
Page 1

Perm
use
adva
erwis
miss
SC’0

is
as

ng

he
of
cu-

by
sta-
l.
E
r-
tly

-
8]
ely
s-
es
d-
-

r
ust
n

-
s
nd
oft-
-

nt

n
er
-

se-
-

The Tool Dæmon Protocol (TDP)

Abstract

Run-time tools are crucial to program development. In our
desktop computer environments, we take for granted the
availability of tools for operations such as debugging, profiling,
tracing, checkpointing, and visualization. When programs
move into distributed or Grid environments, it is difficult to find
such tools. This difficulty is caused by the complex interactions
necessary between application program, operating system and
layers of job scheduling and process management software. As
a result, each run-time tool must be individually ported to run
under a particular job management system; for m tools and n
environments, the problem becomes an m× n effort, rather than
the hoped-form + n effort. Variations in underlying operating
systems can make this problem even worse. The consequence of
this situation is a paucity of tools in distributed and Grid
computing environments.

In response to the problem, we have analyzed a variety of job
scheduling environments and run-time tools to better
understand their interactions. From this analysis, we isolated
what we believe are the essential interactions between the run-
time tool, job scheduler and resource manager, and application
program. We are proposing a standard interface, called the
Tool Dæmon Protocol (TDP) that codifies these interactions
and provides the necessary communication functions. We have
implemented a pilot TDP library and experimented with
Parador, a prototype using the Paradyn Parallel Performance
tools profiling jobs running under the Condor batch-scheduling
environment.

1 INTRODUCTION

Run-time tools are crucial to program development.
In our desktop computer environments, we take for
granted the availability of tools for operations such as
debugging, profiling, tracing, checkpointing, and visual-
ization. When programs move into distributed or Grid
environments, it is difficult to find such tools.

Distributed computing is well-established, gaining
popularity in recent years thanks to the availability of
compute clusters, shared-memory multiprocessors, and
Grid infrastructure. In general, such systems require
software to schedule access to them, stage the resources
needed to run a job, monitor the jobs’s execution and

retrieve any results produced by the job. This software
commonly referred as a resource manager and it h
been used in local clusters in the form of batch queui
environments.

Resource management plays a crucial role in t
cluster environment because it has the responsibility
carrying out the necessary steps to guarantee the exe
tion of applications in a seamless and secure way
supporting mechanisms such as resource discovery,
tus monitoring, selection, allocation and job contro
Systems such as Condor [13], Load Leveler [9], NQ
[4], and LSF [15] are some of the most popular comme
cial and research batch queuing environments curren
used to schedule jobs in a local area cluster.

More recently, attention has focused on Grid com
puting, using systems such as Globus [7] or Legion [
to provide access to heterogeneous collections of wid
distributed, dynamically configured resources. The pre
ence of such a Grid system provides additional servic
for authentication, data staging, monitoring, and sche
uling. While these interfaces are crucial for running pro
grams in this complex environment, they offe
additional layers of interfaces and abstractions that m
be negotiated when trying to deploy a run-time tool i
that environment.

The use of run-time tools in a distributed environ
ment is difficult because of the complex interaction
between application program, operating system, a
layers of job scheduling and process management s
ware. As a result, each run-time tool must be individu
ally ported to run under a particular job manageme
system; form tools andn environments, the problem
becomes anm× n effort, rather than the hoped-form+ n
effort. While there have been isolated point-solutio
successes (such as Totalview [5] running und
MPICH), the effort needed to generally solve the prob
lem is prohibitive. Variations in underlying operating
systems can make this problem even worse. The con
quence of this situation is a paucity of tools in distrib
uted and Grid computing environments.

Barton Miller*, Ana Cortés†, Miquel A. Senar†, and Miron Livny*

*Computer Sciences Department
University of Wisconsin

Madison, WI 53706 USA
{bart,miron}@cs.wisc.edu

†Departament d'Informàtica
Universitat Autònoma de Barcelona
08193 Bellaterra (Barcelona) Spain

{miquelangel.senar,ana.cortes}@uab.es
ission to make digital or hard copies of all or part of this work for personal or classroom
is granted without fee provided that copies are not made or distributed for profit or commercial
ntage, and that copies bear this notice and the full citation on the first page. To copy oth-
e, to republish, to post on servers or to redistribute to lists, requires prior specific per-

ion and/or a fee.
3, November 15-21, 2003, Phoenix, Arizona, USA Copyright 2003 ACM 1-58113-695-1/03/0011...$5.00

Page 2

,
o-
ed

T

but
re
le
s
r-

by
r

n
t-
e
-
-
n
i-

T
a
he
of

-
a

b-
To address this problem, we have analyzed a variety
of job scheduling environments and run-time tools to
better understand their interactions. From this analysis,
we have isolated what we believe are the essential inter-
actions between the run-time tool (RT), job scheduler
and resource manager (RM), and application program
(AP). Figure 1 illustrates the main components. We are
proposing a standard interface, called theTool Dæmon
Protocol (TDP) that codifies these interactions and pro-
vides the necessary communication functions to the RT,
RM, and AP.

There are several crucial interfaces needed by run-
time tools to monitor and control programs. Our goal
was to identify these interfaces, as used by both the RM
and RT.

• Process creation:A fundamental operation of a RM
is launching new processes. This operation can be
in conflict with a tool such as a debugger or profiler
that also expects to launch the process. While most
sophisticated run-time tools have the ability to
attach to a running process, this does not handle the
case where the tool wants to attach to the process
before it starts execution. There needs to be clean
division of work between the RM and RT: (1) RM
creates, but does not start, the application process,
(2) the RT attaches to the process and performs its
initial processing, and (3) the RM then starts the
application. The RM must provide the appropriate
information to the RT so that it can find and operate
on the application program.

• Tool creation:The RM is responsible for launching
the RT. The RT might be launched before the appli-
cation is created (as above) or launched afterwards.
In this second case, the RM must provide the appro-
priate information to the RT so that it can attach to

and operate on the application.

