
Verification of Network Management System Configurations

David L. Cohrs
(608) 262-6617 dave@cs.wisc.edu

Barton P. Miller
(608) 262-3378 bart@cs.wisc.edu

Computer Sciences Department
University of Wisconsin − Madison

1210 W. Dayton Street
Madison, Wisconsin 53706

ABSTRACT

The size and complexity of current computer internets are increasing the need for au-
tomated network management. In the past, networks were usually managed from a
central location. Today, internets are too large, and individual administrative domains
too autonomous for this centralized approach. Distributing the network management
system causes problems, because there is no longer central control over the
configuration of the parts of the system. We address these problem through the use of
a high level, formal specification language, NMSL. NMSL allows the network ad-
ministrators to describe their network environment and its relationship to other environ-
ments. The NMSL system then operates in two roles: it verifies network management
specifications, and it automatically configures network management systems given a
verified specification.

This paper presents a model for network management systems, and a method for veri-
fying specifications of these systems. We divide the verification problem into three
parts: capacity, protection, and configuration verification. Capacity verification deter-
mines if the processes in the network management system are configured to handle the
load that their clients place on them. Protection verification determines if access per-
missions are being violated. Configuration verification determines if other general re-
quirements on the specification are being met. We also provide a way to distribute the
verification process, and a way to summarize information that needs to be propagated
across domain boundaries. We discuss the performance of our implementation of this
system, and describe our future research directions.

Keywords: Management Languages, Inter-Organizational Management Issues

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Research supported in part by an AT&T Ph.D Scholarship, NFS grant CCR-8815928, ONR grant N00014-
89-J-1222, and a Digital Equipment Corporation External Research Grant.

1. INTRODUCTION

Computer internets are growing in size and complexity, and the need for automated network
management systems is growing as well. As the size of a network management system increases, it also
grows in complexity. If the network is small, the task of network management can be performed by a
human administrator, with the use of simple, ad hoc tools. However in a large network, managing the net-
work management system becomes a significant problem in itself. The NMSL system addresses the com-
plexity of managing larger internets by providing a language to specify the configuration of network
management systems, and a way to configure network management systems from a specification.

The increased complexity has two main sources. First, a large network management system is simi-
lar to any other networking application. It instantiates processes throughout the network. The processes
communicate via network management protocols, which must be configured correctly. These processes
must be configured to perform the correct internal operations to make queries at the correct time, to answer
queries correctly, or to reject invalid queries. Second, these processes are divided along the lines of admin-
istrative domains. Domains reduce the amount of sharing and coordination possible in configuring the net-
work management system. Each administrative domain needs to remain autonomous − administrators and
the owners of a domain are generally not willing to give up control over the management of their networks.
However, because management processes need to communicate between these domains, a mechanism is
necessary to help coordinate this communication.

The NMSL system provides a solution to the problems involved with network management
configuration. The goal of NMSL is to reduce the errors present in the network management system itself,
especially those due to incorrect configuration. We employ a high level specification language to achieve
this goal. A specification of a network management system can be verified, and a verified specification can
be used to directly configure the processes and data bases used by the network management system. The
verification process is distributed along domain boundaries, allowing administrative domains to hide any
information about themselves that do not pertain to the relationships between domains. An overview of the
NMSL system can be found below, with additional information in [5].

NMSL has applications to managing other large, distributed systems as well. A network manage-
ment system can be thought of as a specialized distributed system. Network management systems include
specialized protocols and data models, tailored to the management problem. However, the general struc-
ture of NMSL and the NMSL compiler makes the ideas applicable to other data models and protocols.

This paper presents our verification model and the performance of our current implementation of the
NMSL verifier. Section 1.1 gives an overview of the entire NMSL system. Section 2 describes the
verification model. The verification model includes a formal definition of what it means to verify a net-
work management specification, the method used to verify a specification, the model’s limitations, and the
effect administrative domains have on the verification process. Section 3 shows an example of how one
would apply this model to specifying a simple network management system. Later, in Section 4, we dis-
cuss the performance of our translator and the verifier. We describe the current status of the system a sum-
mary of our research so far and some conclusions in Section 5.

1.1. NMSL Overview

The NMSL system provides system administrators with a language, NMSL, for describing the
configuration of their network management system and the networks that they manage. NMSL
specifications depend on a model of network management systems structure, shown in Figure 1.1. In this
model, a network management system consists of management processes that interact via a management
protocol. The processes maintain the state of the network management system in a set of objects. The
objects are the data or management information maintained by the network management system. The
processes manage the hardware attached to the network, which we call systems. Systems include all types
of network-attached hardware, from mainframe computers and workstations to bridges. Systems are
grouped into domains. Domains define the administrative boundaries in network management. In existing
network management systems, administrative domains are set up in a hierarchical manner, so we support
this structuring of domains in our model. Domains are also allowed to overlap, allowing systems (and the
processes that manage them) to be members of more than one domain. Overlaps are also permitted in
existing network management systems, like SNMP.

hhh

Domain

Domain

Domain

Domain

System

Process

Object Object

Process

Object Object

Process

Object Object

System

Process

Object Object

Process

Object Object

hhh

FIGURE 1.1. THE NMSL NETWORK MANAGEMENT SYSTEM MODEL

NMSL allows the specification of objects and processes in terms of abstractions and instantiations.
Abstract object specifications define the management information, including structural information
(abstract data types), access permissions, naming, and containment. Objects are specified using standard
ASN.1 notation[6]. Abstract process specifications describe a process’s operation in general terms, includ-
ing the types and frequencies of queries, the objects the process must be able to access, and the objects the
process allows other processes to access. The location or name of the computer on which the process exe-
cutes is not specified. This models the situation where a common set of processes, along with the objects
they manage, will be instantiated in a number of locations, but perform the same types of operations in
each instantiation. Processes can be parameterized, so that things like the process’s peer(s) can be
specified when the process is instantiated.

