
Distributed Active Catalogs and Meta-Data Caching
in Descriptive Name Services

Joann J. Ordille Barton P. Miller
joann@cs.wisc.edu bart@cs.wisc.edu

Computer Sciences Department
University of Wisconsin-Madison

1210 W. Dayton Street
Madison, Wisconsin 53706, USA

Abstract
Today’s global internetworks challenge the ability

of name services and other information services to locate
data quickly. We introduce a distributed active catalog
and meta-data caching for optimizing queries in this
environment. Our active catalog constrains the search
space for a query by returning a list of data repositories
where the answer to the query is likely to be found.
Meta-data caching improves performance by keeping fre-
quently used characterizations of the search space close
to the user, and eliminating active catalog communication
and processing costs. When searching for query
responses, our techniques contact only the small percen-
tage of the data repositories with actual responses, result-
ing in search times of a few seconds. We implemented a
distributed active catalog and meta-data caching in a
prototype descriptive name service called “Nomencla-
tor.’ ’ We present performance results for Nomenclator in
a search space of 1000 data repositories.

1. Introduction
Users cannot afford to wait for a name service

query to search thousands of data repositories when as
few as 1% (or even 0%) of the sites hold the information
the users need. System capacity increases if we avoid
unnecessary communication with data repositories. We
improve the performance of descriptive (i.e. relational)
name services in this highly distributed environment by
providing a single framework for constraining the search
space and reducing processing overhead. We introduce
distributed active cataloging as a mechanism to isolate
queries within a subset of the data repositories that store a
relation. The active catalog cons!” the search space
for a query, eliminating the overhead of contacting data
repositories that do not contribute to the query answer.

This work was supported in part by an AT&T Ph.D. Scholarship, Na-
tional Science Foundation grants CCR-8815928 and CCR-9100%8.

We introduce general meta-data caching to reduce pro-
cessing overhead, and integrate our new meta-data tech-
niques with existing data caching techniques. Caching
meta-data at the query site responds to the locality of user
queries by retaining components of the active catalog and
storing results that constrained previous queries. It elim-
inates the overhead of repeatedly contacting the active
catalog for query constraint information.

The active catalog structures its indexing facilities
into catalog functions that accept a query and return a
constrained search space for the query. Some catalog
functions use relatively static information to constrain the
search, like knowledge about the conditions used to distri-
bute data to data repositories (called the partitioning cri-
teria of a relation.) Other catalog functions build indices
or hash filters [l] to capture the distribution patterns in
changing data, or dynamically search the network for
information to speed query processing. Still others use
semantic constraints like information about integrity con-
straints or the domains of attributes to constrain the
search. The active catalog uses meta-data descriptions,
called referrals, to specify the conditions for using cata-
log functions. Graphs of referrals allow us to select the
right catalog function for our needs and reap the benefits
of multiple catalog functions in processing one query.

Information in the active catalog is intelligently
replicated in meta-data caches to tailor query sites to the
types of queries they see most frequently. Intelligent
replication is a partial replication; no one site contains the
entire contents of the active catalog but rather those parts
that are currently most useful to it. Information on which
catalog functions to use and the constrained search spaces
that result from using catalog functions are cached for
subsequent use. When searching for query responses, our
techniques contact only the small percentage of the data
repositories with actual responses, resulting in search
times of a few seconds. Even a request to search the glo-
bal name space for a person with a popular name can be
answered in seconds.

Distributed active catalogs and meta-data caching
are currently used in a prototype descriptive name service

Office of Naval Research g&t NOOO14-89-J-1222, and a Digital huip:
ment Corporation Ejrtemal Research Grant.

called Nomenclator [lo]. Nomenclator answers selection

0-8186-3770-6/93 $3.00 0 1993 IEEE
120

mailto:joann@cs.wisc.edu
mailto:bart@cs.wisc.edu

and projection queries on relations that span heterogene-
ous name services in the global intemetwork. Like the
Domain Name System [8], Nomenclator currently uses
timestamps to identify and replace potentially stale data
and meta-data in its cache. In the naming environment,
cached information is not required to be consistent, but to
converge eventually to the new information after an
update [2,8]. A delay in seeing a change is only an
inconvenience, and it is a rare inconvenience because data
and meta-data change infrequently. Users see either an
old or a new version of each tuple; collections of tuples
have no interdependencies that would require the con-
sistency of multiple tuple transactions.