• Process control:In the course of normal operation
a RT may pause and resume the application pr
cess. This change in process state might be view
by the RM as a sign of faulty behavior, so the R
must coordinate these operations with the RM.

• Status monitoring:As just stated, the RM is inter-
ested in state changes of the application process,
the RT also needs to receive this information. The
must be agreement as to which entity is responsib
for this information and under what circumstance
(and different operating systems, even different ve
sions of Unix, have distinctly different behavior in
this area). There also must be a mechanism
which this information is communicated to othe
entity.

• Standard input and output management:When a
RT tool launches an application program, it ofte
intercepts the applications standard input and ou
put so that this information appears at the sam
location as the RT’s front-end. This control of stan
dard input and output could be in conflict with sim
ilar operations done by the RM. This operatio
properly belongs to the RM, but must be coord
nated with the RT.

• Tool daemon to tool front-end communication:The
common front-end/back-end configuration for a R
requires that a communication channel (typically
TCP/IP connection) be established between t
front-end and back-end processes. In the case
private networks (using firewalls or NAT), commu
nication from the to execution nodes may require
proxy (that is likely already provided by the RM for
its own purposes). The RM must be able to esta

Figure 1: Remote Execution with Resource Manager and Run-Time Tool

Resource
Manager

Run-time
Tool

(RM) (RT)

Application
Process

(AP)

RT
Front-End

RM
Front-End

F
ire

w
al

l

Remote Host

Page 3

ce
A

ld
s,
In
-
d

-

r
ni-
n-
ts,
art
d
s

nd
es
,
s
e

ial
e

on
he
e-
a
.
r

s-
e
d
a-
it
ms
or-

ol
ace
ce
ol
ss
ot
re
M
as
lish a proxy tunnel for the RT’s communication
needs.

• Tool daemon configuration and data files:The RT
may need configuration files transferred to the exe-
cution nodes. The RT might also generate output
files that contain traces or summary data; if these
trace files will be processed off-line, they must be
transferred from the execution nodes after the appli-
cation completes.

• Auxiliary services (AS):There are entities in addi-
tion to the RM and RT that may be required for the
proper execution of a RT in a distributed environ-
ment. For example, software multicast/reduction
networks are crucial to scalable tool use
[1,6,11,16]. The RM must be aware of and willing
to launch this second kind of non-application entity.

• Fault detection and recovery:Any of the three enti-
ties launched by the RM (AP, RT, AS) can fail dur-
ing execution. The RM must be able to detect these
failures, respond to them, and perhaps communi-
cate their occurrence to the other entities. A clear
and precise fault model is required. Note that mod-
eling and detecting faults is ongoing work and
beyond the scope of this paper.

There are some things that are explicitly not part of
TDP. In general, TDP does not try to solve a problem in
the distributed environment that is not already solved (in
general usage) in the desktop environment, for example
coordinating the interactions between multiple run-time
tools. While TDP is designed to allow multiple tools to
be launched for a given application, the interactions
between those tools must be coordinated by the tools
themselves. While some excellent experimental work
has been done in this area [10], this feature is not found
in tools that are in common use.

To address the problems presented above, both
resource managers and monitoring tools to be aware of
the existence of each other and to be prepared to execute
under such conditions. Unfortunately, neither the cur-
rently available resource managers and monitoring tools
nor those under development in on-going Grid projects
support the above-mentioned functionality. This work
deals with the analysis and design of basic services to
overcome the drawbacks and limitations existing in
middle ware services, as described above. TDP is an
effort to address the problem of tool interoperability in
distributed and Grid environments. By interoperability,
we refer to the ability of different tools and resource
managers to co-operate in controlling user applications
by using common services and communication mecha-
nisms.

To allow for the general deployment of run-time
tools in distributed environments with maximum trans-
parency and portability requires the extension and

enhancement of both monitoring tools and resour
management systems to make them interoperable.
consequence of this project is that run-time tools shou
be more easily deployed onto distributed infrastructure
easing the task of application program development.
other words, it will make distributed environments sig
nificantly easier to use for application developers an
will allow tool builders to concentrate on key technolo
gies rather than on repetitive porting efforts.

2 TDP INTERFACES

The Tool Daemon Protocol provides interfaces fo
creation of application processes, the subsequent mo
toring and control of these processes, establishing co
nections between the various tool daemon componen
and a means of exchanging configuration data. We st
with a discussion of this data exchange facility, calle
the attribute space, as several of the other operation
depend on it.

2.1 The Attribute Space

There are several cases in which the RM, RT, a
AP must exchange information. Examples of such cas
include the RM telling the RT the process ID of the AP
the RM providing the RT with the network addres
(host/port number) of its front-end, and the RT (or th
RM) providing the AP with the network address of its
standard input and output. Instead of designing spec
protocol messages for each type of information to b
exchanged, we have organized our communicati
about a general purpose attribute-value space. T
mechanism was inspired by the new MPI Process Da
mon (MPD) from Argonne [2], and can be considered
highly simplified version of the Linda tuple space [3]
Note that the X-window server [14] also has simila
mechanism for use by its clients.

This interface should exhibit desirable characteri
tics such as generality, portability and extensibility. Th
kind and format of information that may be exchange
does not have to be restricted to any particular combin
tion of resource manager or monitoring tool. Rather,
should be based on flexible and extensible mechanis
that enable any pair of resource managers and monit
ing tools to communicate effectively.

Each host on which an application process (and to
daemon) runs have a local instance of the attribute sp
server (LASS). There is also a central attribute spa
server (CASS) process on the host running the to
front-end. A process using the TDP library can acce
the attribute space of its LASS or the CASS, but cann
access the LASS’s of other nodes. The LASS’s a
started by the RM, while the CASS is started by the R
front-end process. Figure 2 shows the same structure
in Figure 1, with the addition of the attribute servers.

Page 4

l-
ng
n.
n

res
3

re-
w
P

or-
ts

ti-
li-
d
-
e
T
ady
ht

h
T
nd,
pli-
h
es
xe-

ns
are
f
ith
Attributes and values can be inserted and removed
from the attributed space with a simple put/get interface.
There is also a mechanism for providing asynchronous
notifications. The details of this interface are provided in
Section 3.2.

