we wrote a procedure that reads the first word of
each page. The effect of this reorganization, and additional
step was to reduce the running time of the program by over
10%. This type of analysis would not have been possible
without the combination of system and program level
statistics.

Figure 8 shows metrics similar to those in Figure 4,
but is for an execution of the program after we made our
changes. The shape of the CPU time curve has changed
substantially from the initial version of the program.
Phases “A” and “B” now blend together, phase “C” is
now achieving better parallelism, and phase “D” has been
reduced in length considembly. Figure 9 summarizes the
effect of the changes made to the program. The total per-
cent improvement is not as large as the sum of the indivi-
dual improvements due to interactions between the dif-
ferent changes.

I Version Time % Change I

base 10.3

improve Ixopy 8.3 19.8

inline random 9.9 3.5

force page creates 9.3 10.3

All Changes 7.3 29.4+

F~gure 9.
Table of improvements to shared

memory join application (time is in seconds).

6.2. Network Simulator

The network simulator application (psim) simulates
an indirect k-my n-cube processor-memory interconnection
network. The program has been used previously to evaluate
the performance of such networks [9] and to study cache
coherence protocols for shared memory multi-processors
[10]. Psim is an integer intensive application that parallel-
izes well, exhibiting nearly linear speedup for 20 proces-
sors.

The network simulated by psim consists of a request
sub-network and a response sub-network. The program
allocates half of the available processors to each sub
network. All of the processors synchronize at a barrier after
each logical clock cycle. For our study we analyzed psim
running on relatively small test cases with IPS-2. After
making improvements, we collected timings by running the
program with larger test cases.

t See text for an explanation of why this does not equal the
sum of the individual changes.

~ Histogram _

XC!+ Pages/See

400- 9000

350- 8000

300- 7000

250-
6000

200-
5000

4000
150-

3000
100- 2000

50- 1000

0- 0

0 1 2 3 4 5 6 7 8 9
Semnds

— :Pr09:iPS2(CW Time)
------ :prog: ips2(Page Fau its)

PIIN

Figure 8.
Histogram of shared memory join application after performance tuning.

196

The histogram in Figure 10 shows the CPU time
curve of the original program simulating a 32
processor/memory network. The program has two prilmary
phases, a relatively constant initialization phase (labeled
“A” in the figure), and the main processing phase (labeled
“B”) whose length varies with the size of the network and
the length of the &emory request vectors.

~ Procedure-level Critical Path - phase II -Z

machine: process furc name tine Xtime

TOTRL LENGTH 2.o1 -

topaz: psim, ips +0 prandi 1.22 60+70

topaz: psim+ips *O pslwdi 0.72 35.W

topaz: psim. ips *O Process Creation (meIn) 0.04 1.89

Figure 11.
Critical Path table for phase A of initial

version of network simulator.

Figure 11 shows a procedure-level Critical Path table
for phase “A”. The table shows that the procedures
prandi and psrandi account for over 95% of the Critical
Path during this phase. The CPU time curves for these pro-
cedures are shown in Figure 10. Because these procedures
are called during a sequential section of the program, the
other processes must wait at a barrier before proceeding to
the next phase. We examined the code and foundl that
psrandi and prandi initialized a random number array that
was never used with most of psim’s parameter settings. By
running these procedures only when parameter settings
required them, we were able to considerably shorten :phase
“A”. However, when we ran the program on large test

cases (for which initialization time was negligible), the
improvement was less than 1?4 of total running dine.

~ procedure-level Critical Path - Phase B ~

rn.schine:process func name time Xtime

TOTALLENGTH 4,48

topaz: psim. ips *4 putpacket 0.50 11.16

topaz: psim. ips *4 getpacket 0.40 8.93

topaz: psin. ips *4 net-sat 0.35 7.81

topez:psim. ips *3 getpecket 0.33 7.37

topaz: psim. ips *3 putpackst 0.27 6.03

topaz:psirn.ips *O gatpackat 0.27 6.03

tspaz:psim. ips *3 net-set 0.25 5.58

topaz: psim. ips *3 PIINJ11OC0.24 5.36

topaz: psin. ips *O putpacket 0.23 5.13

topaz: psim. Ips *2 getpacket 0.22 4.91

topaz: psim, ipa M getpacket 0.20 4.46

topaz: psim, ips *1 putpacket 0.16 3.57

Figure 12.
Critical Path table for phase B of initial

version of network simulator.

