
Improving the Accuracy of Data

Robert H. B. Netzer

netzer@cs. wise .edu

Barton P. Miller

bart@cs.wise.edu

Race Detection

Computer Sciences Department
University of Wisconsin–Madison

1210 W. Dayton Street
Madison, Wisconsin 53706

Abstract

For shared-memory parallel programs that use expli-

cit synchronization, data race detection is an important part
of debugging. A data race exists when concurrently exe-
cuting sections of code access common shared variables.
In programs intended to be data race free, they are sources
of nondeterminism usually considered bugs. Previous
methods for detecting data races in executions of parallel
programs can determine when races occurred, but can
report many data races that are artifacts of others and not

direct manifestations of program bugs. Artifacts exist

because some races can cause others and can also make
false races appear real. Such artifacts can overwhelm the

programmer with information irrelevant for debugging.
This paper presents results showing how to identify non-

artifact data races by validation and ordering.

Data race validation attempts to determine which
races involve events that either did execute concurrently or
could have (called feasible data races). We show how
each detected race can either be guaranteed feasible, or
when insufficient information is available, sets of races can

be identified within which at least one is guaranteed feasi-
ble. Data race ordering attempts to identify races that did
not occur only as a result of others. Data races can be par-

titioned so that it is known whether a race in one partition
may have affected a race in another. Thefirst partitions are
guaranteed to contain at least one feasible data race that is
not an artifact of any kind. By combining validation and
ordering, the programmer can be directed to those data
races that should be investigated first for debugging.
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1. Introduction

In shared-memory parallel programs, programmers
often coordinate access to shared data by using explicit

synchronization to implement critical sections, which are
intended to execute as if they were atomic. A section of

code executes atomically if the shared variables it reads
and modifies are not modified by any other concurrently
executing code. If the program’s synchronization ever fails
to ensure this atomicity, it can behave unexpectedly. A
data race exists when two sections of code both execute
concurrently and access common shared variables (and at

least one is modified). Even though programs containing

critical sections are often intended to be nondeterministic, a

data race is a source of nondeterminism that is usually con-

sidered to be a manifestation of a program bug. In this
paper we present techniques that aid the progmmmer in
debugging the cause of data races exhibited by an execu-
tion of a shared-memory parallel program. We show how
to locate those data races that are direct manifestations of
program bugs, instead of artifacts of other data races.

Data race reports generated by most existing

methods [l, 3,4,6, 8] can include potentially many artifacts,
which can overwhelm the programmer with irrelevant

information. Such data race artifacts stem from two

sources. First, even when two events in an execution are
not forced to occur in a specific order by explicit synchron-
ization, it still might be impossible for them to execute con-
currently. Data dependence among shared data accessed
by another data race may order these two events, prevent-
ing them from ever executing concurrently and constituting
a data race. Second, since a data race between two events
may have resulted in the atomicity failure of either of the

events, subsequent program behavior different from any
data-race-free execution of the program may result. Subse-
quent data races may therefore only be artifacts of the ear-
lier data races that caused atomicity to fail. Existing
methods simply report data races among any two events
that are not ordered by explicit synchronization, These
methods can determine whether or not at least one data
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race occurred, but when more than one data race is
reported, little indication is given as to which data races are

directly caused by program bugs, and which are artifacts of
other data races. In this paper we present results that show
how to locate data races that are not artifacts of others.

To address the first cause of data race artifacts, we

extend our previous work[7] on validating the data races
detected by existing methods. Existing methods operate by
instrumenting the program so that information about its
execution is recorded, such as the sets of shared variables
read and written by each event (an event represents all code

executed between two consecutive synchronization opera-
tions in some process), and the relative order in which
some events execute. Since the ordering among only some

events is recorded, it is not always known which events
actually executed concurrently. These methods assume
that if two events were not forced to occur in a specific
order by explicit synchronization, then they could have
executed concurrently. Data race reports containing
artifacts are a consequence of not considering how inter-
process interactions involving shared data constrain these

alternate orderings.

Data race validation attempts to determine which

data races either occurred during the observed execution or
had the potential of occurring because of timing variations
(i.e., data races involving events that either did or could
have actually executed concurrently). Our previous work
is extended by analyzing how the events performed during
execution affected each other, allowing the effects of an
alternate ordering on the program’s behavior to be deter-
mined. Under an alternate ordering, shared variable

accesses may occur in a different order, possibly changing
the outcome of the execution. The discrimination power of

our technique depends on the accuracy of information
about how events affected each other. We show that this
information can be approximated to varying degrees of

accuracy, by performing analysis on the execution-time
trace data collected by existing methods, and perhaps addi-
tionally by performing a static analysis of the program.

To address the second cause of data race artifacts, we
present new results showing how to order the data races to
locate those that could not have been affected by atomicity
failures caused by previous data races. Since the events
involved in a data race may execute non-atomically, the
program may subsequently behave unexpectedly in ways

that otherwise would not have been possible. If this
behavior includes another data race, this second race may
be an artifact of the first, and would never have occurred
had the first race not existed. By applying a combination of
data race validation and ordering, the data race reports gen-
erated by existing methods can be refined, and the pro-
grammer can be directed to those races of interest, provid-
ing information crucial for debugging.

The remainder of this paper starts by first presenting

an example that illustrates why existing methods can report
data race artifacts (Section 2). To reason about both

artifact and non-artifact data races, Section 3 presents a for-
mal model for representing the behavior exhibited by a pro-

gram execution. Using this model, we characterize alter-

nate orderings the execution had the potential of exhibiting,

by analyzing how events in the execution affected each
other (Section 4). In Section 5.1 we review our earlier
results on data race validation and extend them using this
characterization of alternate orderings. Section 5.2 con-
tains new results regarding data race ordering. Finally,
Section 6 concludes the paper.