2.2 Application Process Creation

Run-time tools use a variety of schemes for creating
application processes. These schemes include:

1. Create the application process and start it running:
This scheme is typically the simplest, used in tools
that perform no external initialization of the appli-
cation program. Any needed initialization is done
by code already compiled or linked into the applica-
tion. This scheme requires the least mechanism to
support. Tools such as Vampir and PCL use this
technique.

2. Create the application, initialize it, and then start it
running. This scheme allows the tool to perform ini-
tialization in the time before creating the applica-
tion, but before it is started execution. In Unix
terminology, both thefork andexec must complete,
but execution then must be stopped. There is a
question of how much initialization code in the
application should be run, but the intuition is that
program should be stopped before starting to exe-
cute the main function. Tools such as gdb, Total-
view [5], and Paradyn [12] use this technique.

3. Attach to a running application process: Attaching
is an important mechanism for operating on
already-running programs (such as servers) or pro-
grams with complex start-up sequences. Attaching
requires the following steps: (1) obtain control of
the application, usually with/proc or ptrace; (2)

pause the application; (3) perform some tool initia
ization, such as reading the symbol table or parsi
the executable; and (4) continuing the applicatio
Again, tools such as gdb, Totalview, and Parady
use this technique.

In a resource manager environment, case 1 requi
no special modifications to the tools, while cases 2 and
require change. In cases 2 and 3, the RT is no longer c
ating the application process; that responsibility no
belongs to the RM. As a result, when using the TD
library, steps 2 and 3 look quite similar.

The sequence of steps for case 2 that must be co
dinated by the TDP library is: (1) RM creates and star
the RT; (2) RM creates but doesnot start the application
process; (3) RM sends information to the RT that iden
fies the application process, (4) RT attaches to the app
cation as in case 3, (4) RT performs its initialization, an
(5) RT tells the RM to start the application. The commu
nication between the RM and RT use the Attribut
Space operations provided by TDP. Note that if the R
has already been started (perhaps because it is alre
operating on another application process), step 1 mig
be skipped.

Case 3 under TDP works in a similar way, but wit
two minor differences. The first difference is that the R
might be created after the application process. Seco
step (4) above requires attaching and pausing the ap
cation. Not all tools have the ability to use this attac
technique. For example, the Vampir trace tool requir
the tracing to be started before the application starts e
cution.

The goal of TDP is to standardize these interactio
and encapsulate them in a library so that the details
hidden from the RM and RT. With a small amount o
modification (as demonstrated by our experience w

Figure 2: Remote Execution with Local (LASS) and Global (GASS) Attribute Space Servers Added

Resource
Manager

Run-time
Tool

(RM) (RT)

Application
Process

(AP)

RT
Front-End

Central
Attr. Space

Remote Host

Local
Attr. Space

(LASS)

(CASS)

RM
Front-End

F
ire

w
al

l

Page 5

nd

(if
a

o-
er-
ds
ree

nd
s
a-
in
b-

n
at

C

at
l

n
e 3
e-

the
he
d,
a

y
e

dy
m.

-

d
he
Condor and Paradyn, reported in Section 4), both RM
and RT can be reorganized to use the TDP interfaces.
The result is RT will be able to operate directly in each
RM environment that supports TDP and the RM can run
any tool that supports TDP.

2.3 Application Process Monitoring and Control

Under TDP, the responsibility for controlling an
application process and for monitoring its status belongs
to the RM; i.e., process management operations are
localized and encapsulated in the RM. This encapsula-
tion is both good design and a practical necessity. For
control operations, the single point responsibility elimi-
nates confusing race conditions. Two different processes
will never attempt conflicting control operations. For
process monitoring, we also avoid the confusing and
often conflicting semantics of various operating sys-
tems. For example, under Linux, the parent (RM) pro-
cess may or may not be the recipient of the child
process’ termination code. The choice of process can
depend on whether some third process (the RT) is
attached to control the child (application) process. In
one unusual case, the return code might go to both pro-
cesses.

As for other TDP communication, this status and
control information is exchanged using Attribute Space
operations. When the RT needs to perform a process
management operation, it contacts the RM. When the
RM needs to notify the RT about a change in process
status, it places a value in the Attribute Space; the RM
optionally can use the asynchronous notification to hear
immediately about the change.

2.4 Tool Communication

The RT and its front-end need to communicate and
this communication is typically done with TCP/IP sock-
ets. If the application is running on a private network
with a firewall or gateway, they may not be able to
establish a connection through out of the private net-
work. A similar problem can occur if when the standard
input/out of the application program needs to be con-
nected to desktop machine of the user (or some other
site outside the private network).

Process managers, such as Condor and Globus, pro-
vide proxy mechanisms to forwarding their connections
in and out of a private network. TDP provides a standard
interface to these mechanisms. In general, TDP will pro-
vide a host/port number pair to the RT to contact its
front-end and to the application program to connect its
standard input/out. If there are no routing or addressing
restrictions, then the host/port number will be the actual
address of the remote process. If the private networks
block such connections, then the host/port number will
be that of the RM’s proxy, which will be responsible for

establishing the connection and forwarding inbound a
outbound messages.

TDP does not require a new proxy facilities with
new permissions; it merely leverages existing ones
present), and provides a standard interface to such
facility.

3 TDP SERVICES

TDP provides three main groups of services: pr
cess management, inter-daemon communication int
face and event notification. We outline the main nee
and features (and open issues) related to these th
groups.

Developers of resource management systems a
monitoring tools have been using Unix or Window
interfaces to create and control the execution of applic
tions (fork/exec, /proc interface, ptrace are examples
Unix systems, and CreateProcess and WaitForSingleO
ject are examples in Windows). TDP provides its ow
set of interfaces that are OS neutral. The guidelines th
were used in designing the API were the following:

• The API should be simple and the API set small.

• The API should be consistent with standard
library interfaces.

• A first implementation will be provided in C lan-
guage.

• The library should be thread safe (it is expected th
the developers will be linking the library from seria
and multi-threaded codes).

