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Abstract. Program authorship attribution—identifying a programmer
based on stylistic characteristics of code—has practical implications for
detecting software theft, digital forensics, and malware analysis. Author-
ship attribution is challenging in these domains where usually only bi-
nary code is available; existing source code-based approaches to attri-
bution have left unclear whether and to what extent programmer style
survives the compilation process. Casting authorship attribution as a
machine learning problem, we present a novel program representation
and techniques that automatically detect the stylistic features of binary
code. We apply these techniques to two attribution problems: identifying
the precise author of a program, and finding stylistic similarities between
programs by unknown authors. Our experiments provide strong evidence
that programmer style is preserved in program binaries.

1 Introduction

Program authorship attribution has immediate implications for the security com-
munity, particularly in its potential to significantly impact applications like pla-
giarism detection [17] and digital forensics [13]. The central thesis of authorship
attribution is that authors imbue their works with an individual style; while at-
tribution research has historically focused on literary documents [7], computer
programs are no less the product of a creative process, one in which opportunities
for stylistic expression abound. Previous studies of program authorship attribu-
tion have been limited to source code [6, 10], and rely on surface characteristics
like spacing and variable naming, both of which reflect the essentially textual
nature of program source. In many domains, such as analysis of commercial soft-
ware or malware, source code is usually unavailable. Program binaries, however,
retain none of the surface characteristics used in source code attribution; such
details are stripped away in the compilation process. Adapting program author-
ship attribution to the binary domain—to identify known malware authors or
detect new ones, e.g., or to discover theft of commercial software—requires new
ways to recognize the style of individual authors.

We have developed novel authorship attribution techniques that automati-
cally discover the stylistic characteristics of binary code. We adopt a machine
learning approach, defining a large number of simple candidate features and using
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training data to automatically discover which features are indicative of program-
mer style. This approach avoids the problem of choosing good stylistic features
a priori, which has been the focus of source code attribution [18], and which is
the primary challenge for attribution in the binary domain. We apply our tech-
niques to two related binary code authorship problems: identifying the author
of a program out of a set of candidates, and grouping programs by stylistic simi-
larity, respectively developing classification and clustering models that build on
stylistic features of binary code.

In this paper, we explore various aspects of these previously unstudied prob-
lems, examining trade-offs in different program representations and several at-
tribution scenarios. This study demonstrates that programmer style is reflected
in binary code, and lays the groundwork for authorship attribution applications
in a variety of domains. Our paper makes the following contributions:

– We introduce the problem of binary code authorship attribution and de-
fine a program representation in terms of stylistic features that differentiate
different programmers; we provide an algorithm for automatically selecting
stylistic features using a set of simple feature templates that cover a broad
range of program details.

– We formulate two program authorship tasks: (1) discriminating between
programs written by different authors (authorship identification), and (2)
grouping together stylistically similar programs (authorship clustering). We
use information derived from the authorship identification task to improve
the performance of authorship clustering.

– We evaluate binary program authorship attribution on several large sets of
programs from the Google Code Jam programming competition1 and from
student projects from an undergraduate operating systems course at the
University of Wisconsin. Our results show that programmer style is preserved
through the compilation process; a classifier trained on stylistic features can
discriminate among programs written by ten different authors with 81%
accuracy.

1.1 Overview

Our authorship attribution techniques are based on the hypothesis that pro-
grammer style is preserved throughout the compilation process, as suggested
by the differences depicted in Figure 1 between implementations of the same
functionality by two different programmers. Evaluating this hypothesis requires
solving two problems: (1) choosing a program representation broad enough to
capture any residual stylistic characteristics, and (2) selecting those representa-
tional elements that actually reflect programmer style. The second problem is
particularly important for authorship clustering; author identity is just one prop-
erty of many for a given program, and if the representation reflects more than

1 http://code.google.com/codejam/
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(a) (b)

Fig. 1. The control flow graphs for two implementations of the same program by differ-
ent authors. Program (a) is implemented as many small subroutines and makes use of
several C++ STL classes; program (b) is almost entirely implemented as a monolithic
C function.

just stylistic characteristics, a clustering algorithm may group programs accord-
ing to some other property, such as program functionality. Rather than design
complicated features to capture specific facets of programmer style, we define a
large number of simple features that capture local and global code details at the
instruction and control flow level. We adopt a machine learning approach to the
problem, letting the data determine the features which best capture authorship;
this data-driven policy informs our high-level workflow:

1. We collect several large corpora of programs with known authorship; these
programs provide a ground truth, which is used to discover the stylistically
important features of binary code, as well as reference points on which to
evaluate authorship attribution techniques.