2. Existing Data Race Detection Methods

To illustrate the need for data race validation and
ordering, we show how most existing methods for dynamic
data race detection operate on an example program execu-
tion. One proposed method addresses the need to locate
first data races[2]; we postpone discussing this method until

the end of Section 5, after our terminology and results have
been presented.

Existing data race detection methods[l, 3,4,6,81
operate by first instrumenting the program so that informa-

tion about its execution is recorded, and then executing the
program and analyzing the collected information.

Although these methods differ in how and when this infor-
mation is collected and analyzed (there are on-the--y and

post-mortem approaches), all analyze essentially the same
information about the execution: which sections of code
executed, the sets of shared variables read and written by
each section of code, and the relative execution order
between some synchronization operations. To represent
this relative ordering, a DAG is constructed (explicitly or in
an encoded form), which we call the ordering graph, in
which nodes represent execution instances of either syn-

chronization operations (synchronization events) or code

executed between two synchronization operations (compu-
tation events)t. Edges are added from each event to the
next event in the same process, and between some pairs of

synchronization events (belonging to different processes) to
indicate their relative execution order. Various types of
synchronization are handled all methods handle some form
of fork/join. Edges are added from a fork event to the first
event in each created child, and from the last event in each
child to the join event.

The crux of existing methods is the location of events
that accessed a common shared variable (that at least one
wrote) and that either did or could have executed con-
currently. Finding events that accessed a common shared
variable is straightforward, since the sets of shared vari-
ables accessed by each event are recorded. To determine if
two events could have executed concurrently, all existing
methods analyze the ordering graph, and assume that two
events could have executed concurrently if no path

t Some methods represent computation events by the intra-process
edges, instead of constructing a separate node[3, 6].
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connects the two events. Data races are therefore reported
between any events that accessed common shared variables
and that have no connecting path. However, this approach
can report potentially many data race artifacts.

To illustrate why artifacts can be reported, consider
the program fragment in Figure 1. This program creates
two children that execute in parallel. Each starts by per-
forming some initial work on disjoint regions of a shared
array, and then enters a loop to perform more work on the
array. Inside the loop, the lower and upper bounds of an
array region to operate upon are removed from a shared
queue, then computation on that array region is performed.
The queue initially contains records representing disjoint
regions along the lower and upper boundaries of the array,
which do not overlap with the internal regions initially
operated upon by the children. A correct execution of this
program should therefore exhibit no data races.

However, assume that the “remove” operations do
not properly synchronize their accesses to the shared
queue. An ordering graph for one possible execution of
this program is shown (the internal lines only illustrate the
data races and are not part of the graph). In this execution
(during the first loop iteration) the “remove” operations
execute concurrently, causing the right child to correctly
remove the fourth record, but the left child to incorrectly
remove the upper bounds from the last two records. The
left child thus proceeds to operate (erroneously) on region
[10,39].

In this graph, no paths connect any nodes of the left
child with any nodes of the right child. Existing methods
would therefore report two data races between the -work
events (shown by the dotted and dot-dashed lines), and one
data race between the “remove” events (shown by the

fork Initial stateof Queue:

Iwork on region [10,19] [1,10]

loop [30,40]

I remove (L,U) from Queue

L
work on region [L,U-1]

of shared array

while QueueNotEmpty

[

work on region [20,29]

loop

remove(L,U) from Queue

work on region [L,U–1]
of shared array

while QueueNotEmpty

join

solid line). The race report between the “remove” events
was a direct cause of the bug, and is not an artifact. This
race involves events that either did execute concurrently or
could have (which we call feasible da~a races), and also
were not performed only as a result of the outcome of
another data race. However, the race reports between the
work events are artifacts. The data race shown by the dot-
ted line is infeasible, since it involves events that could
never have executed concurrently. For the accesses to
[10,39] and [20,29] to have executed concurrently, the left
child’s “remove” operation would had to have executed
before the right child’s “remove” operation (with which it
originally overlapped). If this had happened, the erroneous
record [10,40] would not have been removed (since the two
“remove” opemtions would not overlap), and a different
array region would be accessed. Although the data race
shown by the dot-dashed line is feasible (it involves events
that actually did execute concurrently), it is nonetheless an
artifact since the access to [10,39] was a result of the
preceding “remove” executing non-atomically, leaving
data in an inconsistent state.

If the array accesses had been more complex,
perhaps creating other children, there may have been many
nodes in the graph representing these accesses, and many
data race artifacts would have been reported. Since the
artifacts are not direct manifestations of program bugs but
rather caused only by previous races, reporting them to the
programmer can complicate debugging since they obscure
the Mcation of the bug, Artifacts can result whenever
shared variables are used (either directly or transitively) in
conditional expressions or in expressions determining
which shared locations are accessed (e.g., shared array sub-
scripts). As this example shows, the only non-artifact data
races can be located anywhere in the execution. Accurate

h fork

work on [10,19] / work on [20,29]/’
,’

/’
,’

‘emOve[10’40]/’”’”Yem0ve
‘OrkOn[’0’9]v

Feasible,not anartifact

------------- Infeasible
— —. — Feasible,artifact

Figure 1. Example program and ordering graph (annotated with data-race report information)
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race detection involves analyzing how shared data flowed
through the execution and either const.mined alternate ord-
erings or caused the existence of one race to depend on the
outcome of another. This paper presents results showing
how such analyses can be performed without recording
additional information about the execution.

3. Representing Program Executions

In this section we present a formal model as a
mechanism for reasoning about shared-memory parallel
program executions. The model contains objects that
represent a program execution (such as which statements
were executed and in what order) and axioms that charac-
terize properties those objects must possess. We use the
model as a notation for describing behavior actually exhi-
bited by the execution, and to represent what can be rea-
sonably recorded about the execution. We later use the
model to speculate on behavior that the execution could
have exhibited (such as alternate event orderings) due to
nondeterministic timing variations.

