
Nomenclator Descriptive Query Optimization
for Large X.500 Environments

Joann J. Ordille Barton P. Miller
joann@cs. wise .edu bart@cs.wise.edu

Computer Sciences Department
University of Wisconsin-Madison

1210 W. Dayton Street

Madison, Wisconsin 53706

Abstract
Nomenclator is an architecture for providing

efficient descriptive (attribute-based) naming in a
large internet environment. As a test of the basic
design, we have built a Nomenclator prototype that
uses X.500 as its underlying data repository. X.500
SEARCH queries that previously took several minutes,
can, in many cases, be answered in a matter of
seconds. Our system improves descriptive query per-
formance by trimming branches of the X.500 diree-

tory tree from the search. These tree-trimming tech-
niques are part of an active catalog that constrains the
search space as needed during query processing. The
active catalog provides information about the data dis-
tribution (meta-&ta) to constrain query processing on
demand. Nomenclator caches both data (responses to

querim) and meta-data (data distribution information,
tree-trimming techniques, data access techniques) to
speed future queries. Nomenclator relieves users of
the need to understand the structure of the name space
to locate objects quickly in a large, structured name
environment. Nomenclator is a meta-level service
that will eventually incorporate other name services in
addition to X.500. Its techniques for improving per-
formance should be generally applicable to other nam-

ing systems.

Research supported in part by an AT&T Ph.D. Scho-
larship, National Science Foundation grants CCR-
8703373 and CCR-88 15928, Office of Naval Research
grant NOOO14-89-J- 1222, and a Digital Equipment
Corporation External Research Grant.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otharwise, or to republish, requires a fee
and/or specific permission.
@I1991 ACM 0-89791-444-9/91 /0008 /0185 ...$1 .50

1. INTRODUCTION

Our goal is to provide descriptive (attribute-
based) name queries in a large intemet environment.
In this paper, we describe how to provide such a facil-
ity specifically for X.500. With today’s complex and

growing intemets, it is increasingly difficult to lecate
any particular resouree, person, or information. The
international efforts to standardize directory services,
resulting in CCI’IT Recommendation X.500 [5], offer
us the prospect of one unified system for storing nam-
ing information. Unfortunately, the unified system by
itself is not enough to ease the difficulties in locating

objeets. Users still need to understand the structure of
the name space to locate objects quickly in a large
X.500 environment, because the name space is essen-
tially hierarchical. Descriptive queries would allow

users to locate objects by deseribittg their attributes.
Users are relieved of the need to understand the struc-
ture of the name space and direct searches for particu-
lar objects by navigating that name space.

X.500 has a descriptive query facility, called

SEARCH, but its performance is limited because
X.500 provides neither auxiliary data structures to
constrain the search nor caches of the results of the

search. For example, SEARCH took almost 4 minutes
in our test environment to answer Query 1 in Table 1

(see Section 4). Jakobs summarizes the failure of
descriptive naming in X.500

In how far does the present system meet the or-
iginal demand for user-fiendliness? Today’s si-
tuation is characterized by the priority of system
management aspects to user-friendliness: a global
nemc space with distributed naming authority
may not be adequately coped with by today’s
systems. Thus, it is the user who is left to can-y
the can. One possible solution might be to use
descriptive names only However, searching in
a system like this brings up problems (inter-DSA
[directory system agent] communication, ambi-
guity of names, data management) that - at least
today – cannot be solved [1OJ

Nomenclator meets the performance challenges
of descriptive queries in a large X.500 environment.

185

It increases descriptive query performance by trim-
ming branches of the X.5(X) directory tree from the

search. It caches both data and meta-data to speed
future queries. When a new descriptive query is
covered by a previous query, Nomenclator answers
the new query from its data cache. When a new query
overlaps a previous query, Nomenclator re-uses tree-
trimming techniques from its meta-data cache. These
techniques result in improvements of up to 38.6 times
that of X.500” in descriptive query performance when
the caches are empty, and more than that for cache
hitsf.

Nomenclator is a heterogeneous name service.
Existing name services, like X.5(K), are sources of
naming data for Nomenclator. By supporting hetero-
geneous data sources, called data repositories,
Nomenclator relieves users of the need to understand
the proliferation of name services. Nomenclator uses
the relational data model to reduce complexity. A
small set of global relations gives a uniform structure
to existing naming data, including data from different
organizations and heterogeneous sources. Users are
relieved of the need to understand the structure of an
underlying name space, like the X.5(K) naming tree.
They are also relieved of the need to understand the

access techniques for different types of data reposi-
tories. Unlike meta-level services that query all
underlying name spaces [7], Nomenclator constrains
searches to those locations where data relevant to the
query is likely to exist. A relational query language
including selection and projection, but not join, pro-
vides a uniform interface to the naming data in

Nomenclator. One query can return an integrated
view of the data from many different sources.

Two major innovations of Nomenclator
improve descriptive query performance. These imo-
vations are an active catalog that constrains query

searches and extensive, multi-level caching. Com-
ponents of the active catalog, called catalog functions,
supply reusable descriptions of the data distribution.
Catalog functions collect distribution information
using an understanding of the syntax and semantics of
the underlying name spaces. Catalog functions for
X.500 use schema information and indexing tech-
niques to trim parts of the naming tree from the search
space. Some catalog functions return descriptions of
the static characteristics of data distribution embedded
in the X.500 schema, For example, one schema con-
vention for X.500 places information about people in
organization or locality subtrees, but not in application
process subtrees [4]. Application process subtrees can
immediately be trimmed from any search for informa-
tion about people. Other catalog functions for X.5(K)
return descriptions of the dynamic characteristics of
data distribution by using a variety of indexing

‘Yes, 38.6 times, 386(F%.

techniques on one or more attribute values. Catalog
functions can be generated automatically or can be

written by an organization’s naming administrator.