2. Using existing software for recursive traversal parsing [14], we extract a con-
trol flow graph and the instruction sequence for each binary, which we use
as a basis for the features we describe in the following section.

3. A subset of the features that correlate with programmer style is selected. We
compute the mutual information between features and programmer identity
on a training set of labeled programs, ranking features according to their
correlation with particular programmers. This approach is heuristic and does
not take into consideration the interaction between multiple features; the
learning algorithms we apply to this feature representation are responsible
for refining the stylistic importance of these features.

4. We use the training set of labeled programs to build an authorship classifier
based on support vector machines [3]. The classifier chooses the most likely
author of a program based on its stylistic feature representation.

5. Classification is not possible for collections of programs with no training
data; instead, we use the k-means clustering algorithm [1] to group pro-
grams together by stylistic similarity. To avoid clustering according to the
wrong property (e.g. program functionality), we transfer knowledge between
a supervised domain (a set of programs with different authors) to this unsu-
pervised domain: we use the large margin nearest neighbors algorithm [20] to
learn a distance metric over a labeled set of programs, then used this metric
to transform the unlabeled data prior to clustering.
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In the following sections, we describe our binary code representation (2) and
formally state the models and procedures we use for author classification (3) and
clustering (4). We evaluate our techniques over several large program data sets
(5), exploring several trade-offs inherent in binary authorship attribution. We
conclude with a discussion of issues raised by this study and future directions
for attribution research (6) and a review of the related literature (7).

2 Binary Code Representation

We base our binary code representation on instruction-level and structural char-
acteristics of programs. The first step in obtaining this representation is to parse
the program binary. We use the ParseAPI [14] library to extract instructions
and build interprocedural control flow graphs from binaries, where a CFG is a
directed graph G = (V,E, τ) defined by:

– the basic block nodes V comprising the executable code,
– the edges E ⊆ V × V representing control flow, and
– a labeling function τ : E → T corresponding to the type of the edge.

The control flow graph and underlying machine code form the basis for feature
templates: patterns that instantiate into many concrete features of a particular
binary. We first describe two feature templates, idioms and graphlets, used in our
previous work on toolchain provenance [16], and then introduce new templates
that capture additional properties of the binary. We stress that these features
are not designed to capture any specific notion of programmer style, but rather
to express many different characteristics of binary code; we use machine learning
algorithms to pick out the stylistically significant features.

2.1 Idioms

The idiom feature template captures low-level details of the instruction sequence
underlying a program. Idioms are short sequences of instructions, possibly with
wildcards, which we have previously used to recognize compiler-specific code
patterns; for example, the idiom

u1 = (push ebp | * | mov esp,ebp)

describes a stack frame set-up operation. Idioms are an abstraction of the true
instruction sequence, insofar as instruction details such as immediate operands
and memory addresses are elided. The idiom template we use for authorship
attribution describes all possible sequences of 1–3 instructions, and is intended
to capture stylistic characteristics that are reflected in the order of instructions
output by the compiler.

2.2 Graphlets

While idioms capture instruction-level details, graphlet features represent details
of program structure. Graphlets are three-node subgraphs of the control flow
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cpuid
jmp L2
...

L1:
cmp ecx,edx
jle L1

L2:
mov eax, 0x5
sysenter
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τ3

τ2
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Fig. 2. A code example and a corresponding graphlet. The node colors σ are determined
by the instructions in each block (for example, both of the blocks represented by ( )
nodes contain system instructions). Edge labels τ indicate control flow edge type (for
example, τ3 represents the jle conditional branch and τ1 is its fall-through edge).

graph that reflect the local structure of the program. A graphlet feature tem-
plate also defines a coloring function σ : V → C, where C is the set of possible
colors for a particular graphlet template. For example, the instruction summary
graphlets we use for toolchain provenance recovery (and which we adopt here)
color nodes according the various classes of instructions occurring in a basic
block, as illustrated in Figure 2. We refer the reader to our previous work for
details of the instruction summary coloring function and algorithms for efficient
graphlet matching [16].