3.1. Program Execution Model

We provide only a brief overview of our model,
which was first presented in an earlier paper[7]. Our model
is based on Lamport’s theory of concurrent systems[5],
which provides a formalism for reasoning about concurrent
systems that does not assume the existence of atomic
operations. We consider executions of programs, on
sequentially consistent processors, that use forldjoin and
counting semaphores. A program execution is modeled as
a collection of events, E, where each event e e E

represents the execution of a set of program statements and
possessestwo attributes, READ (e) and WRITE (e), the sets
of shared variables read and written by those statements. A
synchronization event is an instance of some synchroniza-
tion operation, and a computation event is an instance of a
group of statements belonging to the same process, that
executed consecutively, none of which are synchronization
operations. A data conflict exists between two events if
one writes a shared variable that the other reads or writes.
We denote the ifi event in process p by eP,i, and the set of
all P and V operations on semaphore S by Ep (S) and EV(S).
No generality is lost by modeling each event, e, as having a
unique start time (e,) andjnish time (ef).

The temporal ordering relation+ among events, ~,
describes the temporal aspects of a program execution; a

% b means that a completes before b begins (in the sense
that the last action of a can affect the first action of b), and

a & b means that a and b execute concurrently (i.e.,
neither completes before the other begins). We should em-
phasize that the temporal ordering relation is defined to

+ Superscripted arrows denote relations; u + b is a shorthand for
+ + b), and a +=+ b is ashorthand for n(a + b) A ~(b + a).

describe the order in which events actually executed during

a particular execution; e.g., a * b means that a and b
actually executed concurrently; it does not mean that a and
b could have executed in any order.

The shared-data dependence relation, %, indicates
when one event can causally affect another, either because
of a direct or transitive data dependence involving shared
variables. A direct shared-data dependence from a to b

(denoted a % b) exists if a accesses a shared variable
that b later accesses (whereat least one access modifies the
variable); we also say that a direct dependence exists if a

precedes b in the same process, since data can in general
flow through non-shared variables local to the process. A

transitive shared-data dependence (a % b) exists if there
is a chain of direct dependence from a to b, e.g., if a

accesses a shared variable that another event, c, later
accesses, and c then references a variable that b later refer-
ences.

A program execution, P, is a triple, (E, %, -%).

We refer to a given program execution, P, as an actual pro-
gram execution when P represents an execution that the
program at hand actually performed. The temporal order-
ing and shared-data dependence relations of any program
execution must satisfy the following axioms.

(Al) ~ is an irreflexive partial order.

(A2)Ifa %b&$+c%d thena% d.

(A3)Ifa%bthenb%a.

(A4) ep,i ~ ep,i+~ for all processes p and 1s i c IEPI.

(A5) For all child processes, c, created by each ForkP,i
event and terminated at tXc311tJOitlp,i+k,

ForkP,i -% eC,j % JoinP,i+~ 1 S j < \Ec\.

(A6) For every subset of P events, P c EP(S),

~ vi;, VGEVO) A ~PEp (V+p v v-p) ) I
—

The first two axioms simply state that % is consistent,
axiom (A3) enforces the law of causality, axiom (A4) im-
poses a process structure on the set of events, and axioms
(A5) and (A6) represent the semantics of forldjoin and
semaphores. Axiom (A6) states that the semaphore invari-
ant is always maintaind, namely, that the number of V
operations that have either completed or have begun exe-
cuting is always greater than or equal to the number of P
operations that have completed (this version of axiom (A6)
assumes that the initial value of each semaphore is zero).

3.2. Representing Recorded Information

So far, our model captures complete information

about a program execution in the sense that = shows the

relative execution order between any two events, and %
shows the acwal shared-data dependence. Reeording such
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complete information is impractical, Indeed, existing
methods record only a subset of this information. We now
discuss how to represent partial information in our model,
b! defi~ing an appro~imate program execution, P = (E,

%, %), where % and -% are the approximate

counterparts to -% and -%. Our intent is not to discuss
details of instrumentation, but rather to represent the type
of information existing methods record.

Existing methods record the temporal ordering
among only some synchronization events; e.g., the order
among fork and join events and their children is recorded,
but the relative order of events performed by the children is
not. Recording such an incomplete ordering has the advan-
tage that the required instrumentation can be embedded
into the implementation of the synchronization operations
without introducing additional synchronization. A central
bottleneck that could reduce the amount of parallelism
achievable by the program is thus avoided, allowing the
methods to scale well to large numbers of processors. We.
use the relation % to represent this incomplete temporal
ordering, and assume that it possessestwo properties:

(1) If a-% bthena~ b,and

(2) If a +$+ b then explicit synchronization did not
prevent a and b from executing concurrently.

The ordering information recorded by all existing methods
has these properties. The first property states that the
recorded ordering must be consistent with the actual order-,.
ing (i.e., % G -%). The second property applies when
insufficient information is recorded to determine the actual
execution order between a and b. In this case, if two events
are not observed as being ordered, it must be because they
either executed concurrently or were not prevented by ex-
plicit synchronization from doing so. As illustrated in Fig-
ure 1, however, such events may nonetheless be ordered,
The goal of data race validation is to determine if the
events could have indeed executed concurrently.

Although existing methods do not attempt to record
shared-data dependence, they can be approximated from
the READ and WRITE sets which are recorded for each
computation eve?t. The approximate shared-data depen-

dence relation, ~, is defined by conservatively speculat-
ing on what the actual shared-data dependence were.
Consider two events, a and b, that access aAcommon shared

variable (that at least one modifies). If a % b, then there
is a direct shared-data dependence from a to b. When a.
+% b, the direction of any direct dependence cannot be
determined (since the actual temporal ordering between a
and b is unknown), and we make the conservative assump-
tion that a dependence exists from a to b and from b to a.
This assumption will always include the actual depen-
dence, although it may indicate a dependence from b to a
when in fact the only dependence is from a to b. As with

%, a transitive shared-data dependence from a to b is in-

.
dicated by % if a chain of direct dependence exists from
a to b. Hgwever, as we will see, data rac$ validation only

requires % to be determined when a * b.