Performance is further improved in Nomencla-
tor by caching query responses and the descriptions of
data distribution. Nomenclator extends relational
database work in multiple query optimization [8] to
data caching for improved descriptive query perfor-
mance. New queries that are covered by the results of

previous queries are answered from the data cache.

Nomenclator introduces meta-data caching as a tech-
nique for improving descriptive query pformance.
In meta-data caching, information about the charac-
teristics of the data is cached. Knowledge about
search constraints, searching techniques and data
access techniques is saved in the meta-data cache and
re-used to improve performance.

Other components of the active catalog, called
data access functions, encapsulate the heterogeneity

of data repositories. Data access functions translate
Nomenclator queries into queries that are understood
by the data repositories and return data in a standard
Nomenclator format. They make the query resolution
algorithm independent of the access techniques for the
underlying data repositories. Data access functions
for X.500 map attributes in Nomenclator to attributes
in X.5(K) objects. Sometimes these functions use
inheritance to combine attributes from different levels
of the X.5(X) tree into one tuple in a Nomenclator rela-
tion. For example, the people relation used in Fig-
ure 6 combines the value of the X.500 coun-

t ryName attribute from the country object with
the value of the X.500” cormnonName attribute from
the person object.

The Nomenclator query resolver is a data-

driven engine for locating the answer to a query. It
uses the results of catalog functions to constrain the
search and the results of data access functions to
answer queries. The resolver retrieves both types of
functions ffom the distributed catalog of relations.
Each function is accompanied by a description of the
conditions for using it, so the functions can be saved
in the meta-data cache and re-used as appropriate.
Catalog functions and data access functions are
together called access functions. New name spaces
and data access techniques are simple to add by creat-
ing new access functions.

The following sections describe our research in
more detail. Section 2 provides an overview of the
Nomenclator architecture, and Section 3 provides an
overview of X.500. Section 4 describes experiments
that we have run with Nomenclator on X.500, and
reports the performance improvements of Nomencla-
tor descriptive queries for X.500. Section 5 describes
related work on user-friendly X.500” queries. Finally,
Section 6 presents a summary.

186

2. THE NOMENCLATOR ARCHITECTURE

The Nomenclator architecture provides a single
interface that reduces the complexity of locating

objects, supports simple integration of data from a
variety of sources, and improves the scaling and per-

formance of descriptive name services. Section 2.1
provides an overview of the Nomenclator Architecture
from the perspectives of users, naming administrators,

and system implementors. The next three sections
describe the primary mechanisms that Nomenclator
uses to improve descriptive query performance. Sec-
tion 2.2 describes the catalog functions that constrain
the search space. Section 2.3 explains how descrip-
tions of the data distribution, called referrals, are

used, combined, and cached to improve performance.
Section 2.4 describes advanced referral techniques
that improve data access, increase cache utilization,
and help users construct better queries.

2.10 Overview

Users see Nomenclator as one, uniform inter-
face to data from a variety of sources called data
repositories (see Figure la). Queries are expressed in

QUEL, and speci@ selection and projection opera-
tions on a particular relation. Attributes common to
multiple data repositories are integrated under one
attribute name. Attributes that are not available in a
specific data repository are given null vahtes, and are
processed using the null value techniques of GEM
[23]. The responses to queries are temporary relations

that integrate the data while remembering its origin.
Each tuple in the temporary relation has an attribute
that identifies the data repository that contributed it to
the relation. This attribute, called the source attribute,
helps users to track down and change incorrect data.
If the search space for a query is too large or costly,

Nomenclator returns the query with suggested revi-

sions for improving its performance.

Naming administrators see Nomenclator as a

system composed of a distributed catalog and a query
resolver. These components provide access to hetero-

geneous data repositories (see Figure lb). Naming
administrators describe the type and distribution
characteristics of their data to the distributed catalog.
The distributed catalog organizes this meta-data into a
form useful to the query resolver. The query resolver

accepts a query from the user, and searches a con-
strained set of data repositories for the answer to the
query. The query resolver uses information from the
distributed catalog to constrain the search space and to
format communication with the data repositories.
Nomenclator is unique among descriptive name ser-
vices, because the data providers, not the data users,
supply the meta-data that guides searches.

System implementors see the intemrd structures
and algorithms of the distributed catalog and the query
resolver. The distributed catalog organizes the meta-
data about the name space into definitions of relations

- 0DATA

REPDSITORY

USER– NOMENCLATOR

DR

.00

DR

(a) User View.

Q-J oDATA

USER- QUSRY
RSSOLVSR RRPDSITORY

DISTIUSUTED
CATALOO DR

00 DR

NAMING ADMINISTRATOR

(b) Naming Administrator View.

Figure 1.

The Nomenclator Architecture.

called schemas. As shown in Figure 2, each relation
schema defines the name and attributes of the relation.
The schema also includes a list of referrals that
describe the access functions used to locate and
retrieve the data in the relation. A referral contains a
template and a list of references to access functions.
The template is a selection predicate that describes the
scope of the access functions. The access functions

can be used to process queries that imply the templat~
they cannot be used to process queries that imply the
negation of the template. For example, Query 1 in
Table 1 can be processed using the first referral in Fig-

ure 2. The query resolver uses information from the
schemas, in particular the referrals, to drive its query
processing.