In the current study, graphlet features are a bridge between the instruction-
level representation (using colors based on instruction classes) and the program
structure (the local control flow); however, these features may miss stylistic
characteristics that are visible only in high-level program structure. We could
attempt to capture such characteristics by defining graphlet-like features using
larger subgraphs, but there is an essential tension between the expressiveness of
such features and the computational complexity of the subgraph matching prob-
lem. Instead, we introduce two additional graphlet-based features, supergraphlets
and call graphlets, that are defined over transformations of the original control
flow graph.

2.3 Supergraphlets

Supergraphlets are analogous to instruction summary graphlets defined over
a collapsed control flow graph, as illustrated in Figure 3. The graph collapse
operation merges each node in the graph with a random neighbor. The edge set
and color of the collapsed node represent the union of the edge sets and colors of
the original nodes. A three-node graphlet instantiated from the collapsed graph
is thus an approximate representation of six nodes in the original CFG. This
process can be repeated recursively to obtain the desired long-range structural
coverage. Note that because random neighbors are selected, we do not obtain
all possible supergraphlets of the original graph; in keeping with our general
approach to code representation, we rely on the vast number of features to
capture any authorship characteristics in the program. Selecting neighbors to
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Fig. 3. Graphlet-based features of transformations of the control flow graph. Super-
graphlets (a) represent control flow relationships in a graph where the neighbors of the
middle three nodes have been collapsed ; the color of one collapsed node ( ) reflects the
union of two nodes with different colors. Call graphlets (b) are defined over a graph
reduced to blocks containing call instructions.

collapse at random avoids systematically biasing the collapse operation towards
particular control flow structure.

2.4 Call Graphlets

Recursively collapsing the control flow graph and extracting supergraphlet fea-
tures only loosely approximates arbitrarily long-range program structure. Call
graphlets are designed to directly capture both interprocedural control flow and
a program’s interaction with external libraries. Call graphlets are defined over a
new graph Gc containing only those nodes that contain call instructions, with
edges Ec = {(v, v′) : v  v′}, where  indicates the existence of a path
in the original control flow graph. Call graphlets admit the coloring function
σc : V c → {L, local}, where L is a predefined set of external library functions
and local is a special value meaning any internal function within the program
binary. Internal functions receive a single, generic color because, unlike calls to
external libraries, they are not comparable across different programs. While L
could be restricted to a set of specific library functions, in practice we let it
extend to the entire set of library routines called by programs in our corpus and
rely on feature selection to eliminate irrelevant call graphlet features.

2.5 N-grams and External Interaction

To cast as wide a net as possible in our search for good authorship features, we
define several more features that are relaxations of those described above. Byte
n-grams are short strings of three or four bytes, and can be thought of as a relax-
ation of the idiom instruction abstractions: using the raw bytes, n-grams capture
specific instruction opcodes and immediate and memory operands. Library call
features simply count the number of invocations of the set of L external library
functions used in the call graphlet features, eliminating structural characteristics.

Table 1 summarizes our binary code feature templates and the number of each
instantiated in a typical corpus. Our algorithms automatically select a subset of
these features based on the training data, as we describe in the following section.
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Code Property

Feature # Instruction Control flow External

N-grams 391,056 X
Idioms 54,705 X
Graphlets 37,358 X X
Supergraphlets 117,997 X X
Call graphlets 8,062 X X
Library calls 152 X

Table 1. The number of concrete features instantiated by each feature template for
a representative corpus of 1,747 C and C++ binaries comprising 27MB of code. Each
template captures one or more instruction-level, control-flow, or external library inter-
action properties of the code.

3 Author Classification

In author classification, we assume that there exists a known set of program-
mers of interest, and that training data are available in the form of samples of
programs written by each programmer. We model program binaries as a collec-
tion of the features described in the previous section in order to discriminate
between programs written by different authors. To be precise, given a known
set of program authors Y and a set of M training programs P1, · · · ,PM with
author labels y1, · · · , yM , the task of the classifier is to learn a decision function
that assigns a label y ∈ Y to a new program, indicating the identity of the most
likely author.