The following sections describe our research in
more detail. Section 2 provides an overview of the
Nomenclator System Architecture. Section 3 describes
referrals and explains how referrals form a graph that
guides query processing. Section 4 describes catalog
functions and the techniques for generating referrals
dynamically without storing the entire referral graph. We
extend the referral format in Section 5 to provide addi-
tional opportunities for faster, user-friendly query pro-
cessing. Section 6 gives experimental results that show
our techniques improve performance for a wide range of
data distribution patterns and response sizes in a search
space of lo00 data repositories. Finally, Section 7
describes related work, and Section 8 provides a sum-
mary.

2. Nomenclator
The distributed active catalog promotes sharing of

infomation in environments that require distributed infor-
mation control like today’s global name spaces. The
Nomenclator name service implements the distributed
active catalog using a distributed catalog service and a
query resolver (see Figure 1). The distributed catalog
service supplies meta-data for each relation, including
referrals, catalog function definitions, and the names of
attributes. It provides an opportunity for the owners of
data to advertise their information on the network. While
the distributed catalog service supplies meta-data for
well-known name services, like X.500 [4] and the
Domain Name System, it also encourages the owners of
other data to provide instruction on how to find their data.
In the simpliest case, the owners tell the distributed cata-
log service where their data is located. More generally,
they can provide catalog functions to constrain searches
of the owners’ data repositories, and we provide tools for
generating these catalog functions. Organizations with
proprietary information or that build value-added indices
for information in the network can preserve their privacy
by providing catalog function services via remote pro-
cedure calls.

The query resolver accepts and answers queries
from users. It is a data driven query processing engine
fueled by referrals. The resolver imports referrals to

USER

Figure 1.
Nomenclator System Architecture.

catalog functions from the distributed catalog service.
These functions generate additional referrals that the
resolver can cache and reuse as appropriate. Typically,
one resolver process serves several users on a local area
network, so users can benefit from a larger resolver cache.

3. Referrals
Referrals are a general mechanism for describing

distributed indexing structures. They direct query pro-
cessing by stating the conditions for using access func-
tions. The first type of access functions, catalog func-
tions, constrain the search space for a query. They direct
the search to more selective indices by returning referrals
to other catalog functions. They constrain the search to
specific data repositories by returning referrals to the
other type of access functions, called data accessfunc-
tions. Data access functions encapsulate the heterogene-
ous access methods in the name space by mapping
queries to the access operations of a data repository.
They return tuples that answer the query.

Each referral contains a template and a list of refer-
ences to access functions (see Figure 2). The template is
a selection predicate that describes the scope of the the
access functions. Our system follows the following rule:

Query Coverage Rule: if a query is covered by
(c) a template, then the query can be
answered by the access functions in the refer-
ence list.

For example, the first referral in Figure 2 covers the
queries in Figure 3.

Referrals can describe the partitioning criteria of a
relation, and also describe more complex indexing struc-
tures. For example, the People relation is partitioned
by organization, and we describe this partitioning criteria
by a series of referrals like the second referral in Figure 2.
This referral contains a data access function depicted with
the data repository that it uses to answer queries, and it
also covers the first query in Figure 3. Many distributed
database systems, like Distributed INGRES [16], use an
approach similar to ours for describing physical partitions
of a relation, but the distributed active catalog also does

121

Temnlate Reference List

~----@

Figure 2.
Sample Referrals for the People Relation.

more than this by building indices for useful attributes,
like a person's sumame, which are not part of the parti-
tioning criteria. The first referral in Figure 2 describes
one such index. It contains a catalog function depicted
with the list of referrals it retums. This catalog function
returns referrals that describe the distribution of a particu-
lar surname on data repositories in the United States. The
wildcard in name indicates that the catalog function can
constrain the search space more effectively if name is
included in the query.