3.1 Process Management.

TDP supports two scenarios for a RT to operatio
on an application process, create and attach. Figur
illustrates the steps that must be followed by each da
mon to use TDP services under each scenario. For
create case (Figure 3A), once the RM is notified that t
new application to be launched is going to be monitore
unlike a normal process creation, it will use
tdp_create_process function with a paused option,
which will launch the process by stopping it at the ver
beginning (using Unix terms, the process will b
stopped just after the execution of theexec call). At that
point, the TDP framework is initialized by calling
tdp_init. Finally, RM will launch the RT, which will be
started as a regular process usingtdp_create_process.

In the second scenario, the application is alrea
running and controlled by the resource manager syste
At a later time, a RT tool would like to attach to the
application process to monitor/analyze it. In this situa
tion, the RM might be notified that it must launch a RT
to monitor the running application process. If a RT ha
been previously created, this step would be skipped. T

Page 6

et
e
o

is
h
ll-
a
ce.
e
nt

his
nd

,
ro-
e
pli-
e
s
ing
le

T.
l

basic steps followed under this scenario are depicted in
Figure 3B. When the user decides to use the RT on the
application process, a TDP framework will be estab-
lished by callingtdp_init and, subsequently, the corre-
sponding RT will be launched. Once these initialization
steps have been accomplished, the TDP communication
channel will be established and both daemons will be
ready to exchange information.

Notice that the state of the application process will
be completely different in each of the two cases, but the
behavior of the monitoring tool is similar. When the
application has been created by the RT, thefork andexec
have been successful, but the application process
remains stopped at that point. The monitoring tool then
will attach and have a chance to perform initialization
and track the application’s execution from its start.
When the RT has attaches to an already running applica-
tion, the application process will be stopped at some
unknown point it its execution.

In both the attach and create cases, once the RT has
completed its initialization of the application, it can
restart the application using thetdp_continue_process
operation.

3.2 TDP Inter-Daemon Communication

Each daemon process in the TDP environment (the
RM and each RT) must perform basic initialization,
including establishing connection with the Local
Attribute Space Service (LASS) and exchanging some
basic configuration information. The first step is that
each daemon process must executetdp_init. This func-
tion establishes the TDP communication channel

between both the RM and RTs. On success,tdp_init will
return atdp handle, which will be used in any TDP sub-
sequent action.

Once the TDP framework has been successfully s
up, both the RM and RT communicate through th
LASS to exchange configuration information. The tw
basic Attribute Space primitives aretdp_get and
tdp_put. Information in the shared environment space
kept in the form of (attribute, value) pairs, where bot
the attribute and value are constrained only to be nu
terminated strings. An attribute consists simply in
character string that names data in the shared spa
While there is a standard list of attribute names for th
set of data commonly exchanged between the differe
daemons (everyone RT and RM must understand t
set), different tools and resource managers can exte
this set with their own situation specific attributes.

Limiting attribute values to strings, while simple
brings up the problem that there may be the need to p
vide attributes that multiple or structured values. If w
consider, for example, the arguments passed to an ap
cation, we would like to pass information that may b
something like “-p1500 -P2000”. This kind of attribute
could be stored into the shared environment space us
the simple put operation, and let use TDP client hand
the parsing.

The local Attributed Space is initialized when
tdp_init is called. A RM that deals simultaneously with
several RT may initialize a different space for each R
Each RT interacts with the RM through its own loca
Attribute Space, called acontext.A different context
parameter is used by the RM in eachtdp_init call to cre-

A: The RM creates the application process B: The RMattaches to existing process

Figure 3: Steps to Allow a RT to operation on an Application Program
Note that for the create case, the creation of the application process and RT can occur in either order

RM AP

tdp_create_process(RT,run)

tdp_init()

tdp_create_process(AP,paused)

tdp_init()

tdp_attach(pid)

tdp_continue_process()

RT RM AP

tdp_create_process(AP,run)

tdp_init()

tdp_create_process(RT,run)

tdp_init()

tdp_attach(pid)

tdp_continue_process()

RT

Page 7

ot
f
of
ad
e

on
e a
as

uses
rn

ct
r
rt

ck

s

ro-
f
ed

n
fe

n-
:

or-
ate a different space. Communication with a specific RT
is accomplished by using its particular context. Multiple
tools can share the same space with the RM by using the
samecontext, but current tool designs do not yet have a
need for such a feature. An RT disengages from the TDP
library and Attribute Space withtdp_exit function. An
Attribute Spaced shared between a resource manager
and several tools (using a common context) will be
destroyed when the last element using the specific con-
text callstdp_exit.

We briefly describe the use of the main functions
required to communicate information through the
Attribute Space. The basic functions aretdp_getand
tdp_putfunctions that have a structure whose synopsis
can be sketched as follows:

tdp_get (handle, attribute, &value)
tdp_put (handle, attribute, value)

wherehandlecorresponds to the identification returned
by tdp_init, attributeis the string that identifies the infor-
mation to store to or retrieve from the Attribute Space,
andvalue is the information contained in that attribute.

These operations are blocking forms of communi-
cation between a daemon and theLASS. In theput case,
the function will block until the new attribute is stored in
the shared space. In theget case, the function blocks
until the value of the corresponding attribute is returned
or and error is returned if the attribute is not contained in
the shared space.

Asynchronous versions for retrieving and storing
information from the shared space are also available:

tdp_async_get (handle, attribute, &value, callback,
callback_arg)

tdp_async_put (handle, attribute, value, callback,
callback_arg)

Both functions will return immediately after being
called, however, the storing or retrieval of information
may not have been completed at that time. The callback
function provided to these functions will be executed
when the corresponding operation completes. A user-
supplied argument (callback_arg) is also passed to the
callback function. The use of these asynchronous func-
tions will prevent a daemon process from being blocked
in a communication operation with the shared environ-
ment space and keep with his own activities.