NMSL uses system and domain specifications to model the physical layout of the network manage-
ment system. System specifications describe the individual properties of the hardware, e.g. a computer,
router or bridge, attached to computer network, and the software that runs on that hardware. They include
the instantiations of processes and configuration information, such as the number and types of networks to
which the system is connected. Other types of configuration information are the types of management
objects defined for the system (for example, EGP objects are only defined for systems which run an EGP
router), the operating system, and limitations the hardware may place on the management, such as max-
imum packet sizes.

Domain specifications describe the administrative grouping of systems and processes. They define a
boundary between administrative organizations. Domain specifications list the systems and domains that
are members of the domain, and processes that operate on behalf of the domain. Domains can partially
overlap as long as the overlap does cause a self-reference.

There are two roles in which NMSL can be used, for describing the network management
configuration of an internet, and for configuring the management processes described in the specification.
We call these two roles the descriptive and prescriptive roles of NMSL.

The NMSL compiler is central to both roles of the NMSL system. In its descriptive role, the com-
piler takes as input the full specification of an administrative domain, and verifies its validity. The exact
meaning of validity is the topic of Section 2. Some parts of the specification may include references to the
specifications of other administrative domains. In this case, the verifier creates a new specification for this
domain, describing only its interface with other domains. Information about the internal structure of a
domain is not propagated across domain boundaries. This external specification is made visible to other
domains, where the verification process takes place again. If at any point an inconsistency is found in a
domain’s specification, this information must be propagated back the originating domain. If no incon-
sistencies are found, the specification is deemed to be valid.

Given a valid specification, the NMSL compiler generates prescriptive output in the form of com-
mands to configure the network management processes within the domain. These commands can take
many forms, so the NMSL compiler is has the ability to generate many types of output. The systems and
processes of the domain are configured using implementation dependent modules, that speak the protocols
and have the permission necessary to reconfigure the network management system. Ideally, standard
management protocols, such as SNMP[4] or CMIS/CMIP[7, 8] will be used to reconfigure the network
management system. Therefore, the NMSL system provides for both the description of the network
management system through a specification language, and a method for enforcing that description through
automated configuration.

2. THE CONSISTENCY MODEL

The consistency model states the conditions that must be met for a given specification to be correct.
It divides these conditions into three categories: capacity, protection, and configuration. These categories
correspond to the three types of relationships specified in a NMSL specification. Any given specification,
for example, the error messages a router sends and the conditions under which they occur, are defined in
terms of these three relationships. The capacity condition states that a service provider must have enough
capacity to handle the requests of all of its clients. The protection condition states that a client must be
given permission to perform the requests that it makes. The configuration condition states that individual
configuration statements in a specification must meet global constraints. If these three conditions are met
in a specification, the specification is consistent.

The existence of administrative domains complicates the problem of determining the consistency of
a network management specification. The autonomy and privacy of administrative domains does not allow
all the information of a domain’s specification to be sent to a central location for the consistency check.
Copying all of the specifications to a central location is bad for performance as well. To solve these prob-
lems, we divide a domain’s specification into two logical components, its internal specification and its
external specification. The internal specification defines how the parts of the domain, including sub-
domains, interact with each other. The external specification defines the how this domain interacts with
other domains. Dividing the consistency check along domain boundaries allows information hiding,
reduces the search space as compared with a single, centralized check, and distributes the work involved.

In sections 2.1 through 2.3, we describe each of the consistency categories, capacity, protection, and
configuration. Section 2.4 describes the effect that domains of administration have on this basic model, and
how the internal and external specifications are derived.

2.1. Capacity

The goal of the capacity model is to determine, as quickly as possible, if each service provider has
the capacity to provide the services needed by its clients. This is a form of the classic capacity planning
problem[3].

Capacity planning provides a systematic approach to modeling and predicting the capacity of a sys-
tem, in our case, a network management system. To form a capacity planning model, one must determine
the parameters that characterize the workload a system, and parameters that are required to predict the
future performance of the system. This is an application of performance analysis, with an emphasis on the
predictive nature of the model. Designing a capacity planning model requires the creation of an initial

model for the system workload, validation, and modifying the model if it does not adequately model the
capacity of the system.

In our capacity planning model, we wish to obtain a reasonable answer to the capacity question by
use of a simple, easy to understand model. This lead us to employ a system of closed-form equations to
solve the capacity planning problem. Closed-form equations have two characteristics we find important.
First, since the users of this system will not be performance experts, they need a simple, easily understand-
able model with simple parameters. Second, this model is important because our capacity problem is part
of a larger automated consistency proof, which requires a yes or no answer, and also must execute quickly.

The capacity model assumes a client/server based system. Each network management process is
considered a client or a server† (or both). These processes are instantiated on systems (hardware)
throughout the network being managed. The systems of the network are divided into administrative
domains, implying that the processes are also divided into administrative domains. Administrative
domains are allowed to nest or overlap, but a domain may not contain itself.

Clients interact with servers by means of a request, or query, and a server sends back a response.
We allow clients to have more than one mode of operation, based on the frequency of queries made. For
example, an interactive client could have two modes, an inactive mode, where it is waiting for input, and an
active mode, where it is interacting with a human and some servers. In the inactive mode, this client will
make few, if any, requests of a server, but in the active mode, it will make frequent requests. We assume
that servers all operate in a single mode, that of answering queries from any appropriate client. If a process
has the characteristics of both a client and a server, we make the simplifying assumption that these opera-
tions are independent.

The capacity model employs an independent, discrete distribution of the frequency of interactions,
requests and responses, between network management processes. Interactions are measured in queries per
second (qps). We assume the messages involved are sent reliably. We also assume that response time is
not a factor in determining the frequency of requests.