Referrals describe the tools (access functions) for
locating and retrieving tuples, and the conditions (tem-
plates) for using those tools. They are the unit of meta-
data caching in our system. Other systems, e.g. the Com-
munity Information System [7], Domain Name System
[8], and R* [17], have simple versions of meta-data cach-
ing; these systems limit cached information about data
distribution to the partitioning criteria of a relation. We
achieve additional performance improvements by extend-
ing the information kept in the meta-data cache to index
any attribute. Our referrals describe indices that span the
entire relation, like the partitioning criteria, or describe
indices that locate tuples for some view of the relation,
like the catalog function in Figure 2.

Referrals form a generalization/specialization graph
for a relation called a referral graph. Referral graphs
integrate the different catalog functions in our system,
and supply a basis for catalog function construction and
query processing. A referral graph is a partial ordering
of the referrals for a relation. It is constructed using the
subset/superset relationship: s c g. Referral s is a sub-
set of referral g if the template for s is a subset of the
template for g. s is considered a more specific referral
than g; g is considered a more general referral than s.

Part of the referral graph for the People relation
is shown in Figure 4. This example contains only refer-
rals to data access functions. For simplicity of presenta-
tion, we leave out the data access function identifiers and

1. select * from People where
name = " M i l l e r " and
o = "UW" and
c = "US 11

2 . select * from People where
name = " O r d i l l e " and
c = y J S "

Figure 3.
Sample Queries about People in Organizations

in the United States.

list only the identifiers of the data repositories contacted
by the data access functions. The arcs in the graph indi-
cate the path from a general referral to a more specific
referral. Notice that referrals rl, r2, and r3 are
ordered fiom general to specific, but that rl and r 4
(and r 3 and r6) are not ordered by the graph. The
direction of the arcs also indicates the direction in which
the search space is constrained. The first query in Figure 3
is covered by referral r 3 and also by referral r 1, but it
is answered using r3, the more constrained (and faster)
referral.

The resolver query processing algorithm navigates
the referral graph, calling catalog functions as necessary
to obtain referrals that narrow the search space. Some-
times, two referrals that cover the query have the relation-
ship of general to specific to each other. The resolver
eliminates unnecessary access function processing by
using only the most specific referral along each path of
the referral graph. The search space for the query is ini-
tially set to all the data repositories in the relation. As the
resolver receives referrals to only data access functions, it
forms their intersection to constrain the search space. For
example, a query about a person in the Computer Sci-
ences Department at the University of Wisconsin is con-
strained by referrals r 2 and r 4 in Figure 4. The inter-
section of these referrals includes only those data reposi-
tories listed in both referrals. Intersection combines
independent paths through the referral graph to derive
benefit from indices on different attributes.

4. Catalog functions
Catalog functions are central to the performance of

our system. They provide an alternative to the exhaustive
searches of many hierarchical name services, like X.500,
and a generalization of data indices for a large internet
environment. Remote catalog functions are services that
are available through a standard remote procedure call
interface. Local catalog functions, as well as data access
functions, are C sources that are obtained by the query

122

\

Figure 5.
Catalog Functions Encapsulate Parts of a Referral Graph.

resolver from the distributed active catalog. The resolver
dynamically compiles and loads them into its address
space using an approach similar to CLAM [3].

repositories at the University of Wisconsin. It encapsu-
lates referral r 2 (from Figure 4) and its more specific
children. This catalog function can return referrals r2,

the name to to specific than the referral containing the catalog function.

catalog functions encapsulate portions of the refer-
cfl in Figure

r3 or r6
log function

appropriate. In constraining a query, a cab-
produces a referral that is more rai graph. For example, catalog function

123

Wildcards ("*") in a template indicate which attribute
values are used by the associated catalog function to gen-
erate a more specific referral. In other words, catalog
functions always follow the rule:

Catalog Function Constrained Search Rule:
Given a template t for a catalog function cf,
and a query q c t, the result of using cf to
process q, cf (9) , is a referral with template
t' suchthat q c t' and t' c t.