3.3 Event Notification

In principle, the callback function from an asyn-
chronousget or put would be called once the operation
has been completed. However, a pure asynchronous
notification mechanisms may be hard to manage in
some tools because the obvious UNIX implementation
of such features in TDP on UNIX might use signals or
threads. Signals are a problem for many run-time tools
because the TDP use of these signals might conflict with

the RT’s use of the signal. Finding a signal that does n
conflict with some tool is problematic. The use o
threads also is a problem because of the plethora
thread packages. There is no way to select a thre
package for TDP that would be compatible with th
many possible packages used by RTs.

In many cases, a pure asynchronous notificati
mechanism is not necessary. Most RTs and RMs hav
central polling loop where they use an operation such
the Unixpoll or select to wait for the next event to pro-
cess. In these cases, asynchronous events simply ca
activity on a descriptor, so the daemon would retu
from the poll, find out that a given descriptor is active
and call a function to extract an event and possibly a
on it. This mechanism is also compatible with othe
operating systems like Windows that do not suppo
UNIX signals. In this case, the client registers a callba
per event type that would be used.

To support this behavior, the TDP library provide
also tdp_service_event that will call any pending call-
back that has been registered previously in an asynch
nous put or get. Under this scheme, the delivery o
events related to communication actions will be check
at specific point usingtdp_service_event within the RT
or RM code and, consequently, the callback functio
will be called at a well-known and (presumable) sa
point. The tdp_service_event function must be called
whenever an activity has been detected in thetdp han-
dle. It will identify which kind of event has been deliv-
ered and call the associated action function.

Pseudo-code for an example of the use of this asy
chronous communication services is illustrated below

tdp_fd = tdp_async_get (tdp_handle, “pid”,
&pid, my_callback1, my_arg1);

tdp_fd = tdp_async_get (tdp_handle,
“executable_name”, &exec_name,
my_callback2, my_arg2);

/* main polling loop of the tool */

poll ();
for i = 1 to descriptors

/* first, the tool processes all events
related to other descriptors */

process_event (fd);

/* callbacks registered for completed TDP
functions will be processed here */

tdp_service_events();

In this example,tdp_service_event would call out to
my_callback1 or my_callback2 depending on which get
action has been completed, respectively.

4 PARADOR: PROTOTYPING TDP

As an initial test of TDP protocol, we chose the
Condor batch system and the Paradyn Parallel Perf

Page 8

the
are
r-
e
e
to
e
it
et-

n
g
n
e
is
e

e.
rs
s,
he
e

he
le
.

ne.
mance Tool as representative examples for resource
manager and run-time tool. We outline the structure of
each system and describe how they were modified to
work together using TDP.

4.1 Condor structure

Condor is a widely-used system for scheduling jobs
to run in distributed cluster and Grid environment. It
provides all the mechanisms needed to submit jobs and
run them remotely, including checkpointing and remote
file access. Using Condor terminology the local host is
thesubmit machineand the remote hosts are calledexe-
cution machines. The submission of a job and the inter-
action between different Condor daemons is illustrated
in Figure 4.

In the following paragraphs, we will describe the
role of the different Condor daemons. We start by
describing the daemons that run on the local machine
(condor_schedd and condor_shadow) and continue with
the daemons that run on the remote machine
(condor_startd and condor_starter). The local daemons
are:

❏ condor_schedd:This daemon represents resources
requests to the Condor pool. Any submit machine
needs to have a condor_schedd running. Basically,
condor_schedd takes care of the job until a suitable
and available resource is found for the job. The
condor_schedd spawns a condor_shadow daemon
(described below) to serve that particular request.

❏ condor_shadow:This program runs on the machine
where a given request was submitted and acts as
resource manager for the request. Jobs that
linked for Condor's standard universe, which pe
form remote system calls, do so via th
condor_shadow. Any system call performed on th
remote execute machine is sent over the network
the condor_shadow which actually performs th
system call (such as file I/O) on the subm
machine, and the result is sent back over the n
work to the remote job.

The remote daemons are:

• condor_startd: This daemon represents a give
resource (namely, a machine capable of runnin
jobs) in the Condor pool. The condor_startd runs o
each machine in your pool on which you wish to b
able to execute jobs. When the condor_startd
ready to execute a Condor job, it spawns th
condor_starter, described below.

• condor_starter: This program is the entity that
spawns the remote Condor job on a given machin
It sets up the execution environment and monito
the job once it is running. When a job complete
the starter sends back any status information to t
submitting machine, and exits. Together, th
condor_startd and condor_starter form the RM.

Figure 4 shows also another element called t
match_maker. It represents the entity that is responsib
for finding a suitable machine on which to run the job

Figure 4: Condor Structure
The schedd and shadow run on the user’s local machine and startd and starter run on the remote machi

Page 9

n
-
-

nt-
li-
k
l
te
lly
he
d

k-
rt

e

er

li-

u-

-
nd
t-
to
ion
r-

ly
The matchmaking algorithm is responsible for locating
compatible resource requests with offers. When a com-
patible match is found, the matchmaker notifies the cor-
responding job and machine about it. Once a suitable
matching is notified to the schedd, it contacts the corre-
sponding startd. This is known as aclaiming protocol,
and either party may decide not to complete the alloca-
tion. There is another condor daemon, called the
condor_masterthat is present on both local and remote
nodes; its job is to keep track of the other Condor dae-
mons. Figure 4 shows the existing relation between all
these components.

4.2 Paradyn Structure

Paradyn is a performance profiling tool for parallel
and distributed programs. Two of its major technologies
are the ability to automatically search for performance
bottlenecks (Performance Consultant) and dynamically
inserting and removing instrumentation in the applica-
tion program at run time (Dyninst). Paradyn has two
main parts: the Paradyn front-end and user interface
(paradyn) and the Paradyn daemons (paradynd), which
are the agents that run on each remote host where the
application program is running. Paradyn contains the
user interface that allows the user to display perfor-
mance, data visualizations, use the Performance Con-
sultant to automatically find bottlenecks, start or stop the
application, and monitor the status of the application.
The paradynds operate under the control of paradyn to
monitor and instrument the application processes. In
TDP terminology, paradynd is the RT.

Paradyn interacts with the application program in
one of two modes, as described in Section 3.1: starting

the program (create mode) and attaching to an already-
running process (attach mode).