4. Characterizing Alternate Temporal Orderings

Our goal is to validate and order data races to locate
those that are not artifacts. Validation requires determining
which events had the potential of executing concurrently,
and ordering requires determining which events might not
have been performed had earlier data races not occurred.
These analyses involve speculating on behaviors that the
program had the potential of exhibiting. In this section, we
speculate on alternate temporal orderings that could have
potentially occurred. We extend our previous work[7] by
first considering a type of share&data dependence, called
an event-control dependence, which describes how events
affect each other in the actual program execution P. Using
these dependence, the effects that alternate orderings
might have had on the performed events can be determined.
We then characterize feasible program execution prejixes,
which describe executions that could have potentially oc-
curred, and which exhibit different temporal orderings than
P. In a feasible prefix, each process may perform only an
initial subset of the events performed by P. The notion of a
feasible prefix is central to the results in Section 5.

4.1. Event-Control Dependence

Given an actual program execution P, we consider
how its events affected one another during execution to
determine how a different temporal ordering might have al-
tered the outcome of the execution. For example, if the
program is nondeterministic, it may have had the potential
of performing different events than P. In addition, the exe-
cution may have also had the potential of performing the
same events as P but under a different ordering. We have
shown [7] that any ordering that could have allowed the
same shared-data dependence as those exhibited by P to
occur could have also caused the same events to be per-
formed (if interactions with the external environment are
modeled as shared-data dependence). However, still other
orderings may have occurred (those that would not have al-
lowed the same shared-data dependence to occur). We
observe that under such orderings, some of the events per-
formed by P may still have been performed.

For example, consider a shared-data dependence in P
from b to c. If the execution instead exhibits a temporal
ordering in which c precedes b, this shared-data depen-
dence can no longer occur, but part of the execution
beyond b and c may still perform the same events as P. For
example, assume that the dependence exists because b
writes a shared variable, S, that c later reads, as shown in
Figure 2(a). From axiom (A3) we know b either completes
before or executes concurrently with c. Consider how the
execution would differ from P if b and all subsequent
events in the same process are not performed. Assuming

137



I

a.
.
. ~ Shared-data dependence Dependence in (a}

b

S:=l
111

c
-------- -- .->

X:=s

do

I

.

.

eT if (x=1) then

I . . .

I

a.
.
.

c

TX:=s

d,

I

.

.

b-%c b%e

b%c b%e

(a) (b)

Figure 2. (a) an actual program execution, and (b) a feasible program execution prefix in which b is excluded

that c could still be performed, the dependence from b to c
cannot occur, and c may read a different value from S, pos-
sibly causing events performed from this point forward to
differ from P. However, this different value of S may not
immediately alter the events performed but only alter the
values computed. In Figure 2(a), events c and d do not use
S to determine what statements to execute or what shared
locations to access, so a different value for S will not
change these events. Different events may be performed
only when S is finally used to determine control flow or the
shared locations referenced, such as in event e,

To formally capture this notion of one event affect-
ing the outcome of another, we define the event-control

dependence relation, %, on events: a -% b (read as “a
can event-control b”) if

(1) a -% b and a writes a shared variable whose value
b uses (directly or through other variables) in a con-
ditional or to determine which shared locations to
access (e.g., in a shared-array subscript), or

(2) a is a fork event and b is the first event in a child
process created at a, or

(3) b is a join event and a is the last event in a child
process terminated at b, or

(4) a is a V event, b is a P event on the same sema-
phore, and a allowed b to proceed (i.e., the sema-
phore invariant would be violated without a), or

(5) a precedes b in the same process, or

(6) (Z-% CA C% ’b.

The % relation shows the possible effects had some
event a (and all subsequent events in the same process) not
been performed. Condition (1) includes those events re-
ceiving shared-data dependence that were used to deter-
mine control flow or the shared locations referenced. Con-
ditions (2) through (5) include those events that would no
longer be performed either because they followed a in the

same process or because their presence depended on syn-
chronization that followed a. These events are also those

that are ordered after a by %. Condition (6) forces %

to be transitive. In Figure 2(a), for example, b % c, b

% e,andb% e, butb% c.

The above characterization of % is based on the

actual shared-data dependence, %. As previously dis-
cussed, recording the actual dependence is impractical, so

we also define an approximate version of %. These ap-

proximate event-control dependence, &, are character-.
ized as above except that Condition (1) is based on % in-

stead of %.

The -% relation can be conservatively computed to
varying degrees of accuracy, depending on the amount of
overhead that is incurred. For example, condition (1) is
captured by a subset of the shared-data dependence (those
involving conditionals and shared-array su~scripts), ~d

conditions (2) through (5) are captured by %; the -%.
relation is therefore approximated by -% u &.
Without examining the individual ?ctions performed by a

and b, a better appro~imation to a % b can be computed

by excluding from % those direct dependence that can-
not be flow dependence (i.e., a write followed by a read
without an intervening write), since condition (1) requires a
flow dependence. This exclusion can be done by simply
examining the READ and WRITE sets; a direct dependence
from a to b cannot be a flow dependence if
WRITE (a) m READ (b)= 0. More accurate approxima-
tions can be obtai~ed from a static analysis of the program

to further refine =. Even more accurate information can
be extracted from a complete address trace, but this ap-
proach may only be practical if such a trace is already be-
ing collected for other pu~oses.
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4.2. Feasible Program Execution Prefixes

We use the event-control dependence as the key to
characterizing alternate temporal orderings that P could
have exhibited. Formally, a feasible program execution

preji.x, PP’ = (E’, -%, %), contains a subset of the
events and share&data dependence exhibited by P that we
can guarantee the program could have performed. Consid-

er each shared-data dependence, a % b, exhibited by P.
If both a and b are to belong to E’, then we require that the
dependence also be exhibited by PP’ (to ensure that b can
occur in PP’). If we wish to exclude a from E’, then any
event that is event-controlled by a must also be excluded,
since it may never occur when a is not present.