Catalog functions can also encapsulate other cata-
log functions by calling them. For example, we can
replace the entire graph in Figure 5 with the referral in
Figure 6. The catalog function cf3 calls c f l and
cf 2, and returns the union of their results. When catalog
functions call other catalog functions (or return referrals
to them), they form a DAG of catalog functions that is a
more compact, functional representation of the referral
graph. Catalog function DAGS perform hierarchical
indexing on multiple attributes. Catalog functions at a
root of a DAG, like cf 3, use one or more attributes, in
this case organization (o), to choose relevant localities in
a large search space. They further reduce the search
space by calling more specific catalog functions that are
tailored to those localities, and form the union of their
results.

5. Revised templates
When a catalog function forms the union of multi-

ple referrals, some specificity can be lost. For example, if
we process the second query in Figure 3 using cf 3, we
receive a referral with the template name =
" O r d i l l e " and c = "US". This referral is the
union of more specific referrals (from cf 1 and cf 2)
that contained the organization attribute in their tem-
plates, but we lose the organization information associ-
ated with parts of the search space when cf 1 constructs
the union. We would like to have this more specific
information, because it helps us find previously cached
subquery answers (in this case, a query for "Ordille" in a

1

Figure 6.
A Catalog Function Encapsulates Figure 4.

particular organization) and advise users on how to add
attributes to their queries to reduce the search space. To
provide more specific information from the referral graph
when using general catalog functions, we adopt the gen-
eral referral format in Figure 7(a). Each referral can qual-
ify its references to access functions with a revised tem-
plate. The revised template follows the Query Coverage
Rule with respect to its associated access functions. A
catalog function uses the general format to collapse a sec-
tion of the referral graph into one referral. For example,
cf 3 can collapse the graph rooted at referral r l in Fig-
ure 4 to the the referral in Figure 7(b). The resulting
referral is the union of leaves of the referral graph: its
revised templates and access functions are the templates
and access functions of the leaves.

The construction of general referrals with template
t and revised templates r t l , r t 2 , ..., r t 3 follows
two rules. The first rule is the following:

Referral Coverage Rule: t c r t l U r t 2
... U r tn .

This rule, like the Query Coverage Rule, is required for
correctness. Catalog functions forming the union of refer-
rals must know that the union covers the scope of the
returned template. The catalog function cf 3 can only
return the referral in Figure 7 (b), because it has contacted
every organization in the United States and found only
one place where "Ordille" is listed. The second rule is the

Referral Constrained Search Rule: t 2 rt 1
U r t 2 ... U r t n .

This rule, like the Catalog Function Constrained Search
Rule, is true by construction, because catalog functions
always walk the referral graph by adding attribute values
to templates.

When a data access function is described by a
revised template, the query resolver performs two optimi-
zations. The intersection of the query and revised tem-
plate is the subquery answered by the associated data
access function and data repositories. If the answer to the
subquery is in the data cache, the cached answer is used
and the data repository is not contacted. If the subquery
is inconsistent, the contents of the data repository contrad-
ict the query and the data repository is not contacted. We
plan to add an advice phase to the query processing algo-
rithm. When the final search space is too large to process
quickly, users can optionally receive a list of attributes
that would narrow the search further. For example, the
resolver presents the attribute values in revised templates,
but not in the query, to the user. The user selects attribute
values from the list to constrain the query further.

Referrals and the four simple rules summarized in
Table 1 allow us to unify a wide variety of indexing tech-
niques. Catalog functions contributed by different organi-
zations can be integrated into one structure to speed query

124

r I I

Rule Name

I TEMPLATE I REFERENCES

Rule Sunmrary

/ 0 \

Referral Coverage Rule

(a) General Format. (b) An Enample.
Figure 7.
Referrals.

t E r t l U r t 2 ... U r t n .

Query Coverage Rule If q G t , then use referral. II
If q G t and cf (9) returns t' ,
then q c t' and t' c t .

Catalog Function
Constrained Search Rule

Referral Constrained Search Rule t 2 r t l U r t 2 ... U r t n . /I
Table 1.

Meta-Data Rules.