Given a group of clients, we can determine the aggregate load that the group places on a server. This
aggregate load and its distribution are important for determining the probability of overloading a server,
and for propagating information between domains. Given the frequency distribution of the clients, we can
determine the average and peak load, as well as calculating the discrete aggregate distribution of the group.
When determining the consistency of a specification, we can choose which of these three solutions for the
capacity problem is appropriate on a individual basis. The method used depends on the constraints of the
client processes. Some clients, such as a client making routing decisions, require time critical information
to operate correctly. For such a client, the peak load of each of its servers must be satisfied for the
specification to be valid. A less critical client can specify the probability that the server may be over-
loaded. The average load is appropriate for declaring most network management clients to be valid. Such
clients are not on a time critical path, but need to have some assurance that their requests will be satisfied
eventually.

To keep the model simple and the problem tractable, a number of concepts are not included in our
model. The model does not include information concerning the duration of a given mode − behavior is
considered on an instantaneous basis. The model also excludes response time. Because we are not model-
ing the behavior of the entire network, but just the end-to-end behavior of the processes, we do not have
enough information to determine response time. Adding response time to the model makes the problem
difficult to solve, if solvable at all. Finally, we do not model the fine-grained operation of the message
delivery protocols.

2.1.1. Calculating Capacity

We are interested in determining the capacity, in queries per second, of servers, and in determining
the load clients will place on each server, i.e. whether each server’s capacity will be exceeded. The load
can be measured several ways. We are interested in the average utilization, the average number of queries
per second clients place a server, and the peak utilization, the maximum number of queries a server can
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

†Network management standards[4, 9] refer to these processes as managers and agents, respectively.

receive per second. We are also interested in the probability that a server’s capacity will be exceeded. The
utilizations depend on the distribution of requests from the clients, which in turn depend on the number of
modes of operation of each client. If only one client is being considered, we call its distribution a simple
distribution. A group of clients has an aggregate distribution.

We divide the calculations into two cases: a single client querying a single server, and a group of
clients querying a single server. The case of a single client simultaneously querying a group of servers
(multicast), while an interesting from a reliability point of view[2], is not used in current network manage-
ment systems.

The single client/single server case is easy to calculate. For example, consider the interactive client
and server shown in Figure 2.1; the average utilization is

0.80 × 0 qps + 0.20 × 20 qps = 4 qps.

The peak utilization is 20 qps, and the aggregate distribution is the same as the simple distribution. In gen-
eral, for a single client and a single server, the average rate is just the sum of the rates for each mode.
Determining whether this example is consistent is a matter of determining if the server can withstand the
load of its client. In the example in Figure 2.1, the server, which can receive 20 qps, has the capacity for
both the average and the peak rate of requests. Therefore, the probability that the server’s capacity will be
exceeded is zero.

In the multiple client/single server case, we simply add the loads of the individual clients to get their
average and peak request frequency. For example, Figure 2.2 shows three clients Client1, Client2, and
Client3. Their average request rate is

0.50 × 5 qps + 0.50 × 20 qps =
0.80 × 0 qps + 0.20 × 10 qps +
0.80 × 0 qps + 0.20 × 20 qps +

18.5 qps.

In this case, the server, which can handle 20 qps, will not be overloaded in the average case. The peak
request rate is the sum of the peak rates for each of the clients,

20 qps + 10 qps + 20 qps = 50 qps.

This is greater than the capacity of the server. The distribution of the aggregate load of these three clients
has 8 modes, and is determined using simple probabilities. Basically, we take all combinations of the
modes of the three clients. For example, to calculate aggregate Mode 1, we take the combination of Mode
1 of Client1, Mode 1 of Client2 and Mode 1 of Client3. The probability of operating in this aggregate
mode is

0.8 × 0.8 × 0.5 = 0.32

and the number of queries per second is

hhh

Client
Server

Capacity: 20 qps
20% in mode 2
20 qps

80% in mode 1
 0 qps

hhh

FIGURE 2.1. A SINGLE CLIENT/SINGLE SERVER CONFIGURATION

hhh

Aggregate

Load

20% in mode 2
20 qps

80% in mode 1
 0 qps

Server

Capacity: 20 qps

Client 3

20% in mode 2
10 qps

80% in mode 1
 0 qps

50% in mode 2
20 qps

50% in mode 1
 5 qps

Client 1

Client 2

hhh

FIGURE 2.2. A MULTI-CLIENT/SINGLE SERVER CONFIGURATION

0 qps + 0 qps + 5 qps = 5 qps.

The other modes are calculated in the same manner. The resulting distribution, shown in Figure 2.3, is

Mode 1: 0.32 5 qps Mode 5: 0.08 15 qps
Mode 2: 0.32 20 qps Mode 6: 0.08 30 qps
Mode 3: 0.08 25 qps Mode 7: 0.02 35 qps
Mode 4: 0.08 40 qps Mode 8: 0.02 50 qps

From this aggregate distribution, we can see that the probability that the server will be overloaded at any
given instant is 0.28 (the sum of the modes with query rates greater than the server’s capacity of 20 qps,
shown as a dotted line in Figure 2.3).

In general, for n clients, C 1, C 2, . . . , Cn, each with m operating modes, or request rates, Fi(m), the
probabilities of being in each of the modes, Pi(m), and one server, S, the average aggregate load is

i =1
Σ
n

j =1
Σ
m

Pi(j)Fi(j).

The maximum load is

Percentage of time

50

40

30

20

10

0
1009080706050403020100

Fr
eq

ue
nc

y
of

 q
ue

ri
es

1

2

3

4

5

6
7

8

FIGURE 2.3. AGGREGATE LOAD DISTRIBUTION OF THREE CLIENTS

i =1
Σ
n

j =1
max

m

(Fi(j)).

The aggregate distribution is calculated by taking all combinations of the n clients and m modes. For each
mode, we determine the probability of operating in that mode by multiplying the probabilities of the combi-
nation of modes of the n clients. We determine the query rate by summing the query rates of the clients for
the given combination of their modes. Because there are n clients, each of which has m modes of opera-
tion, the time to calculate the aggregate distribution using a naive algorithm is O (m n).