Theorem 4.1

Let P = (E, ~, %) be an actual program execu-

tion. PP’ = (E’, ~, %) is a feasible program
execution prefix if

(Pi) PP’ is a valid program execution (axioms
(A1)-(A6) are satisfied),
(P2) each process in PP’ is a prefix of the
corresponding process in P; i.e., for each process p,

E’P G EP, and if eP,iE EP is excluded from E’P,
then so is every event eP,j (j > i) in process p,

(P3) Va,b c E such that a -% b, either

(1) a,b = E’ and a -% b, or

(2)a EE’and Vx~E(a-%x+x@E’), or
(3) b Q E’.

Proof Sketch. Proving this theorem requires reasoning
about the individual shared-memory references made by
the execution. Viewing the execution at this level (where
each event represents at most one shared-memory access),
it is easily argued that the theorem holds. The crux of the
proof involves showing that the result extends m a higher-
level view in which events represent arbitrarily many
accesses. We have proven that any other program execu-
tion, obeying axioms (A 1)-(A6), and possessing the same

-% relation as P, describes an execution performing ex-
actly the same events as P, and is thus feasible[7]. Show-
ing that Theorem 4.1 holds at a higher-level is analogous to
this proof, and we omit the details here. ■

Figure 2(b) shows an example feasible prefix. Since
b is excluded from the prefix, e must also be excluded be-

cause b % e, but c can remain (even though b -% c)

because b % c. This example shows that a and d could
have executed concurrently even though the shared-data
dependence from a to b would then no longer occur.

We finally mention that our event-control depen-
dence are similar to the hides relation used by Allen and
Padua[l], and the semantic dependence defined by
Podgurski artd Clarke[9]. The hides relation is defined to
show when the data computed by an event in one data race
may have been used by an event in another race tc~deter-
mine either control flow or the shared locations accessed.

Allen and Padua propose computing the hides relation by a
static analysis of the program, and use it primarily to locate
data races that might have been prevented from occurring
because of a previous race. In contrast, we use the event-
control dependence to locate data races that were caused
by a previous race. Podgurski and Clarke statically define
a semantic dependence to exist from one statement in a
sequential program to another if the function computed by
the first statement can affect the execution behavior of the
second in any way. Our event-control dependence can be
viewed as a type of dynamic semantic dependence but gen-
eralized to parallel programs (where dependence involv-
ing synchronization as well as data must be considered).

5. Validating and Ordering Data Races

Existing data race detection methods can report data
races that are artifacts of other races, either because the re-
ported data races involve events that could never have exe-
cuted concurrently, or because they were performed only as
a result of other data races. To determine which are not ar-
tifacts, we now show how the shared-data and event-
control dependence can be used to perform analyses that
validate and order these races.

5.1. Data Race Validation

As discussed in Section 2, existing methods construct
an ordering graph and report a data race between any two
data-conflicting events, a and b, whose nodes have no con-
necting path. We call such a race an apparent data race,

denoted (a, b). As shown in Figure 1, not all apparent data
races involve events that could ever have executed con-
currently. We call a data race between events that either
did or could have executed concurrently a feasible data
race. The goal of validation is to conservatively determine
which apparent data races are feasible. Below we re-state
our previous results in terms of feasible prefixes, and then
sharpen them by employing the event-control dependence.

To validate the apparent data races, we use a varia-
tion of the ordering graph we call the temporal ordering
graph, G. Unlike existing methods, which use only one
node per event, G contains two nodes, es and er, for every
event e (corresponding to the start and finish of e)+. This

A

graph detin~s the approximate temporal ordering, ~, as

follows: a % b iff there is a path from af to b,, b % a.
iff there is a path from bf to as, and a +% b otherwise,
Given a temporal ordering graph, we say that a is a prede-
cessor of b in the graph if a path exists from af to b~, a is a
successor of b if a path exists from bf to as, and a and b are “
unordered by the graph if no such paths exist. Our valida-
tion results are based on augmenting G with edges
representing shared-data and event-control dependence

~ Irr practice, constructing two nodes per event is unnecessary, but
we use such a representation here as it eonceptuatly follows our model.
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work on [1 0,19]

remove [10,40]

work on [1OJ9]

work on [20,29]

remove[20,30]

work on [30,39]

work on [10,19] work on [20,291

remove[10,40] . ------.-, L-------- remove[20,30]

work on [10,39] —- —._ .— work on [3039]

(a): G~ (b): Data Race Reports

------------- Tangled (at leastone is feasible)

— - —————- —— Feasible

Figure 3. (a) G~ for example in Figure 1, and (b) validation results from analyzing GD

and analyzing the orderings given by the resulting graph.

To show an apparent data race (a,b) is feasible, it
suffices to guarantee that a feasible program execution

prefix, PP’ = (E’, &, ~), exists such that a &
b. The existence of such a prefix means that the program
could have executed in such a way that a and b executed
concurrently. To determine if such a prefix exists requires
knowledge of the shared-data and event-control depen-
dence exhibited by the observed execution. Without ex-
haustive execution tracing, however, the exact dependence.
are unknown. As previously discussed, % reflects a con-.
servati~e estimate of %, and % ca~ be approximated

from > and (perhaps refinements of) %.