Access functions respond to the question:
“Where is data answering this query?” There are two
types of responses corresponding to the two types of

access functions. The first response is: “Look over
there.” Catalog functions return this responsq they
constmin the query search by limiting the data reposi-
tories contacted to those having data relevant to the
query. Catalog functions return a list of refemls to
data access functions that will answer the query or to
additional catalog functions to contact for more
detailed information. The first referral in Figure 2
contains a catalog function depicted with the list of
referrals it returns. This catalog function can locate
information for any mme in the country “US”. The

second response to “Where?” is: “Here it is!” Data

187

OE
Templak

,’ c - WS1r and

Schema
Name

name - ,,**4

Attrlbutcs ‘
Referrals -- -(

Access Function ‘
0 - ‘“University

‘, of Wisconsintt

Figure 2.
The Distributed Catalog.

Reference Lld

3Om0

AcxeM
FWICtb ‘- e

0

0Accea
FuncuOn o‘- DR1

access functions return this response; they understand
how to obtain query answers from speeitic data repo-
sitories. The second referral in Figure 2 contains a
data access function depicted with the data repository,
DRI, that it uses to answer queries. Refermls include
addressing information for the data repositories to be
contacted, and their replicas if any, thereby allowing
one data access function to be used for many different
combinations of data repositories.

A major goal of the query resolver is to reduce
the combined cost of data location and retrieval. It
accomplishes this goal in three steps. The first step
checks the data cache for responses to past queries
that cover the new query. If such a cached response is
found, the new query is executed on the cached
response to produce the desired result. If no cached
responses answer the new query, the seeond step finds

an initial set of data repositories that cover the query
using referrals from the meta-data cache or, if neces-
sary, the distributed catalog. The third step determines
whether to try to reduce the set of data repositories to
be searched fkrther by contacting more catalog ftmc-
tions or to process the query with the current set.

2.2. Catalog Functions

Catalog functions are central to the function and
performance of Nomenclator. The goal of catalog
functions is to reduce the cost of loeating data by con-
straining the data repositories to be searched. They
provide an alternative to the exhaustive searches of
many hierarchical systems, like SEARCH in X.500,
and a generalization of data indices for a large intemet
environment. Catalog functions can be tailored to the
access patterns of the whole user community or some
part of it. For example, an organization might build
catalog functions to speed access to portions of a rela-
tion that are important to its business needs. Catalog
functions for an organization’s portion of the peo -
ple relation can use any attributes, for example
name, that are selective within the organization. The
resolver can constrain queries that cross organiza-
tional boundaries by using combinations of catalog
functions from the different organizations. Catalog

functions can call each other in a directed acyclic

fashion to take advantage of the higher selectivity of
common attribute values as the search space becomes
more constrained. Catalog functions generate refer-
rals for specific queries that fall within their scope.
Generation of referrals reduces the number of refer-
rals mamged by the distributed catalog while stitl sup-
plying referrals as needed to improve query perfor-
mance.

Catalog functions can be implemented to exe-
cute loudly, within the query resolver’s address space,

or remotely, via a remote procedure call to another
host. The distributed catalog supplies code to the

query resolver for catalog functions that are executed
locally; therefore, these catalog functions can be
highly replicated. Remote catalog functions may not
be replicated, but they are more appropriate if the
function performs a lot of work that must be amor-
tized over a large number of users. They are also
appropriate if the location of the function affeets its
performance as is the case when the function needs
aeeess to other centrally located &ta sources. Organi-
zations may choose to supply remote catalog functions
over local ones if their catalog functions use
proprietary information or algorithms.

2.3. Referrals

The referrals returned by the distributed catalog

and its catalog functions can often be combined alge-
braically to reduce the search further. If a query is a

simple conjunction, like Query 4 in Table 1, multiple
referrals to data access functions can be inte ected to

7reduce the search. For example, in Figure 3, catalog
function w._.stat es uses state to distinguish
between data repositories containing information on
people in the U.S. Catalog function US_Names uses

name to distinguish between the data repositories.
The more general catalog function US_People calls
these two functions to constrain the search space for
Query 4. It receives referral rl fi’om US States
containing references to data repositonyes DR1
through DR8, and referral r2 from US_Names
containing references to DR7 and DR1 O. Since
Query 4 is covered by these two templates,
US People returns referral r3 containing the inter-
,se&on of the two lists of references, i.e. a referral to
DR7. This technique works well for simple conjunc-
tions. Queries containing disjunctions are processed
in a similar manner by converting them to disjunctive
normal form [14], using catalog functions for the com-
ponent conjunctions, and forming the union of the
resulting reference lists.

tFW fie ~Pses of MU discussion, Fkwre 3 Uses a

sirnplitied representation of referrals: a template followed by a refer-

ence list of data repositories. For simplicity, none of the data repo-
sitories are replicated.

188

c = ,,(JSII ~ncj

state = 11*1I
— Cstslog function —

US_People

1. Request
● c = “US” and

4 state = “*II and

6. Referral r3 name = ‘l*m

EEiziIl

4. Request”
— Cstdog function —

US_Nemes
5. Referral r2

Figure 3.
An Example of Contbim”ng Referrals.

Catalog functwn US_People intersects two referrals.

Catalog functions must return at least one refer-
ral that covers, i.e. is logically implied by, the query.
Catalog functions may also return additional referrals
that might help in processing future queries. For
example, in Figure 3, uS_People can also return
rl, r2, and referrals to the US States and

US_Names catalog fimctions. The ;esolver keeps
referrals in its meta-data cache, and re-ttses them
when they help to constrain the seareh space for sub-
sequent queries, For example, the resolver can m-use
r2 in processing Queries 1 and 6 in Table 1. It ean
re-use r 1 in processing Query 3. It ean use the refer-
rals to the catalog functions to call US_S t at es

directly when processing Queries 5 and 6, and to call
US_Names direetly when processing all the queries
not covered by r2. Re-using referrals improves per-
formance by eliminating calls to catalog functions and
the distributed catalog.