We can reduce this to polynomial time by using an approximation. In the approximation, modes are
grouped depending on the frequency of requests in the mode, so all modes within a combined group have
similar frequencies. A fixed number of modes, N, are allowed in the approximation. N is assumed to be
larger than m. The probability of the combined mode is the sum of the probabilities of the calculated
modes being grouped together. The frequency of requests in the combined mode is the average of the fre-
quencies of the calculated modes. The use of combined modes does not affect the average load the aggre-
gate places on servers. If the mode containing the peak frequency is kept separate, the combined modes do
not affect the peak load calculation either.

Furthermore, we can calculate the aggregate iteratively, first taking two clients, calculating their
aggregate load, and adding another and recalculating, until all clients are added. Each step in this process
requires O (N 2) calculations, using the simple combinatorial method we used above. After the calculations
for a step are complete, we recombine the modes of the new aggregate to restrict them to exactly N modes.
Therefore, if we restrict the number of modes allowed in an aggregate to a constant number, and if we cal-
culate the aggregate iteratively, the time to calculate the approximate probability is O (n × N 2). In a
related algorithm[11], it was shown that this approximation can be made arbitrarily close to the real proba-
bility of exceeding the server’s capacity, by increasing N.

2.2. Protection

The purpose of the protection model is to verify that all operations performed by a client on an server
are permitted by that server. For example, if a client specification states that it requests routing tables from
a server, the specification for that server must state that this client has permission to perform that operation.
The protection model includes the property that each request performs a single operation on a single object.

2.2.1. Verifying Protection Conditions

To verify the protection condition, we must show that each client has permission to perform each of
its queries. In this discussion, we require the following logical relations:

ContainsO (O 1, O 2) Object O 1 contains object O 2.

ContainsD (D 1, D 2) Administrative domain D 1 contains system or domain D 2.

InstanD (D, P, ID,P) System or domain D instantiates process P with identifier ID,P.

InstanP (IP, O, IP,O) Process instance IP instantiates object O with identifier IP,O.

Req (C, IS, T, IS,O) An instantiated process or a domain, C, requests to perform operation T
on object instance IS,O from server IS.

Perm (C, IS, T, IS,O) Server IS permits client instance or domain C to perform operation T,
on object instance IS,O.

The relation, ContainsO, allows permissions to be inherited using the containment hierarchy of the manage-
ment information. ContainsD gives the relationship between domains and the objects that they contain.
Both of these relations are strictly hierarchical − objects and domains cannot contain themselves. The
InstanD relation models the idea that a network management process is a control abstraction that must be
instantiated. InstanP models the way in which a management process instantiates information; multiple
instances of information have different identifiers. Req describes the permissions necessary in each request
that a client makes of a server. Perm describes the permissions that a server gives to a client or domain. If
permission is granted to a domain, each client in that domain, as defined by the ContainsD relation, is also
granted permission. Each of these functions evaluates to true or false for each object or process in the
specification.

The functions described above are related by a small set of deduction rules, shown in Figure 2.4.

The Transitivity rules formalize the intuitive notion that an enclosing domain or object contains all of
the parts of its subdomains or sub-objects. Note that transitivity does not allow deductions from specific
cases to generalizations, because containment is strictly hierarchical. The rule of Implied Containment
states that when a domain or system, D, instantiates a process, the domain contains that instantiation of the
process. The rule of Implied Instantiation states that if a process instantiates an object that contains other
objects, the sub-objects are also instantiated by that process. The Implied Object Permission rule states that
if a server gives permission to access an object instance, and the object contains sub-objects, then the
server also gives permission to access the instantiations of those sub-objects. The Implied Domain Permis-
sion rule states that if a server gives a permission to a domain, then anything contained in that domain also
has that permission. The rules for defining Unique Identifiers state that instance identifiers are uniquely
determined by the process and object in the InstanP relation, and by the domain and process in the InstanD
relation.

Given these relations and rules, we wish to prove that for every request, there exists a corresponding
permission. The problem is simplified by the finite problem space − we only need to prove this condition
for a given specification, and not for all possible specifications. This allows an iterative proof method. A
simple, centralized method proceeds as follows. First, using the Perm, InstanP, and ContainsO relationsii

Transitivity ContainsO(O 1,O 2) & ContainsO(O 2,O 3) e− ContainsO(O 1,O 3)
ii

Transitivity ContainsD(D 1,D 2) & ContainsD(D 2,D 3) e− ContainsD(D 1,D 3)
ii

Implied Containment InstanD(D,P,I) e− ContainsD(D,I)
ii

Implied Instantiation InstanP(IP,O 1,IP,O 1) & ContainsO(O 1,O 2) e− InstanP(IP,O 2,IP,O 2)
ii

Implied Object Permission
ContainsO(O 1,O 2) e−

Perm(C,IS,T,IS,O 1) & InstanP(IS,O 1,IP,O 1) &

Perm(C,IS,T,IS,O 2)
ii

Implied Domain Permission Perm(D 1,IS,T,IS,O) & ContainsD(D 1,D 2) e− Perm(D 2,IS,T,IS,O)
ii

Unique Identifiers
IP 1,O 1 ≡ IP 1,O 2 e−

InstanP(IP 1,O 1,IP 1,O 1) & InstanP(IP 2,O 2,IP 2,O 2) &

IP 1 ≡ IP 2 & O 1 ≡ O 2ii

Unique Identifiers
ID 1,P 1 ≡ ID 2,P 2 e−

InstanD(D 1,P 1,ID 1,P 1) & InstanP(D 2,P 2,ID 2,P 2) &

D 1 ≡ D 2 & P 1 ≡ P 2iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

FIGURE 2.4. LOGICAL DEDUCTION RULES FOR PROTECTION VERIFICATIONS

obtained from the specification, we employ the Implied Object Permission rule to find the permissions for
each object instance. Next, we use the derived Perm relations, along with the ones obtained directly from
the specification, the ContainsD relation, and the Implied Domain Permission rule to find the permissions
for each client process. Finally, we attempt to match each Req relation with its corresponding Perm rela-
tion. If any Req relations have no match, the specification is invalid.