We augment the temporal ordering graph G with
edges reflecting these approximations. We first construct
the graph GD by augmenting G with edges that ensure there

is a path from as to bf whenever a & b. Such a path al-

ready exists when a & b, so edges are only added
between events unordered by G. Figure 3(a) shows an ex-
ample GD (’‘S” and” F” label the start and finish nodes).

In a previous paper[7], we showed how some ap-
parent data races can be validated by analyzing GD. Intui-
tively, the edges added to construct GD reflect the possible
orderings caused by shared-data dependence, similar to
the way in which the edges in G reflect orderings caused by
the execution’s explicit synchronization. For example, if
an apparent data race (a,b) exists, then a and b are unor-
dered by G because the program’s explicit synchronization

did not prevent them from executing concurrently. Similar-
ly, if a and b are also unordered by GD, then no shared-data
dependence could have prevented them from executing
concurrently either, so the data race must be feasible.

Determining if a and b are unordered by GD is com-

plicated when the approximation of % is so conservative
that G~ contains cycles. We therefore classified the ap-
parent data races into those that participate in cycles and
those that do not. An apparent data race (a,b) is tangled if
af and b~ (or bf and as) belong to the same strongly con-
nected component of GD. Each strongly connected com-
ponent defines a set of tangled data races, called a tangle.
The following theorems summarize our previous results.

Theorem 5.1.
An apparent data race (a,b) is feasible if a and b are
unordered by GD (i.e., if no path from af to b~, or
from bf to a,, exists in GD).

Theorem 5.2.
In each tangle defined by G~, at least one of the tan-
gled data races is feasible.

For example, in Figure 3(b), the apparent data race between
the last two work events is not tangled, and is therefore
feasible; the other two data races form a tangle, at least of
which must be feasible.

We extend these results hereby observing that not all
shared-data dependence necessarily cause events to actu-
ally be ordered. We construct the graph GE by removing
those edges from GD representing shared-data dependence
that are not also event-control dependence. Figure 4(a)
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First partition

work on [10,19] work on [20,29] work on [1OJ9] work on [20,29]

remove [10,40] remove[20,30]1 remove[10,40] remove[20,30]

work on [1OJ9] work on [30,3!2] work on [10,39] -. —–—. — work on [30$9]

(a): GE (b): Data Race Reports

Feasible(in first partition)

‘ ------------ Tangled(feasibility unknown)
—.— - — Feasible(not in first partition)

Figure 4. (a) GE for example in Figure 1, and (b) final validation and ordering results

shows GE for the example in Figure 1+.

By analyzing GE, a tangled data race (a,b) (which
cannot be validated by analyzing G~) can sometimes be
validated. In this case, even though shared-data depen-
dence caused a and b to be ordered by G~, these depen-
dence may not have affected the outcome of a and b. The
tangled data race is feasible if we can guarantee that bc)th a
and b would have remain unchanged had these depen-
dence not occurred. If a and b are unordered by GE, we
are guaranteed that all predecessors of a or b would have
remain unchanged, because in this case neither a nor b (nor
any of their successors) event-control any of these prede-
cessors. In addition, if none of the successors of a or b can
event-control a orb, then we are also guaranteed that a and
b themselves would have remained unchanged. The fol-
lowing theorem states this result (proofs of theorems ap-
pear in the appendix).

Theorem 5.3.
An apparent data race (a,b) is feasible if a and b are
unordered by GE, and no successor of a or b in GE
can event-control a or b (i.e., if no path from af to bf,
or from bf to af, exists in GE).

For example, Figure 4(b) shows we can determine that the
apparent race between the’ ‘remove” events is feasible.

t In thisexample,Weassume that the “remove” events can went-
control each other, but the work events cannot (e.g., because the computed
array values are not used to determine control flow).

The above results show how the apparent data mces
can be validated. Validation allows the programmer to be
directed to those data races that are feasible. When
insufficient information exists to determine the feasibility
of a data race, tangles can nonetheless be identified, local-
izing a portion of the execution within which at least one
feasible data race is guaranteed to exist.

5.2. Data Race Ordering

A data race between two events may result in either
of the events executing non-atomically. In programs ex-
pected to be data race free, this non-atomicity may leave
the program’s data in an inconsistent state unanticipated by
the programmer, possibly causing subsequent unexpected
program behavior. Subsequent data races may result only
because of this unexpected behavior. Reporting these data
races can complicate debugging, since they are artifacts of
the previous races and not directly caused by program
bugs. We now present new results showing how to use the
event-control dependence to first order the data races and
then identify groups of races that could not have been ar-
tifacts of others. These groups of “first” data races should
be reported to the programmer.

To determine which data races may have been ar-

tifacts of others, we define an ordering, %, on the ap-
parent data races. The purpose of this ordering is to show
when events in a data race may have been affected by the
possible atomicity failures of events in other races.
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<a,b > % <c,d> H

(a-%c Ab-%c)v(a%d Ab% d).

If <a,b > % <c,d>, then <c,d> could possibly have
been an artifact of <a,b > if either a or b executed non-
atomically. Note that (c,d) cannot have been an artifact
unless both a and b event-control c (or d).

Theorem 5.4.

If (a,b) % (c,d) then (c,d) could not have been an
artifact of (a, b).

Because % is based on approximate information,

% can be symmetric, causing both <a,b > % <c,d >

and <c,d > -% <a,b >. In this case, insufficient informa-
tion is available to determine whether cc,d > may have
been an artifact of <a,b > or vice-versa. We therefore par-
tition the apparent data races into groups such that two data
races belong to the same partition if it is unknown which
may have been an artifact of the other. More specifically,
<a,b > and <c,d > belong to the same partition iff <a, b >

% <c,d > and <c,d> % <a,b >. Sufficient informa-

tion is available to order by % data races belonging to
different partitions. We can thus identify the jirst parti-
tions, which are those containing no data races that may
have been artifacts of races in other partitions. These first
partitions should be reported to the programmer. Figure
4(b) shows the first partition (containing only one race) for
the example. Since partitions in general can contain both
tangled and non-tangled data races, the programmer should
also be provided with a report of which races in each parti-
tion are tangled and which are feasible. The following
theorem shows that each first partition contains at least one
data race that was not an artifact of any kind.