In addition to caching referrals, the resolver also
maintains a data cache of query results. Like cached
referrals, cached results that cover a query are re-used

to answer new queries. To cover a query, a cached
result must have a selection predicate that is implied
by the new query. It must also contain all the pro-
jwted attributes in the new query. Our tedtniques for
using cached query results are similar to Finkelstein’s
[8]. We extend these techniques to the meta-data
caching of referrals that describe the distribution of
naming data and the conditions for using catalog func-
tions. The caching of name server resource records

(N!3 RR’s) in the Domain Name System (DNS) [15]
and prefix tables in Sprite [22] are examples of
simplified versions of met.a-data caching.

Because Notnenclator caches data and meta-

data, a query response may not reflect the most current
data available. This is not typically a problem for
users, however, bwattse most of the cached informa-
tion is current and Nomenclator guarantees that
caches eventually reflect the correct data and meta-
data. Most cached information is curren~ because
caches are updated at a rate that exceeds the rate of
change to the information. Many naming systems,
like Grapevine [2], DNS, and the QUIPU implementa-
tion of X.5(K) [12, 19], use this approach to replicated
or cached information.

2.4. Revishg Referral Templates

Catalog functions use knowledge about the
srrueture of the name space to generate a referral.
Some of this knowledge can be useful to access func-
tions that subsequently process a query. When a
referral causes an access function to be called, the
referral is included in the input to the access function.
A catalog function can communicate helpful
knowledge by including additional, revised templates
in the referral.

Refermls dew-he the conditions for using par-
ticular access functions to locate and retrieve &ta in a
relation. They contain a template and a list of refer-
ences to access functions, as illustrated in Figure 4a.
Each reference in the referral contains a revised tem-
plate as well as a list of access function names and
their associated addressing information. The revised
template is covered by the list of access functions in
the same way that the template is covered by the list
of references. By revising the template of a referral, a

189

~~

- ‘---: ‘c= ’’US” and stat e=”WI” and

o= ’’University of Wisconsin!! and X.500 DAF and

name= ’’Ord1lle” and source= 11X500: UW Server Address
@c=US@O=University of WiscOnsinll

(a) General Format. (b) An Example.
Figure 4.
Referrals.

catalog function can communicate additional restric-
tions on the query to access functions in the list. For

example, a catalog function may determine that the
selection predicate in Query 4 can be answered in
X.500 from the subtree with distinguished name

@c=US@o=University of Wisconsin. The
catalog function can communicate this information by
supplying the revised template shown in Figure 4b.
This revised template provides additional information

about the relevant organization and source
of the data.

The revised template in a reference provides a

context for its associated access functions. It
identifies the exact conditions for calling the access
functions by indicating the part of the name space
within which the call is to execute. The conjunction
of the query and a revised template, called a subquery,
is the actual query processed by the access fimction.

Subqueries help improve cache utilization and give
guidance to users who need to limit queries that will
be too costly. The resolver checks the caches for pre-
vious results to subqueries. Subqueries provide a list
of options for users who need to constrain their
queries further.

3. X.500

X.500 [5] standardizes 0S1 directory services
for locating people and application objects. QUIPU
[12], currently the most popular X.500 implementa-

tion, is used in a pilot name space including over 350
organizations in 13 countries [18]. This section pro-
vides a brief overview of the X.500 standard and some
extensions to the standard used by QUIPU.

The X.500 name space is structured as a tree of
objects called the Directory Information Tree (DIT).
Each object belongs to at least one object class. The
class determines the attributes that can be present in
the object. For example, in Figure 5, there is an object
from the person class with attributes common-
Name and surName. Rules for which object classes
appear at what levels of the DIT are not fixed by the
standard. A common ordering, depicted in Figure 5,

is the root followed by country, organiza-
tion, organizationalunit, and person
objects. The standard is currently limited, because it

does not describe how to store and transmit informa-
tion about the structure of the DIT. QUIPU extends
the standard by including an attribute in each non-leaf
object, called the t ree St ruct ure attribute, that
lists the permitted classes for children of the object
[11].

Each attribute in an object is composed of a

type and one or more values. At least one attribute
value in each object is distinguished. The dis-
tinguished values of an object uniquely identi~ that
object among its siblings. The path of distinguished
values from the root to an object, called the dis-
tinguished name, uniquely identifies the object in the
DIT. The distinguished name of the
organization object in Figure 5
is @count ryName=US@organi zat ionName=
University of Wisconsin, which is com-
monly abbreviated to @c=US @o=unive rs it y of
Wisconsin. X.500 supplies three commands that
locate a particular object by distinguished name and
return information about it. READ returns informa-
tion about the object’s attributes, COMPARE verifies
the value for an attribute in the object, and LIST

returns the distinguished names of the descendants of
the object. All of these commands provide hierarchi-
cal access to the name space for users who can navi-
gate the DIT.

In theory, the SEARCH command relieves users
of the need to navigate the DIT because it searches an
entire subtree looking for objects that ma~h a selec-
tion predicate. The starting object in the search is
identified by distinguished namq it could be an object
as high in the tree as the root or country objects.
SEARCH returns information about all objects in the
subtree that satisfy a selection predicate called a filter.
Unfortunately, filters only operate on attributes avail-
able in an object, not on attributes inherited from
ancestor objects. Users are still forced to navigate the
DIT iteratively to find paths that contain the required

attributes. Moreover, searching a subtree is often

190

F=2%G5--=2i!iz7-*
1 , 1

‘:. -..
,.’ , . . - -.