There are two problems with this approach. It can be inefficient and violate the requirement that
verification be split along domain boundaries. Therefore, we perform the verification in two parts. First,
we evaluate the permission relationships within a domain, and then propagate inter-domain requests and
permissions to the containing domain.

The verification proof within a domain is performed in the naive way described above. However,
before this proof takes place, we remove from the Req set the set of requests that are destined for processes
in other domains, by checking to see if the server instantiation used in each Req relation exists in this
domain; if not, we assume it exists in another domain. We call the set that we removed the external
request set. The remaining Req relations are internal requests. We then try to match each remaining Req
relation with a Perm relation, and if these matches succeed, the domain’s permission specification is inter-
nally consistent.

To hide the information specific to a given domain from other domains, we need to generate a new
specification and new logical relationships from the set of requests that should be satisfied by permissions
from other domains. We also need to make external permissions visible to other domains. If we assume
that the internal structure of an administrative domain is not visible outside of that domain, then all requests
from any client within a domain will appear to have come from the domain itself. Therefore, the Req rela-
tions for a domain are derived from the external request set by replacing the client or subdomain identifier
in the original Req relation with the domain identifier in which it is contained. To avoid the incorrect
verification of a specification, we must leave external permissions unchanged, because each server defines
its own permissions. If two servers grant different permissions to an object, it is important to differentiate
between them when evaluating their clients’ requests. This set of external relationships is propagated to
the enclosing domain, which repeats the process of internal verification and external propagation. When
the top level domain is reached, no propagation takes place, and any unsatisfied requests are determined to
be inconsistent.

2.3. Configuration

The configuration model is used to verify parts of NMSL specifications relating to the configuration
of network managers. We call each of these a configuration condition. This classification includes all
parts of a specification not modeled by the capacity or protection models. The configuration conditions
have the common characteristic that they are general requirements placed on the entire specification by a
single element of the specification. Some examples of configuration conditions are verifying that: the pro-
tocol used to communicate between two management processes is the same, the maximum number of
routers allowed in a network is less that some maximum, and all requests sent to a process are smaller than
the maximum request size accepted by that management process.

Two examples of specifications defining configuration conditions are shown in Figure 2.5. These
examples are fragments of a NMSL specification. The first example shows the hardware configuration of a
computer on our local network, defining several configuration conditions. The cpu type and operating sys-
tem version define constraints on the types of programs that can be run on this computer. The interface
definition sets conditions for maximum transmission rates and packet sizes.

The second example specifies the requirement that the number of computers that route packets
between networks (i.e. those computers that run routing processes), be three or less. This type of
configuration condition is important for networking products that have limits on the number of routers
allowed on an individual network. They can also be used to enforce administrative requirements. Limiting
the number routers on a network to one, for example, would enforce the requirement that that network can-
not be split into two physical subnetwork without intervention from the central administrator.

These conditions can also be used at runtime to configure network management processes. For
example, by listing the interfaces a computer has and the networks to which it is attached, a network
management server can be configured to monitor these interfaces. Different instantiations of the manage-
ment process can be configured in different ways, depending on these conditions. This use is part of the

hhh

system "dip" ::=
cpu mips;
opsys ultrix version 2.1;
interface se0 {

net wisc-twisted;
type ethernet-csmacd;
speed 10 Mbps;

}
end system "dip".

domain "wisc-cs" ::=
requires {

count(process Router) >= 1 and
count(process Router) <= 3;

}
end domain "wisc-cs".
hhh

FIGURE 2.5. EXAMPLES OF CONFIGURATION CONDITIONS

prescriptive role of NMSL, mentioned in Section 1.

To verify the configuration conditions, we must show that each of the conditions in a specification
are met. The method used is similar to that use for verifying permission conditions. To verify conditions
concerning amounts, or those concerning numbers of entities (e.g. objects or systems), we employ equa-
tions, in the manner similar to that used for verifying the capacity of the system.

2.4. Domains

Our model thus far has implicitly assumed that we will evaluate the specifications in a single, central
location. This centralized method could cause two problems. First, the number of logical relations to
evaluate would be quite large. Second, it would require that each organization provide detailed informa-
tion about their internal computing environment. Both of these problems occur at the domain boundary,
and share a common solution, information hiding. The goal of information hiding is to summarize the
specification at domain boundaries and propagate a small subset across the boundary.

The first problem, that of large numbers of logical relations, occurs when specifications need to be
propagated across domain boundaries. This is because logical relations can reference other domains, for
example, a relation describing a client in one domain querying a server in another domain. In Section 2.1,
we described a method for summarizing the load clients place on a server in another domain. This method
involved calculating the aggregate load for the clients, and also an approximation algorithm that reduces
the number of modes and the time needed to calculate the aggregate. As we will show, summarization can
be applied to other parts of a specification as well. The summarization will result in a subset of a domain’s
specification being propagated across the domain boundary. The summary of one domain’s specification is
propagated to the domains that contain that domain. The summarization step can be repeated on the
specifications of each of the containing domains. In this way, at each step of the distributed verification
process, only the summary of external references needs to be propagated across domain boundaries. This
results in much less copying of information and better performance than a centralized verification method.

The second problem, requiring an organization to provide the structure of its internal computing
environment, is a privacy issue. Privacy is important for several reasons. A network administrator may
want to change private portions of a specification without notifying a central authority. Providing the inter-
nal structure may violate the security constraints of the organization. Furthermore, some details of the
internal structure may be proprietary.

One solution for these problems is to provide an information hiding mechanism. This mechanism
determines which parts of a domain’s full specification are reflected in its external specification, and which
parts remain private. The private parts of a specification can be verified locally, with a domain. The

external parts must be propagated to other domains. Furthermore, if domains are organized in a hierarchi-
cal manner, the most common organization, we can restrict the propagation of external specifications to
parent domains, reducing the amount of copying necessary.