(for a query q, a referral with template t', and a referral with template t, catalog function cf, and revised templates rtl,
rt2, ... rtn.)

processing for everyone. Referrals and the meta-data
rules also unite our meta-data caching techniques with
popular data caching techniques. Like other systems,
Nomenclator uses techniques developed by Finkelstein[@
to cache and re-use the responses to queries. Since both
meta-data and data cache entries are tagged with selection
predicates, the query resolver uses the same algorithm in
either cache to determine if a cached entry covers a
query. Our query processing techniques traverse referral
graphs to constrain queries to specific search spaces.
They allow us to reap the benefits of multiple indices by
integrating the referrals from catalog functions for dif-
ferent parts of a relation into one referral, and by forming
the intersection of referrals that cover the same query.

6. Experiments
Three issues are important in evaluating our query

processing framework. First, we must determine whether
we can constrain the search space for queries in a real
environment. Are there attribute values that will isolate
queries to a few data repositories in the global name
space? Are users likely to know those attributes? Second,
we must determine the performance advantages of our
query processing framework given the existence of con-
strained search spaces. Can we find information in the
global name space quickly? Third, we must analyze the
scaling behavior of our framework for query workloads
from multiple users. How well will our query processing
scale to millions of users?

Our previous work shows that it is possible to con-
strain queries in a real environment, the X.500 name

125

space [lo]. In that study, for example, the active catalog
constrains the attribute surname with value "Miller" to
only 32% of the X.500 data repositories in the United
States. Surname is an attribute users are likely to
know when searching for information about people.
Moreover, even a common surname like "Miller" greatly
reduces the number of data repositories searched. When
more unusual surnames are used (like "ordille") or addi-
tional attributes are specified, we can do even better in
constraining the search space.

In this study, we evaluate the benefits and costs of
using our techniques when queries are constrained to 0
through 100 percent of the data repositories in a relation.
Our goal is to identify whether performance will be
acceptable in Nomenclator's intended operating range
where queries are isolated to some small percentage (30
percent or less) of the data repositories in the search
space. We know from our previous study that we can iso-
late queries to this percentage of the data repositories.
We are also interested in verifying that there are no
bottlenecks to single query performance in our system.
Our experiments compare the performance of the naive
algorithm that searches everywhere with our query pro-
cessing and meta-data caching techniques. The naive
algorithm is now used in several name services, including
X.500 and meta-services that query other names services
like the Knowbot Information Service [5].

These experiments do not measure the effects of
parallel query processing at data repositories or the
interactions of multiple catalog functions. The costs of
dynamically loading access functions and validating
caches are not analyzed in this study, because these costs
must be weighed against the benefits to a stream of
queries. Moreover, dynamic loading costs are typically
low [3], and access functions change very infrequently.
Most catalog functions will come from a standard set of
access functions that will be varied by the data used to
initialize them.

These first two studies investigated how Nomencla-
tor reduces the impact of the individual user on the query
processing environment. We are currently studying how
Nomenclator manages queries from many users to
achieve scalable system performance. Our continuing
research will determine the effectiveness of caches for
streams of queries. We are also studying the tradeoff
between the costs of maintaining access functions, and
the aggregate savings (for large workloads) from con-
straining the search space and caching.

6.1. Environment
During the experiments, Nomenclator's distributed

catalog server, the query resolver, the naive algorithm,
and the data repositories all executed on different DECs-
tations running Ultrix in a local area network. We chose
to use a local area network for our tests, because we have

more control over this environment than over the wide-
area network. We were able to ensure that other network
and computing activities did not interfere with our experi-
ments. Experiments in the local environment are conser-
vative, because wide-area networks have greater delays
that make active cataloging and caching results look even
better.

To attain the scale of our intended wide-area appli-
cation, we created a program that implements a variable
number of data repositories on one host. The program
answers a query differently depending on the data reposi-
tory address presented with the query. We ran the pro-
gram on 10 DECstations; each DECstation supported 100
data repositories during the experiments. Using one pro-
gram per host and only processing sequential queries
prevented any context switching or query processing
conflicts between data repositories on the same host.

We tested against a relation stored on lo00 data
repositories. The relation had two attributes. One attri-
bute in the relation contained one byte values that
occurred in 0,25,50,75 or 100 percent of the data reposi-
tories in the relation. This attribute was specified in the
selection predicate of the query. The other attribute con-
tained 1 or lo00 byte value depending on the test. This
attribute value was returned in the query response. The
experiments occurred during non-peak weekend or even-
ing hours on otherwise idle workstations.