A program Pm is represented by a integral-valued feature vector xm describ-
ing the features that occur in the program. Feature vectors summarize a set of
feature functions f ∈ Φ that indicate the presence of that feature evaluated over
a feature-specific domain in the binary. For example, the function

ffprintf(Pm, cj) =

{
1 if call site cj in Pm calls fprintf

0 otherwise

tests for a particular library call and is defined over the domain of call sites in
the program; idiom feature functions

fι(Pm, aj) =

{
1 if idiom ι exists at instruction offset aj in Pm
0 otherwise

are defined over the domain of instruction offsets in the binary. The feature
vector xm for a program counts up the |Φ| features

xm =


∑
Dom(f1) f1(Pm, ·)∑
Dom(f2) f2(Pm, ·)

· · ·∑
Dom(fn) f|Φ|(Pm, ·)

 .
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evaluated at every point in the domain Dom(fi) of the particular feature.
The number of feature functions in Φ is quite large; using feature vectors

that summarize all possible features would increase both training cost and the
risk that the learned parameters would overfit the data—that is, that the re-
sulting classifier would fail to generalize to new programs. Because our feature
templates are not designed to highlight particular stylistic characteristics, we
expect that many features will be of little value for authorship attribution. We
therefore perform a simple form of feature selection, ranking features by the mu-
tual information between the feature and the true author label. More precisely,
we compute

I(Φ,Y) =
∑
f∈Φ

∑
y∈Y

p(f, y) log

(
p(f, y)

p(f)p(y)

)
on the training set, where p(f) and p(y) are the empirical expectations of fea-
tures and author labels, respectively, and p(f, y) is the co-occurrence of these
variables. Mutual information measures the decrease in uncertainty about one
variable as a function of the other; features that are positively correlated with
only a single programmer will score high under this criterion, while features that
are distributed uniformly over programs by all authors will have low mutual in-
formation. The number of features to retain is chosen through cross-validation:
we split the training data into ten folds, reserving one fold as a tuning set, then
train a classifier on the remaining folds and evaluate its accuracy on the tuning
set. By performing cross-validation on data represented by varying numbers of
the features ranked highest by mutual information, we automatically select a
subset of features that produce good authorship classifiers.

There are many different models that can be used to classify data such as
ours. We use linear support vector machines (SVMs) [3], which scale well with
high-dimensional data and have shown good performance in our experience with
other classification tasks for binary programs. Two-class SVMs are usually for-
mulated with labels y ∈ {−1,+1}, and compute a weight vector w that solves
the following optimization problem:

min
w,ξ,b

1

2
‖ w ‖2 + C

n∑
i

ξi s.t. yi(w
Tx− b) ≥ 1− ξi, ξi ≥ 0.

Such binary SVMs can be easily extended to the case of K classes by training K
different binary classifiers with weight vectors w1, · · · ,wK ; the classifier assigns
a new example the label k ∈ [1,K] that leads to the largest margin, i.e.

argmax
k

wT
k x.

We use the LIBLINEAR support vector machine implementation [4] for au-
thorship classification. We scale the feature vectors to the interval [0, 1]; scaling
prevents frequently occurring features from drowning the contribution of rarer
ones, while preserving the sparsity of the feature vectors. In our evaluation sec-
tion, we examine the contribution of each feature template to overall classifier
performance.
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Fig. 4. The hazards of unsupervised clustering. Assuming that the data belong to true
classes y1 ( ) and y2 ( ) and two clusters are formed, the correct cluster partition (a)
is no more likely than the alternative (b). Using the distance metric ( 1 0

0 0 ) is equivalent
to transforming the data as in (c), where the clustering decision is unambiguous.

4 Author Clustering

Clustering is an unsupervised learning technique that groups data by similarity.
For authorship attribution, clustering corresponds to the task of finding stylisti-
cally similar programs without assuming particular authors are present. In many
ways, clustering is harder than classification: without training data, it is gener-
ally not possible to tell whether particular features are more or less useful for
relating the data, which leads to the possibility that clustering algorithms will
arrive at clusters that reflect a different property than what was desired. This
issue is particularly challenging for authorship clustering, where we have a large
number of features and no assurance that they reflect only programmer style
and not, for example, program functionality.