>.
---”

I

organizationalUnit

IOrgznimtiarzlUnitN.me=
“COrnputerScicrrcrs” I

Figure 5.
Sample X.500 Directory I@ormation Tree.

disallowed by servers higher in the DIT. Although the
standard considers the country level to be “a con-
venient base-object for the search operation,”
QUIPU’S default setting disallows seareh from this
level because of the high cost of the operation. Users
must navigate the DIT to search the organization sub-
trees of a country. We address these problems further
when we describe our catalog functions and experi-
ments (see Section 4).

The DIT is partitioned along the arcs of the tree
similarly to the Domain Name System [15]. Different
directory management domains are given authority for
maintaining data repositories, called Directory System
Agents (DSAS), for different subtrees of the DIT. Each
directory management domain can, in turn, delegate
authority for portions of its name space. As experi-
ence with DNS has shown, caching improves data
retrieval performance in this kind of highly distributed
environment. Although the standard currently offers
no caching support, QUIPU caches results to improve

the performance of the READ and LIST commands.
Nomenclator provides caching techniques for improvi-
ng the performance of SEARCH and other descrip-
tive queries.

4. NOMENCLATOR EXPERIMENTS IN A
LARGE X.500 ENVIRONMENT

Our experiments show that Nomenclator can
offer a substantial improvement to descriptive query
performance in a large X.500 environment. These
experiments are part of an early feasibility study of
Nomenclator’s approach to descriptive query optimi-
zation. They were designed to test the effectiveness
of catatog functions, meta-data caching, and data

caching in improving performance. In our experi-
ments, catalog functions provide up to 38.6 times the

performance of the X.500 SEARCH command. Data

caching provides even greater improvements to the
performance of SEARCH.

These initial experiments do not examine the

cost of building and maintaining catalog functions, the
cost of transferring function definitions and referrals
from the distributed catalog to the query resolver, or

the cost of cache management. We plan to address
these issues in our continuing research. Our initial
experiments are a proof of concept and are not
intended as a definitive implementation; they show

that constraining the search space and caching are
effeetive ways to improve descriptive query perfor-
mance.

The following sections deseribe our experi-
ments in more detail. Section 4.1 describes the test
environment, and Section 4.2 describes the catalog
functions used in the Nomenclator prototype. Section
4.3 presents our results.

4.1. X.500 Environment

Our experiments were performed on the United
States portion of the QUIPU pilot X.500 name space
[19] in early 1991, At that time, the U.S. name space
included 78 organizations and more than 64 DSAS.
The administrators of the pilot name space reported an

average of 2400 entries per U.S. organization in
December, 1990 [18].

Our experiments use a prototype implementa-
tion of Nomenclator that processes queries like those
in Table 1. It includes a query resolver, but no distri-

buted catalog. The referrals that would typically be
returned by the distributed catalog are preloaded into
the meta-data cache, and the access functions
definitions are compiled into the resolver. Our proto-
type allows us to measure the performance improve-
ments that result from using catalog functions and
referrals.

We also developed a prototype X.500 utility for
our experiments. This utility accepts QUEL queries
like those in Table 1, and returns results in the same
format as the Nomenclator prototype. The response
for Query 1 in Table 1 is given in Figure 6. We
implemented the X.500 utility for two reasons. First,

we needed to work around the restriction QUIPU
places on searehes starting at the country level of the

DIT. The prototype keeps a list of organizations in
the U.S., and it submits a SEARCH command to every
organization subtree. If the QUEL query supplies an
organization name, the utility only submits the query
to that organization. Second, the utility enhances the
functionality of X.500 by inheriting attributes from
upper levels of the DIT. The utility can select objects
for the result based on inherited as well as non-
inherited attributes.

The prototypes for Nomenclator and the X.500
utility boti- use the same
from an X.500 subtree.

software to obtain results
Both prototypes process

191

Name: Joann Ordille

Email : joann@cs.wise.edu

Department: Computer Sciences

Organization: University of Wisconsin

State: Wisconsin

Country: us
Source: x500:@c=us

@O=University of Wisconsin

@Ou=COmputer Sciences
@cn=Joann Ordille

Figure 6.
ResultProducedfor theQueryl in Table 1.

queries to different parts of the name spaeesequen-

tially to isolate the effects of catalog functions and
caching from the effects of partiel query processing.
The use ofcatalog functions anderthanced cachingin
Nomenclator are the significant differences between

the prototypes.

4.2. Nomenclator Catalog Functions

The Nomenclator prototype includes

US_States and art expanded version of

US_Names from Figure3. The uS_States cata-
Iogfunction is implemented asan index. Itmaintains
atableoffull state names and state abbreviations. For
each state, it lists the data repositories where one or
more objects have amatching X.500 stateOrPro -
vinceName attribute.

The expanded version of US_Names uses an
optional organization, as well as name, to dis-
tinguish between data repositories. US_Names
builds referrals by combining the results of calls to the
Org_Names catalog function for each organization.
Each Org_Names catalog function returns a referral
to the data repositories in its organization if the value

of name can be found there. If a particular organiza-
tion is mentioned in a query, US_Names returns a
referral to the Org_Names catalog function fOr that
organization.