Nomenclator used one catalog and one data access
function during the experiments. An initial referral to the
catalog function was available from the distributed cata-
log service. After being started by Nomenclator, the cata-
log function used an internal Nomenclator relation to
retrieve bit vector filters[l] that described the hash values
of the attribute to be selected at each data repository. The
catalog function compared the hash value of the attribute
in the query with those in the filter to decide which data
repositories to include in the referrals it generated for the
query resolver. Data caching was disabled during the
experiments, so we can evaluate the performance of
meta-data caching in isolation.

6.2. Results
Our experiments measured the performance of

queries that selected 0 to 100 percent of the data reposi-
tories. Each query was run by the naive algorithm, by
Nomenclator with a cold referral cache, and by Nomenc-
lator with a warm referral cache. When Nomenclator had
a cold cache, it initialized its cache from the distributed
catalog service, called the catalog function, and then con-
tacted the data repositories for query responses. The
warm cache results report the performance of the second
and subsequent queries in a series of identical queries.
Nomenclator finds the cached result of the catalog func-
tion call and does not recall the catalog function.

126

Percentage of DR’s with Query Responses
Figure 8.

Response Time Results for 1 Byte Response Tuples.

Response time (in seconds) for each data distribution pat-
tern.

We measured the response time of each query. We
also measured the total number of bytes transferred by all
network messages during query processing. The total
bytes transferred is a metric for the load placed on the
underlying system and the computer network. The meas-
urements reported here are the average of several runs for
a query.

Figure 8 reports the response time measurements
for the queries where the data repositories returned one
byte tuple responses, and Figure 9 reports the number of
bytes transferred by those queries. The number of bytes
transferred is significantly larger than the lo00 bytes of
tuple responses, because it includes the cost of sending
the query to the data repository and the protocol overhead
for packaging the query and the response. In the case of
the cold cache, it also includes the size of messages used
to retrieve referrals and initialize the catalog function.
Figure 10 reports the response time measurements for
queries where the data repositories returned 1000 byte
responses. The x-axis of each graph indicates the percen-
tage of data repositories containing query answers.

6.3. Discussion
Our experiments show that our techniques to elim-

inate data repositories from the search space can dramati-
cally improve response time. As we anticipated, Figures
8 and 10 report a linear relationship between the number
of data repositories contacted and the response time. Our
techniques successfully eliminate unnecessary work from
the query processing without introducing new

“ I R 80

Cold Cache/

t

T
a n

40 Warmcache

$ “ 0 25 50 75 100

Figure 9.
System Load Results for I Byte Response Tuples.

Thousands of bytes transferred for each data distribution
pattem. Byte count includes queries sent, responses re-
ceived, meta-data initialization, and communications pro-
tocol overhead.

Percentage of DR’s with Query Responses

bottlenecks. Both graphs show significant response time
improvements, because latency is an important perfor-
mance constraint that is reduced by our query processing
techniques. Our measurements were taken on a local area
network under optimal conditions; wide-area network
improvements are even greater due tr, the increased laten-
cies in those networks. As networks become large,
latency worsens faster than bandwidth and must be
addressed by optimization techniques like ours.

Figure 10 shows that response time savings are
significant even when a large amount of data is returned.
Since we expect typical name service queries to return a
few thousand bytes, Figure 10 shows that even large
name service queries will be answered quickly. When 30
percent or less of the data repositories contain responses,
both Figures 8 and 10 report a 70 percent or more
increase in performance. Queries that previously
searched the global name space for minutes (or remained
unasked because they were too costly), can now be
answered in seconds.

Our experiments show a favorable tradeoff between
the system load incurred by Nomenclator during query
processing and the system load it eliminates by constrain-
ing the search space. Figure 9 shows that meta-data cach-
ing keeps the system load, as indicated by number of
bytes transferred, below the load of the naive algorithm.
Since obtaining referrals from the distributed catalog and
initializing catalog functions has a data transfer cost,

127

"0 25 50 75 100
Percentage of DR's with Query Responses

Figure 10.
Response Time Results for 1000 Byte Response Tuples.

Response time (in seconds) for each data distribution pat-
tem.