One way to encourage the formation of authorship clusters is to transform the
feature space such that stylistically similar programs are closer to one another;
equivalently, we can define a d× d distance metric A such that the Mahalanobis
distance [12] between two feature vectors xa,xb in Rd is

DA(xa,xb) =
√

(xa − xb)TA(xa − xb).

If a particular metric can be found such that stylistically similar programs are
close under that metric, then clustering techniques will do better at forming
authorship clusters. Figure 4 illustrates this solution with a simple example.

We observe that stylistic features, if they are general, can be learned from
any set of authors; although the programs to be clustered may have no train-
ing data, we can derive a metric from a different collection of programs with
author labels. More precisely, consider two sets of programs {P1, · · · ,P`} and
{P`+1, · · · ,P`+u}, with known author labels {y1, · · · , y`}; the authors for the
unlabeled programs may or may not coincide with those of the labeled programs.
Both sets of programs are represented using the feature vectors we describe in
the previous section. We define a two part algorithm for transferring stylistic
knowledge from the labeled data to the unlabeled data:
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1. Learn a metric A over ` labeled programs P1, · · · ,P` such that the distance
in the feature space between two programs with the same author is always
less than the distance between two programs with different authors.

2. Cluster u unlabeled programs P`+1, · · · ,P`+u using the distance function
DA.

We use the large margin nearest neighbors (LMNN) algorithm [20] to learn the
style metric. LMNN learns the metric by optimizing the margin for nearby pro-
grams in the feature space, making it complementary to the k-means algorithm
we use for clustering.

5 Evaluation

We investigate several aspects of authorship attribution in our evaluation: (1)
the extent to which our techniques recover author style in program binaries, (2)
the trade-offs involved in imprecise classification (i.e., tolerating some false posi-
tives), and (3) whether and how much stylistic clustering of one set of programs
can be improved by using information derived from another, unrelated set. Our
evaluation shows that:

– The binary code features we introduce effectively capture programmer style.
Our classifier achieves accuracies of 81% for ten distinct authors (10% ac-
curacy is expected for labels selected by random chance) and 51% when
discriminating among almost 200 authors (0.5% for random chance). These
results show that a strong author style signal survives the compilation pro-
cess.

– The authorship classifier offers practical attribution with good accuracy, if
a few false positives can be tolerated. The correct author is among the top
five 95% of the time for a data set of 20 authors, and 81% of the time when
100 authors are represented.

– Stylistic knowledge derived from supervised authorship classification can be
transferred to authorship clustering, improving cluster quality. The cluster
assignments improve by 20% when clustering uses a stylistic metric.

5.1 Methodology

We obtain training and evaluation programs from the Google Code Jam pro-
gramming competition and from an undergraduate operating systems course at
the University of Wisconsin (CS537). These data sets have author labels for each
program, which can be challenging to obtain for other data sources like open
source projects. They are also parallel corpora: each data set contains imple-
mentations by different authors of a small number of program types representing
particular functionality (i.e., contest solutions for Code Jam, and programming
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Corpus Authors Program Types Binaries Prog./Author Dist.

4 16

Code Jam 2010 191 23 1,747

Code Jam 2009 93 22 834

CS537 Fall 2009 32 7 203

Table 2. Corpora used for model training and evaluation. Each binary is the imple-
mentation by a particular author of one of the program types for a given corpus.

projects for CS537). Parallel corpora allow us to control for confounding vari-
ables like program functionality during evaluation. Table 2 summarizes our data
sets.

To create a data representation suitable for learning and evaluation, we pro-
cess the binaries in each corpus with the ParseAPI parsing library to obtain con-
trol flow graphs and the underlying instructions. We eliminate statically linked
library functions and other known binary code snippets that are unrelated to the
program author.2 We then exhaustively enumerate all of the features described
in Section 2, using the occurrence of these features along with the known au-
thorship labels to compute the mutual information for each feature. We select
a subset of features using the cross-validation procedure described in Section 3.
We use the top 1,900 features for modeling and evaluation of the Code Jam data;
1,700 features are used for CS537.