Org_Names hashes the values of the X.500
su rName attribute in the data repositories for an
organization. The hash values are recorded in a bit
vector filter (see Figure 7). When a query is submitted
to Org_Names, it hashes the value of the name
attribute. If the bit for the hash value of name is set
in the filter, the catalog function returns a referrat to
the data repositories in the organization. If the bit is
not set, the data repositories for the organization are
elimimted from the seareh. A bit vector filter pro-
vides a compact representation of the values of attri-
butes in data repositories. Org_Names uses a filter
of 20,000 bits for an organization, and a hash function
on the first four letters of surName. The filter and

the hash can be tailored to the distribution characteris-
tics of the data in the organization. Bit vector filters
have been used effectively in distributed join

r catalog function
Org_Nsmes 1

Figure 7.
A Catalog Function with a Bit Vector Filter.

processing [1, 3,6, 21]; Nomenclator is the first to

apply them to distributed selection predicate optimiza-
tion.

Indices and bit vector filters are general tech-
niques that can be used by catalog functions for other

attributes. It would also be interesting to build catalog
functions that use more knowledge about the structure

of the DIT to constrain the search space. The
t reest ruct ure attribute provided inadequate
information for this task, because naming administra-

tors typically took a liberal approach to the attribute.
They listed all the logical possibilities for subtrees in
t reest ruct ure. It would be useful to have infor-
mation about the kinds of objects and attributes that
actually exist in a subtree, as well as the domains of
values for those attributes. This information would
help us to build catalog functions more effectively.

4.3. Experiment Results

Our experiments were done Iiom a DECstation
3100 with 24MB of memory. We rart a series of
queries in eaeh experiment from the queries shown in
Table 1. All of the queries are covered by the
Nomenclator US_Names catalog function. For
Queries 7-8, US_Names returns the Org_Names

catalog function specific to the University of Wiscon-
sin. Queries 3-6 are also covered by the

US_St at es catalog function.

In the fist set of experiments, we restarted the
X.500 server (DSA) before each query to clear any

caches. We also restarted our X.500 utility and
Nomenclator before each of these experiments. Since
we were doing experiments on the existing X.500 sub-
tree in the U. S., we were not able to restart every
X.500 server that we contacted before each experi-

ment. In the second set of experiments, we restarted
the X.500 server and ran each query twice in succes-
sion to determine the effect of caching on query per-
formance. The X.500 utility took advantage of the
DSA cache, but it did not use any cache of its own.
QUIPU’S DISH utility does offer an additional cache.
The performance of this cache was not tested in our

experiments. Nomenclator used the DSA cache, and
its local data and meta-data caches.

I cm

No.

1

2

3

4

5

6

7

8

Query

retrieve (people.all)

where people.c = “US” and

people.name = “Ordille”

retrieve (people.all)

where people.c = “US” and

people.name = “Miller”

retrieve (people.all)

where people.c = *’USf’ and

people.state = “WI” and

people.name = “Miller”

retrieve (people.all)

where people.c = “US” and

people.state = “WI” and

people.name = “Ordille”

retrieve (people.all)

where people.c = ‘*US” and

people.state = “HI” and

people.name = “Miller”

retrieve (people.all)

where people.c = “US” and

people.state = “HI” and

people.name = “Ordille”

retrieve (people.all)

where people.c = !’US*$ and

people.name = “Miller” and

people.o =

“University of Wisconsin”

retrieve (people.all)

where people.c = “US” and

people.name = “Chaillou” and

people.o =

“University of Wisconsin”

Table 1.
The Test Queries and Their Identifying Numbers.

(queriesexpressedinQUEL [20])

Table 2 gives the results of our experiments.
Thenumberofitems returnedby each query islisted.
lleeold cache performance measurements are listed
for each program along with the number observers
they contacted in processing the query. The cold
caeheresultsare thebesttimesfrom severalrunsfor a
common baseline observers, and include the costof
establishing a connection to the local X.500 server.
Wecomparethe X. 500 and Nomenclator cold cache
resuhsi nthe’’ImprovementFaetor” column. Dividing
the X.500 performance by the improvement factor

gives the Nomenclator performance. The X.500
warm cache results had worse performance than the
cold cache results, so they are not presented here.
Nomenclator’s results for the warm cache are also

given in Table 2. These results measure the perfor-
manceofasecond execution of the query immediately
following its tirst execution. We averaged thousands

ofwarm cache experiments to improve thegranularity

of these time measurements. The warm cache results
do not include the cost ofconmxling to the DSA,
because the second query is completely answered
from the cache, without contacting the DSA. Finally,
Table 2 includes a column that gives the improvement
factor of our cached queries with respect to the X.5(X)
cold cache results.

We find the improvement factors for a warm
cache in Table 2 somewhat embarrassing. We must
emphasize that these experiments were designed as a
proof of concept. Thecaching numbers, inparticular,
represent alowerlmund that does not include search-
ingtimes for caches of substantial size. There is only
one query response in the data cache when the second
query is executed. We are continuing our work on
cache management strategies, and plan to do more
extensive experimentation of cache performance.

The improvement factors for the cold caches are
more realistic. They reflect the benefits aeerued in
Nomenclator from trimming the search space. Note
that the queries with the greatest improvement in cold
cache performance are those where the number of
servers contacted is most redueed. The lower
improvement in Query 2 reflects the predominance of

the data transfer costs in executing this query. It illus-
trates that the cost of contacting data repositories with
no data relevant to the query beeomes insignificant as

the volume of data transferred rises. Our continuing
research will develop techniques to aid users in reduc-
ing the volume of data transferred. We will enhance

Nomenclator to identify queries with high data
transfer costs and suggest subqueries with lower costs.
We will also provide an iterative query that allows
users to browse a large result by retrieving the answer
in small increments. The iterative query will process

an ordered list of subqueries that cover that original
query; users will specify the order in which subqueries
are processed or use a default order.