Nomenclator exceeds the load of the naive algorithm
when more than 35 percent of data repositories contacted.
In our operating range of 30 percent or fewer data reposi-
tories contacted, the active catalog consistently reduces
system load over the naive algorithm. The benefits in
bandwidth of eliminating unnecessary queries to data
repositories outweighs the cost of retrieving meta-data,
and meta-data caching eliminates even this cost. System
load is also decreased, because we substitute an interac-
tion with the distributed catalog service for hundreds of
interactions with data repositories. Even when Nomenc-
lator exceeds the bytes transferred by the naive algorithm,
the elimination of hundreds of interactions achieves
significant improvements in response time. This improve-
ment exists, because latency reduction is critical to large-
scale name service query optimization.

Meta-data caching also leads to improved perfor-
mance in multi-user workloads. As Figure 9 shows,
meta-data caching can reduce the data transferred in
retrieving referrals and initializing catalog functions.
This reduction in load at the distributed catalog server
eliminates bottlenecks in multi-user workloads and
increases the ability of our system to scale to many users.
By protecting data repositories from unnecessary queries,
catalog functions also increase the ability of our system to
scale to many users. Figures 8 and 10 show less dramatic
performance gains from meta-data caching for single
users, because latency was low in our test environment.
This improvement will be much larger for the greater
latencies of the wide area environment. In addition, when

small numbers of data repositories are contacted,
improvements of a few seconds in response time from
meta-data caching can be quite significant, because they
often constitute the greater percentage of the processing
time in this operating range.

7. Relatedwork
Previous descriptive name services limit the extent

of data distribution or types of descriptive queries to
attain performance. Profile [12] processes descriptive
queries by contacting every entry in a path of data reposi-
tories. The path is -Sed by the user or discovered in
the data during query processing. Performance is limited
by the length of the chain of servers contacted. Unlike
Nomenclator, Profile does not use caching or information
about data distribution pattems to improve performance.
Profile allows users to specify preferences about the
importance and use of attributes in the query resolution
search. Some of these preferences increase performance
by constmining the scope of the search while others
specify ways to interpret attributes in the name space.
Nomenclator differs from Profile in that owners of data,
not users, provide information that guides the search.

X.500 [4] provides a descriptive query called
SEARCH. This query is limited in performance, because
it exhaustively searches subtrees in the X.500 name
space. Neufeld [9] improves the performance of
SEARCH for a subset of queries by augmenting the X.500
partitioning criteria with registered attribute values.
Registering a value guarantees that the attribute will have
only that value in a subtree of the name space. Using
registered values to constrain the search is similar in
method and utility to improving query performance by
using the partitioning criteria of a relation. We prefer a
more general approach that uses information about data
distribution pattems to improve performance and does not
require owners of data to constrain the values of attributes
in other organizations.

The Networked Resource Discovery Project
[13,14] provides an architecture for locating a few
instances of a type of resource when the resource type is
prevalent in the network. It multicasts queries to a proba-
bilisticly chosen subset of the available data repositories.
Successive queries do not return the same answer, and
queries may fail even when data satisfying the query is
present in the system.

Multidatabase and federated database systems [15]
typically follow the lead of distributed database systems
[l 11 in achieving selection predicate performance. These
systems limit their opportunities for optimization to using
the partitioning criteria of a relation to constrain the
search space. While this approach is useful in small sys-
tems and on local area networks, it does not scale to sys-
tems with thousands of data repositories. While multida-
tabase and federated systems translate and forward each

128

query to all their component systems, Nomenclator only
performs these operations when the destination has data
that may be relevant to the query response.

8. Summary
Distributed active catalogs and meta-data caching

are new techniques for improving selection predicate per-
formance in very large, distributed environments. The
active catalog is a distributed facility that constrains
queries to those data repositories where query answers are
likely to exist. Meta-data caching keeps frequently used
components of the active catalog available locally. It
stores the results of constraining the search space, so they
can be re-used without additional costs. Referral graphs
provide a single framework for using the distributed
active catalog, meta-data caching and data caching in
query processing. Our experiments indicate that these
techniques improve response time and reduce system load
for a wide range of data distribution patterns. In our typi-
cal operating range, queries that take minutes using
current strategies can be answered in a few seconds using
our techniques. Our techniques are appropriate for
environments with loose consistency constraints and we
hope to extend them to systems with stronger consistency
constraints.