❏ Create mode:Paradyn launches the applicatio
with the user providing information such as work
ing directory, the application name and its argu
ments, and execution host machine. Once the fro
end has all the information related to the new app
cation, it will create the paradynd using either for
in the case of launching paradynd in the loca
machine or rsh or ssh when executing on a remo
machine. Once paradynd has been successfu
started, a connection is established between t
front-end and paradynd. At this point, the paradyn
is ready to launch the application process by for
ing a new process. Before allowing the user to sta
the application, some initialization is done:

• the paradyn run-time library is loaded into th
application process,

• paradynd parses the executable to discov
symbols and find potential instrumentation
points, and

• a connection is established between the app
cation and the paradynd.

After these steps, the user is able to control the exec
tion of the application from the front-end.

❏ Attach mode:The user specifies the host and pro
cess id of the application process and the front-e
launches a paradynd by either forking it or execu
ing an rsh/ssh. In this case, paradynd will attach
the application process and, once the attach act
has been done, it will pause the application and pe
form the same actions that were previous
described for create mode.

A: The daemon structure B: The Condor submit file with new entries

Figure 5: Paradyn Running with Condor using TDP

universe = Vanilla
executable = foo
input = infile
output = outfile
arguments = 1 2 3
transfer_files = always
+SuspendJobAtExec = True
+ToolDaemonCmd = “paradynd”
+ToolDaemonArgs = “-zunix -l3

-p2090 -P2091 -a%pid”
+ToolDaemonOutput = “daemon.out”
+ToolDaemonError = “daemon.err”
tranfer_input_files = paradynd
queue

-mpinguino.cs.wisc.edu

Create and pause
the application

Monitoring tool
information

Typical job
description

Page 10

n
n
n
by
-
ed
ce-
ot
li-
b-

n

rk
ior
ti-
is

nts

ps

d
en
-

n
on.
s

ies
is
ts

ing

-
d
he

t is

c-
ks
a

4.3 ParadoR: Combining Both Worlds

The process control of both Paradyn and Condor
were modified to use the TDP library. While these mod-
ifications involved some re-arranging of the related code
in each system, the total code involved was less than 500
lines. A Condor user can submit a job that will create the
application process (paused), create the paradynd, and
provide paradynd with enough information that it can
contact its front-end.

The code changes in Paradyn and Condor fell into
two categories, rearrangement of basic operations to fit
the TDP model and addition of TDP library calls. The
rearrangement of operations has no net effect on the
behavior of Paradyn or Condor; this rearrangement sep-
arates functions that were once combined. These
changes can be considered permanent. The addition of
TDP library calls allows Paradyn and Condor to operate
with TDP, and these calls are only invoked in a TDP
environment.

The prototype described in this section has been
developed under thecreate mode, where the resource
manager daemon (condor_starterin this case) creates
both the RTandAP from the beginning. In addition, the
prototype managed only the Local Attribute Space
(LASS) at the remote host; no management of global
attributes were included.

The logical view of this approach is depicted in
Figure 5A. From the Condor point of view, the new job
consists of two entities: the application process and
paradynd. In the current prototype, new commands in
the job submit fileare used to notify Condor that the
application process must be created but not started to
allow paradynd to monitor the application process from
scratch. For this purpose, theSuspendJobAtExecdirec-
tive must be introduced in the Condor submit file as is
shown in Figure 5B (line 7). Furthermore, the submit
file must also contain all the information about the RT
(in this case the paradynd). For this purpose, a set of
lines initiated with the stringToolDaemonare intro-
duced. These lines outline all the information needed to
launchparadyndand are equivalent to the description of
a regular job. That is, instead ofArguments,one will use
ToolDaemonArguments, instead ofoutput, one will use
ToolDaemonOutput, and so on.

In our tests, the Paradyn Front-end was started first.
This step was required because the front-end publishes
two port numbers that paradynds must use to connect to
it. As seen in Figure 5, port numbers were manually
included in the submit file (-p2090 and−p2091) and the
starter passed them directly to paradynd as arguments at
starting time. In a complete TDP framework, port argu-
ments should be published by Paradyn front-end and
disseminated to remote sites as attribute values. On the
other hand, the applicationpid was communicated using

the Local Attribute Space. We used the -a%pid notatio
as a temporary mechanism to show which informatio
the starter should put into LASS and which informatio
should paradynd get from there. This attribute is used
paradynd to know it is running under the TDP frame
work. A more expressive mechanism should be defin
by each resource manager or run-time tool in a real s
nario. Once Paradyn front-end was created, it did n
carry out any further action to create paradynds or app
cation processes. This work was left to Condor by su
mitting a job like the one in Figure 5B. The front-end
waited until Condor found an available machine to ru
the application.

Next, we briefly sketch how the TDP functions
were included in both Paradynd and Condor to wo
under TDP. Figure 5A describes the daemons’ behav
in the remote host. Once the Condor claiming and ac
vation protocols are completed, a remote machine
ready to accept the submitted job. The Condorstartd
creates astarter, which will be in charge of the pro-
cesses involved in thenew job. In our case, thenew job
comes from a specialjob submit file, which includes the
extra arguments as described earlier. These argume
are parsed by thestarter, which detects that monitored
job should be launched. Figure 6 shows the four ste
that are followed by bothstarter and paradynd to com-
plete the launching sequence:

❏ Step 1: Thestarter executestdp_init to create
the LASS through which starter and paradyn
communicate. Once the TDP framework has be
initialized, the starter launches the application pro
cess using tdp_create_process with a
paused argument to indicate that the applicatio
process must be stopped before starting executi
In Unix terms, this means that the application ha
been stopped after executing the pairfork/exec
calls and, consequently, the libraries dependenc
have not been already loaded and initialized. At th
point, the paradynd can not yet safely introduce i
instrumentation points.

❏ Step 2: The starter launches the paradynd by us
the tdp_create_process function but, in this
case, thepaused option is not used and the para
dynd is created normally. When the paradyn
parses its arguments, which were specified in t
job submit file, it does not find any application pro-
cess reference. Paradynd assumes then that i
working under a TDP framework.