Figure 12 shows the procedure-level Critical Path
table for phase “B”. The table indicates that the pro-
cedures getpacket and putpacket account for more than
50% of the Critical Path during the phase. When we exam-
ined the code, we discovered that getpacket and putpacket
were small routines that moved packets horn buffer to
buffer in the network. To improve this phase we converted
both getpacket and putpacke[to inline macros. This

~= HietowsI ~

%CPu

400-

300-

200-

100

o~

1 2 3 4 5 6 7
seconds

— :psim.test(CPU Tiw)
.- :P~im+t=t:tw=:Fim. Ilps #O:prendi(CPU Time)

.. :psim.test:topez: psim.llps M:psrmdi(CPU Time)
MN

Figure 10.
Histogram of the initial version of the network simulator.

197

change improved the running time of all the test cases by
approximately 11 YO (shown as the intermediate version in
Figure 13). -

Procedure-level Critical Path _

mathi ne:process func name time 2time

TCIT$ILLENGTH 4.46

topaz: psim. ips *I net-& 0.79 17.71

topaz: psim. ips *2 net-do 0.67 15.02

topaz: psim, ips SO net.do 0.52 11.66

topaz: psini. ips *I net-sat 0.45 10+09

topaz: psim, ips #4 net-do 0,31 6,95

topaz: psim. ips *3 net.do 0.30 6.73

topaz: psim. ips *2 net-sat 0.2% 6.28

twpaz:psim. ips X2 Pmallos 0.23 5.16

topaz: psin. ips *I CPU.* 0.20 4.48

topaz: psim. ips *O net-init 0.17 3.81

topaz: psim. ips *O qwdo 0,11 2,47

topaz: psim. ips #2 cpu-do 0.10 2.24

topaz: psim. ips #3 CPU-do 0.06 1.35

topaz: psim. ips *O Process Creation (main) 0.03 *.*$

Figure 14.
Critical Path table for

improved version of network simulator.

Figure 14 presents the procedure-level Critical Path
table for the improved psim. The table indicates that the
procedures net do and net_set are now responsible for
most of the Citical Path. We discovered that these pr-
ocedures did a lot of array indexing, and contained some
redundant tests in conditional statements. We improved the

procedures by adding pointer variables and by rearranging
the evakation order in the conditional statements. The
improvements accounted for an additional 1270 improve-
ment in execution time for our test cases.

Version Test 1
%

Test 2
%

Change Change

base 74.7 375.2

intermed. 65.8 11.9 335.1 10.7

final 57.7 22.7 287.4 23.4

Figure 13.

Table of improvements to network simulator
(time is in seconds).

Fismre 13 shows the results of running the three ver-
sions of-psim on large test cases. Test C~e #l is a 128
urocessor/memow network, and Test Case #2 is a 512
~ocessor/memofi network. Both test cases simulated
4096 memory requests horn each processor with stride of
1. We ran all of the tests on an unloaded, 20 processor
Sequent Symmetry S81.

Figure 15 shows a histogram of the final version of

psim running on a small (32 processor/memory) test case.
The display shows that both phase “A” and phase “B”
are now considerably shorter than in the original version of
the program (Figure 10). Figure 15 also shows the
program’s Barrier Time and Productive Bus Utilization
curves. These curves reveal that the program spends a lot
of time waiting at barriers and as a result causes additional
bus traffic (though bus traffic does not in any way limit per-
formance). The barrier waiting is especially noticeable at

%CPU ZWait Z SW

50015001 60]~~~

400- 400-

300- 300-

200- 200-

100- 100-

0- 0-

50

40

30

20

10

0

0 1 2 3 4
Seconds

— :psim. test(CPU Time)
--------- :psi mtt=t(B~rier Time)
.. :psim.test(Productiva Bus Utilization}

P(3N

Figure 15.
Histogram of network simulator after pe~ormance tuning.

198

the beginning and end of large network simulations when
one of the sub-networks has no memory requests to :simu-
Iate. We have tried to reduce the barrier waiting time by
dynamically allocating processors to the network, but the
increased synchronization and bus traffic necessary for the
dynamic allocation outweighed the benefit of load baktnc-
ing.

6.3. Commentary

As a result of using our own tools on real applica-
tions, we learned when the tools excel, and equally impor-
tant discovered a few weaknesses in the current version.

The ability to combine metrics collected from the
hardware and kernel was useful in explaining variaticms in
the CPU utilization of applications. Without the exlemal
information, it would have been difficult to detelmine
where to look for these performance problems. Prior 10 the
integration of external data, we could not determine if CPU
time variations were due to system resource utilization (e.g.

page faulting) or interference with other processes on the
system. Even when we knew that a problem was caused by
our application, it was almost impossible to identify which
system resource was being taxed.

These interactions between the operating system and
an application program can have significant effects on its
performance. For example, we discovered that certain data
sets for the shared-memory join application cause the pro-

gram to run longer than expected because some of the
processes get swapped out. The author of the program had
also discovered this fact, but because IPS-2 was not uvail-
able to her, she was forced to hand instrument her pro,gram
with calls to the getrusageo system call. What took her
several day to discover, IRS-2 was able to show in a matter
of minutes.