Theorem 5.5.
Each first partition contains at least one feasible data
race that was not an artifact of any other data race.

Partitions are similar to tangles in the sense that both
contain races for which insufficient information is known
to determine whether they are feasible (in the case of tan-
gles) or may have been artifacts of other races (in the case
of partitions). However, it appears that partitions cannot be
identified by simply augmenting the graph, as was done to
identify tangles. Nonetheless, simple algorithms exist to
identify and order the partitions; they are the topic of a fu-
ture paper.

5.3. Related Work

One proposed method for detecting data races does
address the need for lmating first races. Choi and Min[2]
present an on-the-fly approach for executions of programs
intended to be deterministic. Their goal is to locate a set of
data races, called the Race Frontier (containing at most one
race in each process), up to which re-execution of the pro-
gram is guaranteed to be deterministic. The Race Frontier
consists of the first event (in each process) that participates

in a data race, unless such a race is tangled, in which case
the Frontier is chosen so it contains both events of the tan-
gled race that occurred before any other race in the tangle.
To determine which tangled race occurred first, they rely
upon additionat ordering information which is by-product
of the on-the-fly approach; a race check is performed at
each shared-memory access, allowing the order of all
accessesto the same location to be determined,

Their work has similarities to ours, since they locate
first races. However, they assume that an event is poten-
tially affected by any predecessor in the ordering graph.
We use a more refined notion of how events affect each
other (the event-control dependence), allowing us to deter-
mine that some data races are not artifacts even if they did
not temporally occur first (and even if only approximate in-
formation is available). Our results also apply to nondeter-
ministic programs. Finally, we use only the ordering infor-
mation captured by the ordering graph, avoiding the central
bottleneck caused by the on-the-fly approach of serializing
all accessesto the same shared-memory location.

6. Conclusion

Existing methods for data race detection can often re-
port data races that are not directly caused by program
bugs, but are artifacts of other data races. The purpose of
this paper was to present results showing how to validate
and order these data races to conservatively locate those
that are not artifacts, Validation locates feasible data races,
which had the potential of actually occurring, and ordering
locates races that were not caused only as a result other
races. Locating non-artifact data races aids debugging by
directing the programmer to the direct cause of the races.

Our results are proven within a model for reasoning
about data races in which the execution’s actual and poten-
tial behavior is characterized. We showed how to validate
data races by augmenting the ordering graph with addition-
al edges representing the shared-data and event-control
dependence. By analyzing the augmented graph, each
race can either be guaranteed feasible, or when insufficient
information is known to make this determination, tangles
can be identified within which at least one feasible race is
guaranteed to exist. The more precisely that the event-
control de~ndences can be computed, the more data races
can be validated, To order the data races, we showed how
to group them into partitions and locate the jirsr partitions,
each of which is guaranteed to contain at least one data
race that is both feasible and did not occur only as a result
of another race. Future work includes developing efficient
algorithms for actually performing validation and ordering.

Appendix. Proofs of Theorems

Theorem 5.3.
An apparent data race (a,b) is feasible if a and b are

unordered by GE, and a (or any successor of a in GE)
cannot event-control b or vice-versa (i.e., if no path
from af to bf, or from bf to af, exists in GE).
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Proof. Let P=(E, >, -%) and~= (E, %, %) be
the actual and approximate program executions, let Pred be
the set that includes a, b, and all their predecessors in GE,
and let Succ be the set of all successors of a and b. We first
show that no event in WCC can event-control any event in
Pred, and then show that the data race (a,b) is feasible by
constructing a feasible program execution prefix, PP” = (E’,

%, %), containing a and bin which a & b.

First, the absence of a path from af to bf means that
no successor of a can event-control b or any predecessor of
b. Since no path exists from bf to af either, no event in
Succ can event-control any event in Pred.

Next, we show that the apparent data race (a,b) is
feasible. We first introduce G~ .~aufi, the temporal order-
ing graph augmented with edges representing the actual

shared-data dependence, %. GD_Ac~uM is idemtical to
GD, except shared-data dependence edges representing
only the actual dependence: appear (extraneous edges ap-

pear in GD since it reflects %, the conservative estimate).
Even though we do not have enough information to con-
struct GD_Ac~uX, it nonetheless exists, and we use it to

define a feasible prefix, PP’ = (E’, -%, %), as follows.

(1) E’ contains all the events in E, except for events ei-
ther in Succ or event-controlled by events in Succ.

(2) ~ is defined by a linear ordering of the nodes of
the graph G’~.Aauti, constructed by removing all
nodes (and any incident edges) from GD_.Ac~uA~
representing events not in E’.

(3) Vx,y~E’, x%y WX_%y.

We claim that PP’ is a feasible program execution
prefix. PP’ obeys axioms (A1)-(A6) and therefore satisfies
condition (Pi) (see Section 4). Axioms (A 1) and (A2) are

,
satisfied since % is defined by a linear ordering of an,
acyclic graph. Axiom (A3) is satisfied because if x % y

then x % y, implying that a path from x, to yf exists in
,

GD-Amuti. Since -% is con~tructed from GD-Ac~ufi,

such a path also implies that y > x. Axioms (A4)-(A6)
are satisfied since some linear ordering of G obeys these.
axioms (see properties (1) and (2) in Section 3.2), and %.
= % (so the successors in such a linear ordering of any
event excluded from G are also excluded). Condition (P2)
is clearly satisfied by the definition of E’. Finally, (P3) is
satisfied since all events that can be event-controlled by an
event excluded from E’ are also excluded.