❏ Step 3: At this point, paradynd callstdp_init to
contact the LASS. Once the contact has been su
cessfully accomplished, paradynd immediately as
for the application pid. For this purpose, it calls
tdp_get with a PID attribute. Sincetdp_get is
a blocking function, paradynd is blocked until the

Page 11

n-

P
ra-

e

n
e

s
t

of
es
o-
ter
s
a-
ing
mi-
starter stores in the LASS the corresponding appli-
cation pid using tdp_put . Once paradynd
receives the queried pid, it attaches to the applica-
tion by calling thetdp_attach function. After-
wards, paradynd will run the application process
until the beginning of themain function by issuing
a tdp_continue_process call.

❏ Step 4: Paradynd will have the control of the appli-
cation execution as usual.

Condor defines six different execution environ-
ments, called “universes”, to run applications. Each uni-
verse is chosen according to the type of application that
the user wants to run and specified by theuniverse
attribute in the submit file. Slightly different mecha-
nisms are used by the starter in each universe to spawn
the application. Our prototype was demonstrated using
the Vanilla and the MPI universes, which have similar
starters.

The Vanilla Universe is used to run sequential
applications, when no specific restrictions are applied to

the job (i.e., any sequential job that runs outside of Co
dor will run in the Vanilla Universe without modifica-
tion). When a vanilla application is run under the TD
framework, the starter creates the application and pa
dynd following the order depicted in Figure 3A. The
paradynd is blocked in a tdp_get operation until th
applicationpid is put by the starter into the LASS. The
Paradyn front-end then is updated with the informatio
about the application and the user is in control of th
application as usual.

The MPI Universe is used to run parallel program
written with MPI. More specifically, applications mus
be compiled with the MPICH ch_p4 version of MPI. In
this case, the submit file also specifies the number
nodes to be used in the parallel job. The application do
not start until a suitable number of machines are all
cated by Condor. Then, a first process (called “mas
process”) is started. In MPI terminology, this proces
has rank 0. A paradynd is created afterwards, inform
tion is exchanged between starter and paradynd us
the LASS, paradynd attaches to the process and, si

Figure 6: TDP Function Calls from the Condor and Paradyn Sides

Page 12

n,
ts

e
or-
ns
er
n
n
y
a-
on
n

t-
E-
b

e

-
te
ny

-
r

9.

el

,

.

.

d

A
g

larly to how we described for the Vanilla universe, con-
trol is passed to the user through the front-end. Once the
user issues the run command, the rest of processes from
the application are created with a paradynd attached to
each one of them. Processes are created and stopped,
paradynds attach to them and, after reporting to the
front-end, they immediately issue a run command (using
TDP_continue). At this point, the user is able to further
steer and analyses the execution of the application as
usual by using the commands from the Paradyn front-
end.
The benefits of distributed resource sharing are well
established, and numerous software environments and
toolkits have evolved in recent years to support this
mode of computing. Grids, which are considered to be
the most generalized metacomputing systems, have
gained tremendous popularity recently as enabling
secure, coordinated, resource sharing across multiple
administrative domains, networks and institutions.

5 CONCLUSIONS

Despite the potential benefits of large distributed
systems, it is commonly accepted that they are inher-
ently more complex than existing parallel systems or
local-area clusters. In these large-scale distributed sys-
tems, resource managers play a crucial role as they are
responsible for providing basic services to guarantee the
execution of applications in remote resources. On the
other hand, the use of on-line monitoring tools is an
important approach for finding effective solutions to
performance problems and to ensuring application reli-
ability. Reliability and performance problems are not
restricted only to user applications but also to the whole
set of components that are commonly referred as system
middleware. Subsequently, the use of on-line monitor-
ing tools is extensible to these middleware services.

Large-scale distributed environments imply a new
scenario that requires that both resource managers and
monitoring tools be aware of the existence of one
another and be prepared to execute in such conditions.
This paper described our early experiences with TDP
(Tool Daemon Protocol), a standard interface that aims
to improve interoperability between resource managers
and monitoring tools. By interoperability, we refer to the
ability of different tools and resource managers to co-
operate in controlling user applications by using com-
mon services and communication mechanisms. TDP is
based on a small set of functions that are used both by
resource managers and monitoring tools to create and
control application processes. Additionally, it manages
a common Attribute Space that is based on a flexible and
extensible mechanisms that enable any pair of resource
managers and monitoring tools to communicate effec-
tively. The Attribute Space is used not only to exchange

basic configuration and application specific informatio
but also to notify the occurrence of run-time even
related to the application execution.

A first prototype of TDP has been applied to th
Condor batch system and the Paradyn Parallel Perf
mance Tool as a proof of concept. Appropriate daemo
of Condor and Paradyn were modified to work togeth
using the TDP library. As a result, we were able to ru
jobs in a Condor pool (both sequential and MPI) i
which the job was also monitored and controlled b
Paradyn. This prototype focussed mainly on interoper
bility problems between a resource manager daem
and a run-time monitoring tool daemon at the executio
site (where the Local Attribute Space is used).

ACKNOWLEDGEMENTS

This work has been supported in part by Depar
ment of Energy Grants DE-FG02-93ER25176 and D
FG02-01ER25510, Lawrence Livermore National La
grant B504964, VERITAS Software, theDirección Gen-
eral de Universidadesunder grant PR2001-0425 and th
Comisión Interministerial de Ciencia y Tecnología
(CICYT) under contract TIC2001-2592. The U.S. Gov
ernment is authorized to reproduce and distribu
reprints for Governmental purposes notwithstanding a
copyright notation thereon.

REFERENCES

[1] S.M. Balle, B.R. Brett, C.-P. Chen, D. LaFrance
Linden. A New Approach to Parallel Debugge
Architecture. Sixth International Conference PARA
2002, Espoo, Finland, June 2002. Published asLecture
Notes in Computer Science2367, J. Fagerholm et al
(Eds.), Springer, Heidelberg, June 2002, pp. 139–14

[2] R. Butler, W. Gropp, and E. Lusk, “A Scalable
Process-Management Environment for Parall
Programming”, EuroPVM/MPI 2000, Balaton,
Hunger, August 2000. Spring Verlag LNCS 1908.