Information hiding is necessary to preserve the autonomy of each domain, and ensure that private
management information is not visible to the outside. It can also prevent information explosion. We
employ three methods for providing information hiding. First, we include only those parts of a domain’s
specification that reference another domain. Second, we remove private and common information. Third,
we summarize the remaining information.

When determining which parts of a domain’s specification to include in the external specification, we
consider the low level, logical relations, not the high level NMSL specification. Those relations that refer-
ence only objects that are in the local domain and cannot be referenced by another domain, can be
excluded from the external specification. Examples of such relations are those that concern the frequency
of requests a client in the domain makes to a server within the same domain, the permissions involved with
those requests, and the configuration conditions of individual systems within the domain. Relations con-
cerning process specifications can also be excluded; all that is important to the external specification is the
behavior of the instances. We must include relations that have an indirect effect on other domains. An
example of an indirect effect is if a client queries a server that serves both clients both inside and outside
the domain.

We can exclude those relations that are private, and cannot be referenced by another domain, and
those that are common, relations that are already known by other domains. Removing private and common
information requires knowledge of where a specification originated. This knowledge is most important for
removing object specifications from the external specification (e.g. the standard Management Information
Base (MIB)). Private information must originate within the domain. Common information is information
that all domains include in their specifications. If we assume that the object specifications are derived from
a central source, specifications concerning objects may be excluded from the external specification of a
domain, because the parent domain’s specification will also include all of the objects. Private object
specifications can also be excluded, because no other domain will reference them. Some information of a
private nature, such as the interaction of clients and server within a domain, must be included in the exter-
nal specification, if they have an indirect effect on the external specification, as we showed above.

To summarize the capacity specifications of a domain, we determined the aggregate load that the
domain’s client processes place on other domains. To do this, we must determined which clients contribute
to the domain’s aggregate load, and then calculate the aggregate load. Such clients include those that refer
to servers in another domain. Clients that refer to a server that serves both the local the other domains must
also be included in the summary; these clients cannot be considered private. At this point, the only remain-
ing logical relations for clients are those that make external references. Given these external references,
we use the aggregation method described in Section 2.1 to calculate the aggregate load.

We cannot hide the specifications of individual servers in the way we described above, because any
aggregate of the servers’ capacities would lose information about the individual servers’ capacities. This
would allow invalid specifications to pass through the verification phase, despite inconsistencies. For
example, if all of the clients query the same server in a group of servers, they could overload that server,
but if the servers’ capacities are aggregated, this inconsistency will not be recognized.

To summarize the protection specifications, we propagate relations listing the objects referenced, but
specify the domain, not a process instance, as the initiator of the reference. Once again, the permission
relations must be propagated unchanged. Summarization of configuration specifications follow the rules
we described for the capacity and protection specifications.

3. APPLYING THE CONSISTENCY MODEL

In practice, network management systems perform high level operations, such as detecting error and
faults, and noting exceptions. These operations often cause messages to be sent from a network manage-
ment server to an application, such as a network operation center (NOC) tool, so that the network operator
can take appropriate action. While this is a small part of what a network management system can do, it is
the most common current application. This section shows an example of one way error reporting can be
performed, the way to specify the example in NMSL, and the relationship between the specification and the
three verification categories.

The NMSL system supports the specification of error reporting events and the way in which they are
reported. Error reporting is not given a separate category in our consistency model. Instead, it has com-
ponents of all three of the categories we discussed.

To see how errors propagation is handled in our Consistency Model, we use a simple example. Con-
sider a router connecting two networks, and a management station (another computer) on one of these net-
works. The router, in addition to routing packets, runs a network management server or agent. The net-
work management stations runs several network management applications − these all communicate with
the agent via SNMP[4]. The agent supports trap management, as defined in the SNMP standard, and sends
trap notices to a trap management application on the management station. A specification of this example
is shown in Figure 3.1. The gateway is the system gw and the management station is called dip. The
agent and application processes are snmpd and snmp_trap_handler respectively. In this
specification, we have set the rate of interaction to be at most one trap message per hour (1 qph).

For traps to be sent correctly, several conditions must be met:

(1) The agent must specify the recipient of the trap messages (the application running on the
network management station).

(2) The agent must give the recipient permission to view any trap related data objects.

(3) The recipient must be interested in receiving trap messages, i.e. it must permit the agent to
send it the traps.

(4) The agent and the recipient must speak the same protocol and agree on a rendezvous point
(e.g. an IP port number).

(5) Packet sizes must be within acceptable bounds.

(6) The rate of interaction (sending of trap messages) must be within the limits of the
configured system.

These requirements were arrived at by examining the contents of a TRAP-PDU message in SNMP, which
is sent from an agent to an application, as well as general requirements of network management interaction.

Some of these requirements are difficult to determine, especially (6), but a reasonable value can be
determined for interaction rates based on examining the mean time between failure characteristics of the
the routing hardware. Obtaining such information for the agent itself is not a subject of this paper.

A brief inspection of the requirements given above show that they fall into the three categories, capa-
city, protection and configuration. Conditions (1), (2) and (3) are all specified using the protection con-
straints described in Section 2.2. Conditions (4) and (5) are specified using configuration constraints. Con-
dition (6) is a capacity constraint for handling these traps. These six requirements are all present in the
specification in Figure 3.1. Condition (1), the recipient of trap messages, is shown in the specification for
the system gw and specification for the snmpd process it runs. In this case, it specifies the recipient,
dip as an parameter to the snmpd process specification. Condition (2), giving permission to examine
trap related data, is specified in the sends clause. Here, no data is sent, so no additional permission is
allowed. (3), where the recipient allows traps to be received, is specified in the receives clause. Con-
ditions (4) and (5) define the packet sizes and the protocol and appear the sends and receives. Con-
dition (6), the capacity, is given in the rate max subclause of the sends and receives clauses.

As this example shows, the NMSL specification written by a network administrator need not be
divided into these three parts. However, for the purpose of verification, the compiler/verifier takes the
input, high level specification, and generates constraints in these three forms.