To show that the apparent data race (a,b) is fieasible,
,

we must show that E’ contains a and b and that a #+
b. Because only the events event-controlled by those in
SUCC are excluded from E’ (which, as already shown, in-
cludes no event in Pred), a and b remain in E’. Since u and
b are the last events in their processes appearing, in E’,
there is a linear ordering of the nodes of G‘~ -Ac~f/ti in

which as appears before bf and b~ appears before af (since
a and b are not synchronization events, no synchronization
prevents this ordering). Such a linear ordering defines a

,
% relation such that a &+ b. Therefore, since a

feasible program execution prefix, PP’ = (E’, ~, >),

exists in which a &+ b, the data race between a and b
is feasible. ■

Theorem 5.4.

If (a,b) % (c,d) then (c,d) could not have been an
artifact of (a, b).

Proof The apparent data race (c,d) is an artifact only if a
orb executed non-atomically and this non-atomicity affect-
ed c or d. To prove this theorem, we must reason about the
portions of a and b thatexecuted non-atomically, Since in
our model computation events can be defined to comprise
any amount of computation performed in between syn-
chronization operations, we can view a and b as comprising
lower-level events[7]. Let a.t.~ and bafO~be the initial por-
tions of a and b that executed atomically, and let aMfO~ and
b~,0~ be the remainder. Executing atomically means that
each variable read in aafO~ returned the value of the last
write in aa,O~ to the variable (or the initial value at the start
of a.tO~ if no such write occurred). The remainder of a ex-
hibited non-atomicity because b wrote a shared variable
read by aWtO~. We must show that a feasible program exe-
cution prefix exists in which amto~ and bmt.~ are excluded
but the apparent data race (c,d) remains. The existence of
such a feasible prefix shows that, no matter how aWtO~ or
bnatom might have changed had a or b executed atomically,
the race (c,d) would have remained unaffected. To prove
the prefix exists, we show that neither aWtO~nor b..tO~ can

event-control either c or d. Since % is transitive, no suc-
cessor in GE of a or b can event-control c or d either, which
suffices to show that the prefix exists (see the construction
of PP’ in the proof of Theorem 5.3).

By definition, (a2b) % (c2d) implies tha~ (a -%A
cAa%d)v(a-%c Ab% d)v(b%c Aa.
-% d)v (}% cAb-% d). Weshow thata%

c ~ bn.fo~ % c; analogous arguments also apply to d and
a..fO~. Assure: that c was affected by the non-atomicity of

b; i.e., bn~,O~ % c. This non-atomicity was caused by a
writing a shared variable that was read by bmfOm. By con-
d~tion (1) of the definition of event-control dependence, a

-% c, which is a contradiction. Therefore, neither aM*O~
nor bn.to~ can event-control c or d. ■

Lemma 5.5.

If <a, b > is an infeasible apparent data race, then
there exists another apparent data race, <c,d >, such

that <c,d> % <a,b >.

Proof. First, let GE_AcTuti be the temporal ordering graph
augmented with event-control dependence edges represent-
ing actual event-control dependence; GE–AHUW is similar
to GD_Ac~uti (see the proof of Theorem 5.3) in that it only
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contains edges representing the actual dependence. If
<a,b> is infeasible, then no feasible program execution
prefix exists in which a and b can execute concurrently.
The non-existence of such a prefix can occur only if suc-
cessors of a in GE-ACTUWevent-control b or predecessors
of b, or vice-versa. Assume the former. GE-AcTuti must
therefore contain apath from af tobf. We show that this
path implies another apparent data race exists.

The path from ar to bf implies that a % XO % b

for some event XO. Since XO % b, there exists a chain of

events, Xo,xl, “”” , + (x.=b), such that-x. (% u

L) XI’(+ u %) “ ““ (% u +) xm. Sincea

@-+ b, not all events in this chain can be ordered by

-%, so xi % Xi+l for some i. An apparent data race
therefore exists between xi and xi+l. By condition (1) of

the definition of %, xi % b for 1< i < n. Since xi %.
b and xi+l % b (and since % ~ -%), we have

<xi,xi+l> -% <a, b>. ■

Theorem 5.5.

Each first partition contains at least one feasible data
race that was not an artifact of any other data race.

Proof To prove this theorem, we must reason about the in-
dividual shared-memory accesses performed by the pro-

gram execution P = (E, >, %). Since in our model
computation events can be defined to comprise any amount
of computation performed in between synchronization

operations, we can view P = @, %, %) as a higher-

level view of a program execution, P~ = (Es, %, %),
in which each computation event is defined to comprise at
most one shared-memory access, in the sense that each
event e ~ E can be thought of as containing a set of lower-
Ievel events from Es [7]. The single-access view Ps con-
tains information regarding the relative order in which indi-
vidual shared-memory accesses were performed. Even
though Ps is unknown (and cannot be uniquely determined
from P), it is nonetheless a valid program execution (just
describing more detail than P), and the various relations
and theorems defined on the events in E are also defined on
the events in E,s. Since each computation event in Ps

represents at most one shared-memory access, the % re-
lation among the (single-access) apparent data races in Es

is a partial order. Consider any first partition of the ap-
parent data races in P, and the corresponding single-access
races in Ps. Since the single-access races are partially or-

dered by %, at least one of them, <a$,b$>, appears first
in the ordering. By Theorem 5.4 and Lemma 5.5, these
first races are both feasible and not artifacts of any other
race. The events a$ and b$ are the first events contained in
a and b that participate in a data race (or else they would

not appear first in the % ordering). The higher-level
events, a and b, thus contain a feasible data race that is not
an artifact of any other race. ■
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