It is understandable that the DSA caching did
not improve rhe performance of our X.500 queries,
because caching in QUIPU is designed to improve the
performance of the READ and LIST commands.
The performance of QUIPU SEARCH commands
should improve by incorporating our data caching
techniques. As Table 2 illustrates, there is much to be
gained from data caching.

We are continuing to study the effects of meta-

data caching on performance. We expect referral
caching to be more beneficial in an environment
where catalog functions are remote to the query, or
where the query resolver must be selective about
which catalog functions are kept locally. Our meas-
urements show that for the local environment of our

193

Query

1

2

3

4

5

6

7

8

It ems

1

160

2

1

0

0

2

0

Time

221.4

1563.8

324.0

309.9

351.0

218.7

16.1

10.5

X.500

Server*

Contacted

34

34

34

34

34

34

1

1

Tim

13.5

1468.5

15.9

13.4

9.1

9.5

15.4

7.0

Nomenclator
(cold -C

Servers

Contacted

1

11

1

1

0

0

1

0

le)
Improvement

E’actor

16.4

1.1

20.4

23.1

38.6

23.0

1.1

1.5

Nomemclator

(Wt

The

.004

.256

.008

.004

.003

.003

.008

.003

Table 2.
Perj60rmance of X.5W (Cold Cache), and Nomenclator for the Test Queries.

X.500 warm cache results are not included, since (for the QUIPU implementation)
the petjormance was worse than for the cold cache.

(times in seconds)

m cache)

Improvement

Fact or

tests, retrieving a referral from the cache and regen-
erating it are comparable in performance.

4.4. Life in the Current X.500 Environment

The current X.5(IO environment is still experi-
mental and this is reflected in our measurements. We
found that we could only successfully query about 35
of the 78 organization subtrees in the US. Many were
unavailable for prolonged periods; others were elim-
inated because their administrative limits on the time
and size of queries were too low to allow our tests to
complete successfully.

We also found that there is much inconsistency
in the use of attributes. For example, some organiza-
tions place room and phone numbers in the conunon -
Name of the person object. While most put the
city followed by the state in the loca lit y attribute,
some put their company’s division name in that attri-
bute. The variety of interpretations of attributes made
our programming task more challenging. The use of
integrity constraints on the name space, like enforcing
a domain of possible values for an attribute, would
reduce the difficulties that result from differing
interpretations of attributes.

5. RELATED WORK

Nomenclator simplifies the use of X.500 nam-
ing by improving descriptive que~ performance for
large X.500 environments. Two other projects have
similar goals to improving descriptive query perfor-
mance for X.500.

55,350

6,109

40,500

77, 47.5

117,000

72, 900

2,013

3,500

Neufeld [16] suggests registering distinguished
attribute values to improve the performance of
descriptive queries. A registered value can only
appear once in the subtree of its parent. For those
descriptive queries that use registered attributes,
search speeds ate improved because we are
guaranteed that registered values only exist in certain
subtrees of the name space. The higher in the tree a
value is registered, the more helpful it is in constrain-
ing the search and the more resrnctive it is to subordi-
nate trees. Only attributes in the dkinguished name
for an object speed the search, because only they can
be registered.

This approach basically supporta an enhanced
distinguished name that allows users to supply a sub-
set of the distinguished attributes in in an arbitrary
order. No performance results are available for
Neufeld’s system, but when registered attributes res-
trict the search to one data repository, the performance
of Neufeld’s system should be close to our results.
Nomenclator could describe and use the search con-
straints on registered attributes in improving the per-
formance of descriptive queries; however, we prefer a
more general approach. We can constrain a descrip
tive name search by using other distribution patterns,
including those that characterize attributes that are not
embedded in the distinguished name. Nomenclator
improves performance for a wider range of queries
without requiring naming administrators to constrain
the attribute values for all the organizations in a sub-
tree of the name space.

194

Kille [13] suggests a convention for expressing
names as a list of ordered values without explicit attri-

bute types. Heuristic search techniques resolve these

names by guessing both the relevant attribute types

and a reasonable subtree to search for an answer.
Users are freed from knowing attribute names, but still
are required to know a reasonable order to specify
attributes. This is an interesting approach and can

complement the design of Nomenclator. The typeless
(attribute-less) interface could be built on top of
Nomenclator, and Nomenclator optimization tech-
niques can be used to improve the performance of the
descriptive queries generated by the heuristic
searches. Kille’s approach relies on users to supply
information to guide query resolution, Nomenclator

uses information gathered from the name space and
supplied by naming administers to guide its searches.

Profile [17] is another system designed to pro-
vide attribute-W naming although not specifically
for an X.500 environment. Profile users specify
preferences concerning the importance and use of
attributes in the query resolution search. Some of
these preferences increase performance by constrain-
ing the scope of the search while others specify ways

to interpret attributes in the name space. Nomenclator
differs from Profile in that the administrators, not
users, specify information that guides the search.

6. SUMMARY

Nomenclator is able to provide efficient descrip-
tive naming for widely distributed data in an X.500
environment. Nomenclator allows the owners of the
data (naming administrators) to provide clues, in the
form of catalog functions and referrals, to direct

queries to a small number of servers. These catalog
functions are simple to write, and in many cases (for
commonly-used name services), will be generated
automatically. In our experiments, Nomenclator used
catalog functions to provide up to 38.6 times the per-
formance of X.500 SEARCH commands. Nomencla-

tor also uses extensive caching to improve perfor-
mance. In our tests, data caching provided thousands
of timeS the perfOrm~Ce Of SEARCH fOr queries
covered by cached results. Mets-data caching did not
improve performance in our test environment, but it

will be useful in environments where catalog func-
tions and the distributed catalog are remote from the
resolver.