[3] N. Carriero and D. Gelernter, “Linda in Context”,
Comm. of the ACM32, 4, April 1989, pp. 444-458.

[4] Cray Computer Inc., “NQE Users Guide”, Version 3.2
January 1997.

[5] Etnus LLC, “TotalView User’s Guide”, Document
version 6.0.0-1, January 2003
<http://www.etnus.com>

[6] D.A. Evensky, A.C. Gentile, L.J. Camp, and R.C
Armstrong. Lilith: Scalable Execution of User Code
for Distributed Computing.Sixth IEEE International
Symposium on High Performance Distribute
Computing (HPDC ‘97), Portland, Oregon, August
1997, pp. 306–314.

[7] I.T. Foster and C. Kesselman, “The Globus Project:
Status Report”,Seventh Heterogeneous Computin
Workshop, Orlando, Florida, March 1998.

Page 13
[8] A.S. Grimshaw and W.A. Wulf, “Legion - A View
from 50, 000 Feet”,5th International Symposium on
High Performance Distributed Computing(HPDC
’96), Syracuse, NY, August 1996.

[9] IBM Corporation, “Load Leveler Users Guide”,
Version 1.2. 1995.

[10] T. Ludwig, R. Wismüller and M. Oberhuber, “OCM -
An OMIS Compliant Monitoring System”,Third
European PVM Conference, München, Germany,
October 1996, Springer Verlag LNCS 1156.

[11] S. Madden, M.J. Franklin, J.M Hellerstein, and W.
Hong. TAG: a Tiny AGgregation Service for Ad-Hoc
Sensor Networks.Fifth Symposium on Operating
Systems Design and Implementation (OSDI), Boston,
Massachusetts, December, 2002.

[12] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K.
Hollingsworth, R.B. Irvin, K.L. Karavanic, K.
Kunchithapadam, and T. Newhall, “The Paradyn
Parallel Performance Measurement Tools”,IEEE
Computer28, 11, (November 1995). Special issue on
performance evaluation tools for parallel and
distributed computer systems.

[13] M.J. Mutka, M. Livny, and M.W. Litzkow, “Condor -
A Hunter of Idle Workstations”,8th Int’l Conf. on
Distributed Systems, San Francisco, Calif., June 1988.

[14] Adrian Nye,Xlib Programming Manual , 3rd edition,
O’Reilly and Associates, Inc., July 1992.

[15] Platform Computing Inc, “LSF Users Guide”.

[16] P.C. Roth, D.C. Arnold, and B.P. Miller, “MRNet: A
Software-Based Multicast/Reduction Network For
Scalable Tools”,SC 2003, Phoenix, AZ, November
2003.

	The Tool Dæmon Protocol (TDP)
	Abstract
	1 Introduction
	Figure�1: Remote Execution with Resource Manager and Run-Time Tool

	2 TDP Interfaces
	2.1 The Attribute Space
	Figure�2: Remote Execution with Local (LASS) and Global (GASS) Attribute Space Servers Added

	2.2 Application Process Creation
	1. Create the application process and start it running: This scheme is typically the simplest, us...
	2. Create the application, initialize it, and then start it running. This scheme allows the tool ...
	3. Attach to a running application process: Attaching is an important mechanism for operating on ...

	2.3 Application Process Monitoring and Control
	2.4 Tool Communication

	3 TDP Services
	Figure�3: Steps to Allow a RT to operation on an Application Program Note that for the create cas...
	3.1 Process Management.
	3.2 TDP Inter-Daemon Communication
	3.3 Event Notification
	Figure�4: Condor Structure The schedd and shadow run on the user’s local machine and startd and s...

	4 Parador: Prototyping TDP
	4.1 Condor structure
	4.2 Paradyn Structure
	Figure�5: Paradyn Running with Condor using TDP

	4.3 ParadoR: Combining Both Worlds
	Figure�6: TDP Function Calls from the Condor and Paradyn Sides

	5 Conclusions
	Acknowledgements
	References
	[1] S.M. Balle, B.R. Brett, C.-P. Chen, D. LaFrance- Linden. A New Approach to Parallel Debugger ...
	[2] R. Butler, W. Gropp, and E. Lusk, “A Scalable Process-Management Environment for Parallel Pro...
	[3] N. Carriero and D. Gelernter, “Linda in Context”, Comm. of the ACM 32, 4, April 1989, pp. 444...
	[4] Cray Computer Inc., “NQE Users Guide”, Version 3.2, January 1997.
	[5] Etnus LLC, “TotalView User’s Guide”, Document version 6.0.0-1, January 2003. <http://www.etnu...
	[6] D.A. Evensky, A.C. Gentile, L.J. Camp, and R.C. Armstrong. Lilith: Scalable Execution of User...
	[7] I.T. Foster and C. Kesselman, “The Globus Project: A Status Report”, Seventh Heterogeneous Co...
	[8] A.S. Grimshaw and W.A. Wulf, “Legion - A View from 50, 000 Feet”, 5th International Symposium...
	[9] IBM Corporation, “Load Leveler Users Guide”, Version 1.2. 1995.
	[10] T. Ludwig, R. Wismüller and M. Oberhuber, “OCM - An OMIS Compliant Monitoring System”, Third...
	[11] S. Madden, M.J. Franklin, J.M Hellerstein, and W. Hong. TAG: a Tiny AGgregation Service for ...
	[12] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Irvin, K.L. Karavanic, ...
	[13] M.J. Mutka, M. Livny, and M.W. Litzkow, “Condor - A Hunter of Idle Workstations”, 8th Int’l ...
	[14] Adrian Nye, Xlib Programming Manual, 3rd edition, O’Reilly and Associates, Inc., July 1992.
	[15] Platform Computing Inc, “LSF Users Guide”.
	[16] P.C. Roth, D.C. Arnold, and B.P. Miller, “MRNet: A Software-Based Multicast/Reduction Networ...