9. Acknowledgments
We are grateful to James Elliott for his work on the

Nomenclator parser and user interface, and to Cheryl
Thompson for her work on an X Window interface to
Nomenclator.

10. References
E. Babb, “Implementitig a Relational Database by Means
of Specialized Hardware,” ACM Transactwns on Data-
base System 4(1), pp. 1-29 (March 1979).

A. D. Birrell, R. Levin, R. M. Needham, and M. D.
Schroeder, “Grapevine: An Exercise in Distributed Com-
puting.” Communications of the ACM 25(4), pp. 260-
274 (April 1982).

D. L. C o b , B. P. Miller, and L. A. Call, “Distributed
Upcalls: A Mechanism for Layering Asynchronous
Abmactions,” Eighth Internatwnal Conference on Dis-
tributed Computing Systems, San Jose, CA, pp. 55-62
(June 1988).

Intemational Telegraph and Telephone Consultative
Committee (CCrrr), “The Directory.” Recommenda-
tion~ X.500, X.501, X.509, X.511, X.518-X.521(1988).

R. E. Droms, “Access to Heterogeneous Directory Ser-
vices,” Ninth Joint Co$erence of IEEE Computer and
Communications Societies (INFOCOMM). San Fran-
cisco, pp. 1054-1061 (June 1990).

S. Finkelstein, “Common Expression Analysis in Data-
base Applications,” ACM SIGMOD lnternatwnal
Conference on Management of Data, Orlando. FL, pp.
235-245 (June 1982).

D. K. Gifford, R. W. Baldwin, S. T. Berlin, and J. M.
Lucassen, “An Architecture for Large Scale Information
Systems,” Tenth ACM Symposium on Operating Systems
PrincipZes, Orcas Island, Washington, pp. 161-169
(December 1985).

P. V. Mockapemk. “The Domain Name System,” IFIP
WG 6.5 Working Conference on Computer-Based Mes-
sage System, Nottingham, England, pp. 61-72 (May
1984).

G. W. Neufeld. “Descriptive Names in X.500.” ACM
SIGCOMM Symposium on Communications Architec-
tures and Protocols, Austin, pp. 64-71 (September
1989).

I. I. Ordille and B. P. Miller, “Nomenclator Descriptive
Query Optimization in Large X.500 Environments,”
ACM SIGCOMM Symposium on Communications Archi-
tectures and Protocols, Zurich, pp. 185-196 (September,
1991).

M. Tamer Ozsu and P. Valduriez, Principles of Dktri-
buted Database System, hentice Hall, Englewood
Cliffs, NJ (1991).

L. L. Peterson, “The Profile Naming Service.” ACM
Transactionr on Computer Systems 6(4), pp. 341-364
(November 1988).

M. F. Schwartz, “The Networked Resource Discovery
Project,’’ IFIP XI World Congress, San Francisco, pp.
827-832 (August 1989).

M. F. Schwartz, “A Scalable, Non-Hierarchical Resource
Discovery Mechanism Based on Probablistic Protocols,”
Technical Report CU-CS-474-90, University of
Colorado. Boulder, Colorado (June 1990).

A. P. Sheth and J. A. Larson, “Federated Database Sys-
tems for Managing Distributed, Heterogeneous. and
Autonomous Databases.” ACM Computing Surveys
22(3), pp. 183-236 (September 1990).

M. Stonebraker. “The Design and Implementation of
Distributed INGRES.” pp. 187-196 in The INGRES
Papers, ed. M. Stonebraker. Addison-Wesley Publishing,
Menlo Park, CA (1986).

R. Williams. D. Daniels, L. Haas. G. Lapis, B. G.
Lindsay, P. Ng, R. Obermarck, P. Selinger, A. Walker, P.
Wilms. and R. Yost, “R*: An Overview of the Architec-
ture,” pp. 196-218 in Readings in Database System, ed.
M. Stonebraker, Morgan Kauhann Publishers, Palo
Alto, CA (1988).

129