Our evaluation methodology involves both standard ten-fold cross-validation
and random subset testing, depending on the experiment:

– For classification of the entire data set (e.g. 191-way classification for the
Code Jam 2010 data), we use ten-fold cross-validation.

– When evaluating how classification accuracy behaves as a function of the
number of authors represented in the data, we randomly draw a subset Ys ⊆
Y of authors and use their programs in the test. We cannot test all possible
combinations of |Ys| authors; instead, we repeat the test 20 times and expect
relatively high variance for small sets of authors. We approach the clustering
evaluation similarly.

5.2 Classification

We evaluate authorship classification to determine (1) how much each feature
template contributes to attribution, and (2) how accurately the identity of a
particular author can be inferred using a model based on our feature templates.
For the former question, our experience led us to expect that simple feature
templates that instantiate large numbers of features (e.g., idioms) would be more
useful in authorship modeling. For the latter question, we hypothesized that

2 Our data preparation procedure is fully described in our supplementary materials
at http://pages.cs.wisc.edu/~nater/esorics-supp/.
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Fig. 5. Evaluation of authorship classification on the Code Jam 2010 data set. In
Figure (a) we show cross-validation accuracy over all 191 authors for classifiers trained
using individual feature templates, as well as the combined classifier. Figure (b) depicts
accuracy using the best combination of features as the true number of authors in the
data set is increased for both the exact ( ) and relaxed ( ) evaluations.

discriminating among authors would become increasingly difficult with larger
author populations.

Figure 5a depicts the cross-validation accuracy of models trained with vary-
ing numbers of the best features (by mutual information) derived from each
template. Our intuition is borne out by these results: the individual contribu-
tions of simple idiom and n-gram features exceed those of the other templates.
The best classifier uses a combination of all of the feature templates, achieving
51% accuracy on the full Code Jam data set.

Experiments confirm our hypothesis that author classification becomes harder
for larger populations. Figure 5b depicts classifier performance as a function of
the number of authors included in a subset of the data; classifier accuracy de-
creases as the author population size grows. In cases where precise author iden-
tification is infeasible, predicting a small set of likely authors can help to focus
further investigation and analysis. In Figure 5b, this relaxed accuracy measure
is plotted for a classifier that returns the top five most likely authors.

Table 3 lists exact and relaxed cross-validation accuracy for authorship classi-
fication on each corpus. The CS537 data present a significantly harder challenge

Code Jam 2009 Code Jam 2010 CS537
Acc. spread Acc. spread Acc. spread

0 1 0 1 0 1

Exact .778 .768 .384
Top 5 .947 .937 .843

Table 3. Classification results averaged over 20 randomly selected subsets of 20 au-
thors.
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Fig. 6. Clustering with metric learning. The improvement over the original clustering
(AMImetric −AMIorig.)/AMIorig. is illustrated as a function of the number of training
authors (a) and the true number of testing authors (b).

for authorship attribution, due to two factors. First, there are fewer programs
per author (4–7) than in the other data sets (8–16), making this a fundamen-
tally harder learning problem. More importantly, the programs in this data set
do not reflect only the work of individual programmers; students in the course
were often provided with substantial amounts of partially implemented skeleton
code, and also worked closely with the course professor follow an often rigid
specification at the sub-module level. Despite these challenges, our attribution
techniques recover significant stylistic characteristics in this data set.

5.3 Clustering

We evaluated authorship clustering to determine (1) how well the clusters reflect
the ground truth program authorship, and (2) whether stylistic characteristics
learned from one set of authors can improve the clustering of programs written by
different authors (i.e., how well stylistic knowledge generalizes). Unlike classifiers,
clustering algorithms have no notion of candidate labels, so cluster assignments
are evaluated against the ground truth authors with measures based on cluster
agreement : whether (a) programs by the same author are assigned to the same
cluster, and (b) programs by different authors are assigned to different clusters.
We computed several common measures of cluster agreement, including Adjusted
Mutual Information (AMI), Normalized Mutual Information (NMI), and the
Adjusted Rand Index (ARI); we prefer AMI because it is stable across different
numbers of clusters, easing comparison of different data sets [19]. All of the
measures we use take values in the range [0, 1], where higher scores indicate
better cluster agreement.