4. Implementation and Performance

We have implemented a verifier for the Consistency Model described in the preceding section.
Verification is a two step process. First, a high level, NMSL specification is compiled into a low level set
of logical relations, like the ones described in Section 2. Next, these logical relations are passed to a proof
checker that uses the rules we described to find inconsistencies in the specification. After a short descrip-
tion of the the compiler and verifier, we present the performance of the current implementation.

The compiler is written in C, and provides an interpreted extension language. The compiler’s inter-
nal parser enforces only the syntactic structure of the specifications. An early version of the basic structure

hhh

system "gw" ::=
cpu cisco; opsys cisco version 2;
interface ie0 {

net wisc-research;
type ethernet-csmacd; speed 10 Mbps;

}
interface ie1 {

net wisc-twisted;
type ethernet-csmacd; speed 10 Mbps;

}
supports mgmt.mib;
process snmpd("dip");

end system "gw".

system "dip" ::=
cpu mips; opsys ultrix version 2.1;
interface se0 {

net wisc-twisted;
type ethernet-csmacd; speed 10 Mbps;

}
process snmpd_trap_handler("gw");

end system "dip".

process snmpd(HOST: string) :=
supports mgmt.mib; -- entire MIB subtree

exports mgmt.mib {
to "wisc-cs";
access ReadOnly;
rate max { mode 1 1.00 10 qps; }

}
sends traps {

to HOST; using protocol "snmp"; port "snmp-trap";
data none;
rate max { mode 1 1.00 1 qph; }

provides { "packetsize" <= 484 octets; };
}

end process snmpd.

process snmp_trap_handler(HOST: string) :=
receives traps {

from HOST; port "snmp-trap"; using protocol "snmp";
data none;
rate max { mode 1 1.00 1 qph; }

requires { "packetsize" <= 1024 octets; };
}

end process snmp_trap_handler.
hhh

FIGURE 3.1. EXAMPLE OF AN ERROR PROPAGATION SPECIFICATION

of NMSL specifications is described in [5]. This syntactic structure is a list of clauses, with the ability to
group clauses into blocks. Examples of NMSL specifications are shown in Figures 2.5 and 3.1. The
semantic processing is performed by action routines written in the extension language The action routines
also perform the code generation and other tasks, such as symbol table management. Generally, each

clause in the specification corresponds to a capacity, protection, or configuration condition. Given a clause,
an action routine first performs the semantic checks on the clause, and then generates the appropriate logi-
cal relations corresponding to that clause. The use of our extension language has allowed more rapid
implementation of the specification language, and reduces the turn-around time when debugging the
semantic routines.

In our implementation we represent logical relations as statements of CLP(R)[1]. CLP(R) is a Con-
straint Logic Programming language that provides a logic programming model similar to PROLOG, but
with a more general proof mechanism than that used by PROLOG. The CLP(R) mechanism includes the
ability to solve equations over the real numbers, which is useful in proving the capacity conditions. Given
these logical relations, we use a set of deduction rules, also written in CLP(R), to determine if the capacity,
protection, or configuration conditions are violated in the specification. Violations are reported to the
administrator.

Several issues are important to the performance of the NMSL verifier. We need to quantify the sizes
of the input specifications that the NMSL verifier is expected to process. Because we are concerned about
information explosion at the domain boundaries, we need to determine how much information can be hid-
den within a domain, and how much must be propagated. The time needed to verify a specification is also
of importance. To determine this, we must look at the execution time of the NMSL compiler and the time
it takes CLP(R) to verify a specification.

At the time this paper was being written, the automated network management system in our depart-
ment was still in a early state. Because of this, we have written specifications for the for a representative
management structure based on part of our current network configuration. The specifications were written
for an SNMP environment.

We use these specifications to study various aspects of the performance of the NMSL system. The
specifications demonstrate how the complexity of a network management system affects the size of a
NMSL specification. We also use the specifications to determine the effectiveness of summarization on
reducing the size of external specifications. The effect of summarization is important, because the smaller
the external specification, the less effect it will have on total verification time. By total time, we mean not
only the time it takes to verify the internal specification, but also the time it takes to verify those domains to
which the external specification is propagated. The larger the external specification, the more time it will
take to verify it. We measure the total time it takes to verify our test specifications. This gives us an idea
of the time it takes to verify NMSL specifications in general, and the ability of NMSL to specify and verify
large network management systems.

The tests are straightforward. For each specification, we determined its size based on a simple line
count. Each line corresponds, on average, to a clause in NMSL. We then compiled the specification and
counted the number of logical relations it took to represent the NMSL specification. We also inspected the
logical relations and determined the size of the internal and external specifications, in terms of their size in
logical relations. Note that our implementation does not currently perform this separation automatically.
Last, we used CLP(R) and the deduction rules we described in Section 2 to verify the specifications, and
measured the time needed for verification.

The results of our tests are shown in Table 4.1. The first test is an empty file. This test shows the
startup costs for the compiler to process the extension language statements. The second test is a
specification of processes and systems within a domain, but describes no data objects. This test file shows
the time it takes to compile and verify a specification with no data objects. The third is a full specification,
including processes, systems, data objects, and domain groupings. By comparing the results of the second
and third tests, we can determine the effect the number of data objects in a specification has on its
verification time. The second and third tests included 7 system specifications, 3 process specifications, 2
server and one client, and 2 domains. The server processes are instantiated on each of the systems, the
client at one central location. Of the domains, the first includes 6 of the systems, the second, the remaining
system. The object specifications in the third test are those defined in the complete RFC1066 MIB[10].
The internal and external parts shown in Table 4.1 are divided using the criteria discussed in Section 2.4.
These tests were run on a Sun 4/110, running SunOS 4.0.3 with 8 Megabytes of main memory. The file
system buffer cache was primed before the tests were run, so disk activity was not a factor. The
verification time for Test 3 is shown in minutes and seconds.