Nomenclator is a meta-level name service that
will eventually incorporate other sources of naming

data, like DNS, finger [9], and assorted relational
databases. Nomenclator relieves users of the need to
understand the prolifemtion of name services and the
details of the structure of the name space.
Nomenclator’s techniques for improving descriptive
query performance can be incorporated into existing
services, like X.500. While our implementation effort
is still in the early stages, the results strongly suggest

that these techniques can offer a useful addition to
standard services.

7. ACKNOWLEDGMENTS

We are grateful to David Presotto of Bell
Laboratories for his contributions to the unity of cata-
log and data access functions.

8. REFERENCES

[1]

[2]

[31

[4]

[5]

[6]

[7]

[81

[9]

[10]

E. Babb, “Implementing a Relational Database
by Means of Specialized Hardware,” ACM
Transactions on Database Systems 4(l)(March
1979).

A. D. Birrell, R. Levin, R. M. Needham, and M.
D. Schroeder, “Grapevine An Exercise in Dis-
tributed Computing,” Communications of the
ACM 25(4), pp. 260-274 (April 1982).

K. Bratbergsengen, “Hashing Methods and
Relational Algebra Operations,” Tenth lnterna-
twnal Conference on Very Large Data Bases,
Singapore, pp. 323-333 (August 1984).

International Telegraph and Telephone Consul-

tative Committee (CCIIT), “Annex B: Sug-
gested Name Forms and DIT Structures,”
Recommendation X.521, pp. 295-298 (1988).

International Telegraph and Telephone Consul-
tative Committee (CCITT), “The Directory,”
Recommendations X.500, X.501, X.509, X.51 1,
X.518-X.521 (1988).

D. DeWitt, R. Gerber, G. Graefe, M. Heytens,
K. Kumar, and M. Muralikrishna, “GAMMA -
A High Performance Dataflow Database
Machine,” Twelfth International Conference on

Very Large Data Bases, Kyoto, pp. 228-237
(August 1986).

R. E. Droms, “Access to Heterogeneous Direc-
tory Services,” Ninth Joint Conference of IEEE

Computer and Communications Societies
(ZNFOCOMM), San Francisco, pp. 1054-1061

(June 1990).

S. Finkelstein, “Common Expression Analysis
in Database Applications,” ACM SZGMOD
International Conference on Management of
Data, Orlando, FL, pp. 235-245 (June 1982).

K. Harrenstien, “Name/Finger,” Request for
Comments 742, DDN Network Information
Center, SRI International, Menlo Park, CA
(December 1977).

K. Jakobs, “The Directory - Evolution of a

Standard,” IFIP TC61TC8 Open Symposium on

195

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Network I@ormation Processing Systems, Sofia, [23] C. Zaniolo, “The Database Language GEM,”

Bulgaria, pp. 281-289 (May, 1988). ACM SIGMOD International Conference on
Management of Data, San Jose, CA, pp. 207-

S. E. Kille, “The QUIPU Directory Service,” 218 (May 1983). Published as SIGMOD
Fourth International Symposium on Computer Record 13(4).
Message Systems, Cosa Mesa, California, pp.
173-185 (September 1988).

S. E. Kille, C. J. Robbins, M. Roe, and A. Tur-
land, “QUIPU,” The ISO Development

Environment: User’s Manuul 5(January, 1990).

S. E. Kille, “Using the 0S1 Directory to
Achieve User Friendly Naming,” Internet
Draft, University College London (January,
1991).

H. R. Lewis and C. H. Papadimitriou, Elements
of the Theory of Computation, Prentice-Hall,
Englewood Cliffs, NJ (1981).

P. V. Mockapetris, “Domain Names - Concepts

and Facilities,” Request for Comments 1034,

DDN Network Information Center, SRI Intern-
ational, Menlo Park, CA (November 1987).

G. W. Neufeld,’ ‘Descriptive Names in X.500,”
ACM SIGCOMM Symposium on Communica-
tions Architectures and Protocols, Austin,
Texas, pp. 64-71 (September 1989). Published
as Computer Communications Review 19(4).

L. L. Peterson, “The Profile Naming Service,”

ACM Transactions on Computer Systems 6(4),
pp. 341-364 (November 1988).

C. J. Robbins, “The Pilot DIT,” Technical

Report, University College London (December,
1990).

M. T. Rose, “Realizing the White Pages using
the 0S1 Directory Service,” Technical Report
90-05-10-1, Performance Systems Intern-
ational, Inc., Reston, VA (May, 1990).

M. Stonebraker, P. Kreps, E. Wong, and G.
Held, “The Design and Implementation of
INGRES,’ ‘ ACM Transactions on Database

Systems 1(3), pp. 189-222 (September 1976).

P. Valduriez and G. Gardarin, “Join and Semi-
join Algorithms for a Multiprocessor Database
Machine,” ACM Transactions on Database

Systems 9(l), pp. 133-161 (March 1984).

B. Welch and J. Ousterhout, “Prefix Tables: A

Simple Mechanism for Locating Files in a Dis-
rnbuted Filesystem,” Sixth International IEEE

Conference on Distributed Computing Systems,
Cambridge, MA, pp. 184-189 (May 1986).

196