Derived metrics provided a new and helpful addition
to the system. However, many times during our measure-
ment sessions we wanted to define new metrics to get a
better idea about how a group of procedures or metrics
related. We discovered that our approach to derived metric
definition is not satisfactory. Currently derived mt>tics
must be defined before the start of the measurement ses-
sion. However, since the desired metric is often discovered
during a measurement session, we had to iterate through
metric definition and measurement sessions. Derived
metrics would be more useful if they could be defined
interactively during a measurement session rather than stat-
ically before it starts. Extending our tool to permit this is
not a difficult problem, and we are currently implementing
this feature.

Adding external histograms to IPS-2 caused a few
problems. The user can be overwhelmed by the large
number of metrics to choose. As a first step in solving this
problem, the metric selection menus are sorted alphabeti-
cally. A more general solution would be to have IPS-2
help the user to select relevant metrics.

7. Conclusions

To provide a complete picture of a program’s execu-
tion, we must include performance data from the program
itself, the operating system and hardware on which it exe-
cutes, and other sources, such as the network. By integrat-
ing performance data from all of these sources into a single
tool, we simplify the programmer’s task of understanding
their program. To easily integrate performance data from
all of these sources, we must provide an open interface
using a well-defined, common data format. The time histo-
gram appears to be a suitable format that is simple to gen-
erate, reasonably compact, and supportive of a wide variety
of data types. IPS-2’S existing facilities combined with the
new external and derived metrics allow us to perform ana-
lyses that were not previously possible.

The external histogram interface allows IPS-2 to
easily adapt to new operating systems and architectures. By
keeping the system-specific collection facilities external,
we are able to support the tools on radically different sys-
tems without major changes to the core of IPS-2.

We presented two examples of applying IPS-2 to
improve programs. Both programs were real and written
by other people to solve problems, not to demonstrate our
tool. For the first program, a database join utility, we
reduced the running time by 2970. For a second program,
an interconnection network simulator, we reduced the run-
ning time by 2370.

Our current work includes using external histograms
to monitor specific constructs within the operating system
kernel, as a move toward full kernel tracing. We are also
implementing interactive, user-defined metric definitions.

8. Acknowledgments

We are grateful to Neal Wyse of Sequent Computer
Systems for his help with the initial design of the external
data interface and for providing us with the Hardware
EDCU. We wish to thank Joann Ordille for her shared-
memory parallel join program used in Section 6.1, to
Shreekant Thakkar for providing the network simulator
program used in Section 6.2, and to the people at Sequent
Computer Systems for helping with our many questions.

9. References

1.

2.

3.

B. P. Miller, M. Clark, J. Hollingsworth, S.
Kierstead, S. Lim and T. Tomewski, “E%-2 The
Second Genemtion of a Parallel Program
Measurement System”, IEEE Transactions on
Parallel and Distributed Systems 1, 2 (April 1990),
pp. 206-217.

J. Hollingsworth, B. P. Miller and R. B. Irvin, “IPS
User’s Guide”, Computer Sciences Technical Report,
December 1989.

T. E. Anderson and E. D. Lazowska, “Quartz: A
Tool for Tuning Parallel Program Performance”,
Proc. of the 1990 SIGMETHCS Conference on
Measurement and Modeling of Computer Systems,
Boston, May 1990, pp. 115-125.

199

4. C. Yang and B. P. Miller, “Critical Path Analysis for
the Execution of Parallel and Distributed Programs”,
8th Int’1 Con$ on Distributed Computing Systems,
San Jose, Calif., June 1988, pp. 366-375.

5. S. L. Graham, P. B. Kessler and M. K. McKusick,
“gprofi a Call Graph Execution Profiler”, Proc. ofdte
1982 SIGPLAN Symposium on Compiler
Construction, Boston, June 1982, pp. 120-126.

6. Symmetry Technical Summary, Sequent Computer
Systems, Inc., 1988.

7. D. DeWitt and R. Gerber, “Multiprocessor Hash-
Based Join Algorithms”, Proc. of the 1985 VLDB

Conference, Stockholm, Sweden, August 1985, pp.
151-164.

8. B. Bitton, D. DeWitt and C. Turbyfill,
“Benchmarking Database Systems- A Systematic
Approach, Proc. of the 1983 VLDB Conference,
Florance, Italy, October 1983, pp. 8-19.

9. E. D. Brooks III, “The indirect k-my n-cube for a
vector processing environment”, Parallel Computing
6,3 (1988), pp. 339-348.

10. S. S. Thakkar, Performance of Parallel Applications

on a Shared-Memory Multiprocessor System, in
Pe#ormance Instrumentation and Visualization, M.
Simmons and R. Koskela (cd.), ACM Press, 1990,
233-256.

200