iii
Test Number

1 2 3ii

NMSL Specification size (lines) 0 210 1215
iii

Number of Logical Relations
Total 0 191 569

iiiiiiiiiiiiiiiiiiiiiiii

Internal Part 0 174 1198
iiiiiiiiiiiiiiiiiiiiiiii

External Part 0 17 17
iii

Compile Time (sec) 1.22 2.06 3.52
iii

Verification Time (sec) 0 0.98 3:50.30
iiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

TABLE 4.1. Performance of the NMSL Verifier

Several conclusions can be drawn from these simple tests. The sizes of specifications are intended to
be large; the specification for a single domain will be well over 1000 lines long. The number of logical
relations for a domain correspond roughly to the size of the input specification (Test 3 includes empty and
comment lines). More importantly, the size of the external specification is kept small compared to the
internal specification’s size. Because the data object specifications in Test 3 came from a standard MIB,
we were able to exclude them from the summary as well. Therefore, our summarization methods seem to
be effective.

The compiler has a reasonable but noticeable startup overhead, due in part to the use of the inter-
preted extension language. However, after this time is factored out, it processes specifications quickly. A
very important result is the effect the number of data objects in the specification has on the total verification
time. In Test 2, the verification step executed quickly, while in Test 3, many data objects needed to be
checked for the protection conditions. Because there are so many data objects in the SNMP MIB, this
becomes the main factor in the verification time. The implementation in CLP(R) does not prove the
equivalent of a lemma, and reuse such results throughout the rest of the proof. This results in re-proving
partial results each time they are needed. Some enhancements were made to the implementation to reduce
this effect, but additional work is needed in this area.

5. Summary

In this paper, we discussed the problems caused by the complexity and autonomy in modern network
management systems. These problems are the result of larger and more complex networks. To solve the
network management problem for large networks, the management system is forced to into a distributed
rather than a centralized model. The distributed nature of managing large networks is exacerbated by
administrative domains. Administrative domains reduces the coordination of configuring the network
management system, and increases the chance that parts of the system will not be configured correctly.

To solve these problems, we use a formal specification language. The specification language,
NMSL, addresses these problems by providing a way to formally specify the configuration of a network
management system, and a mechanism to automatically verify a specification. We use a model for network
management systems, based on four concepts: administrative domains, systems, management processes,
and managed objects. We described the way a network management system fits into this model, and the
method that NMSL uses this model to verify specifications. This method divides the verification problem
into capacity, protection, and configuration conditions. Separate methods are used to verify each of these
conditions.

We also distribute the verification problem along administrative domain boundaries. We use sum-
marization to reduce the size of external specifications that are propagated across these boundaries. The
distribution and summarization provided by the NMSL verification model are very important to preserving
the autonomy of individual domain, and reducing the overhead of copying specifications across the

network.

The current results of our work is encouraging. Our models for capacity and protection verification
are well defined. We use closed-form equations are used for determining the capacity of servers. We also
use a simple logic to verify protection conditions. Similar methods are used for proving the capacity condi-
tions.

We have used the NMSL verifier to verify some representative specifications. Our tests show that
specifications for small domains can be processed by the NMSL verifier in reasonable time. Our initial
performance tests make several important points. The mechanisms we proposed for summarization cause a
great reduction in the size of external specifications. The verification step also executes in a reasonable
time for simple specifications. However, the performance of the verifier is affected greatly by the number
of data objects present in the specification. This was caused by re-proving partial results in the verification
proof.

Several issues remain to be addressed. The performance of the verifier for large numbers of data
specifications is not as good as we had hoped. The cause of the problem has already been determined, but
we need to investigate ways to avoid the problem. The current implementation of the verifier does not
include a way to divide a specification into its internal and external parts. We need to implement this in the
way described in Section 2. Next, we are turning to the other role of the NMSL system, which uses a
verified specification to configure the network management system. Work is already underway to set up an
environment for testing the configuration role of NMSL.

NMSL and the techniques described are also appropriate for specifying and managing distributed
systems other than network management. We plan to investiate applying NMSL to these other systems and
services.

REFERENCES

[1] N. Heintze, et al, The CLP(R) Programmer’s Manual, Dept. of Computer Science, Monash University, Clayton,
Victoria, Australia (1987).

[2] K. P. Birman, ‘‘Replication and Fault-Tolerance in the ISIS System,’’ Proceedings of the Tenth ACM Sympo-
sium on Operating Systems Principles, pp. 79-86 Orcas Island, Washington, (December 1985).

[3] L. Bronner, ‘‘Overview of the Capacity Planning Process for Production Data Processing,’’ IBM Systems Jour-
nal 19(1) pp. 4-27 (1980).

[4] J. Case, M. Fedor, M. Schoffstall, and J. Davin, ‘‘A Simple Network Management Protocol,’’ RFC 1157, IETF
Network Working Group (May 1990).

[5] D. L. Cohrs and B. P. Miller, ‘‘Specification and Verification of Network Managers for Large Internets,’’ ACM
SIGCOMM 89, pp. 33-44, Austin, TX, (September 1989).

[6] Information Processing Systems − Open Systems Interconnection, ‘‘Specification of Abstract Syntax Notation
One (ASN.1),’’ ISO 8824, International Organization for Standardization (December 1987).

[7] Information Processing Systems − Open Systems Interconnection, ‘‘Management Information Service
Definition,’’ ISO DIS 9595/2, International Organization for Standardization (1988).

[8] Information Processing Systems − Open Systems Interconnection, ‘‘Management Information Protocol
Definition,’’ ISO DIS 9596/2, International Organization for Standardization (1988).

[9] Information Processing Systems − Open Systems Interconnection, ‘‘Basic Reference Model Part 4 − OSI
Management Framework,’’ ISO DIS 7498/4, International Organization for Standardization (1989).

[10] K. McCloghrie and M. Rose, ‘‘Management Information Base for Network Management of TCP/IP-based Inter-
nets,’’ RFC 1156, IETF Network Working Group (May 1990).

[11] D. C. Verma, Private correspondence.