We performed several experiments to evaluate authorship clustering:

1. We randomly selected N authors from the Code Jam 2010 corpus and used
LMNN to learn a distance metric over the feature space. We then randomly
selected 30 different authors and clustered their programs using k-means
with and without transforming the data with the learned metric. Since there
are multiple sources of randomness in this experiment (both in selecting the
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data sets and in the k-means clustering algorithm), we repeated the experi-
ment 20 times and computed the average AMI. Figure 6a depicts clustering
improvement over the un-transformed data as a function of N . As expected,
using more training authors to compute a metric leads a greater improve-
ment. We conclude that stylistic information derived from one set of authors
can be transferred to improve clustering of programs written by a different
set of authors.

2. We performed a similar set of experiments with the number of authors used
to compute the metric fixed at 30 to evaluate whether the clustering im-
provement is affected by the number of test set authors. Figure 6b shows
that that the improvement due to incorporation of the stylistic metric is
nearly invariant for a range of test set sizes.

Table 4 compares the results of clustering 10 authors’ programs with and
without metric transformation. The cluster quality measures we compute are
highly variable, due to the random nature of training and test set selection and
the inherent randomness in the clustering algorithm; nonetheless, the improve-
ment offered by the learned metric is significant at a 95% confidence level for all
measures.

ami ami spread nmi spread ari spread

0 1 0 1 0 1

no transformation .510 .637 .406
learned metric .606 .723 .480

Table 4. Cluster evaluation measures for 10 test authors, using metrics learned from
30 different authors.

6 Discussion

Our evaluation shows that programmer style is preserved in program binaries,
and can be recovered using techniques that automatically select stylistic code
features with which to model program authorship. The SVM-based classifier we
introduce can identify the correct author out of tens of candidates with good
accuracy, though discriminating among a large number of authors is likely to
be more limited. Nonetheless, we argue that our techniques offer a practical
solution to program author identification: when discriminating among programs
written by 100 authors, the correct author is ranked among the top five most
likely 81% of the time, reducing the number of candidates by 95%. Moreover,
our evaluation of unsupervised author clustering using stylistic metrics derived
from the classification problem shows that programs can be effectively clustered
by programmer style even when no training data are available for the authors
in question.

The conclusions we draw are subject to limitations inherent in empirical
studies. In particular, threats to internal validity apply to our claim that our
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techniques isolate programmer style, rather than some other program property
like program functionality. We addressed this issue by using a parallel corpus,
where each author implemented the same programs; the fact that our authorship
classifier is able to learn to recognize an author’s programs despite differing func-
tionality mitigate this threat. Our domain transfer results for authorship clus-
tering provide further evidence that our techniques recover programmer style.

In this study, we assume that a program has a single author. This assumption
may be violated in many scenarios, such as when programmers collaborate or
when programs are assembled from commodity components. The binary code
representation we use is not inherently restricted to representing the program as
a single unity; our features could just as easily describe individual compilation
units, functions, or arbitrary sequences of binary code, for example using the
sequential model we have previously used to recover program provenance [15, 16].
The extension of authorship attribution to multiple authors and a sub-program
model is an open question, and is the focus of our ongoing research.

7 Related Work

Previous work on program authorship attribution has focused almost exclusively
on source code-level attribution. The use of code metrics like variable naming
conventions, comment style, and program organization has been proposed several
times [5, 18]; Krsul and Spafford [10] show the feasibility of this approach in
a small pilot study. More recently, Hayes and Offutt [6] found further evidence
that programmers can be distinguished through aggregate textual characteristics
like average use of particular operators, placement of semicolons, and comment
length.

Structural malware classification and behavioral clustering share many chal-
lenges with authorship attribution, as all three techniques involve extracting
salient characteristics from binary code. The instruction-level features we use
are similar to those used in malware classification [2, 8, 9], particularly n-grams;
our idiom features differ from features based on instruction sequences through
the use of wildcards and the abstraction of low-level details like the opcode and
immediate values The instruction summary colors we use in the graphlet fea-
tures are inspired by a technique to identify polymorphic malware variants [11].
Although some of the binary code representations we use are similar to exist-
ing work, our techniques are largely orthogonal: malware classification seeks to
extract characteristics specific to a program or a family of programs with re-
lated behavior, while our authorship attribution techniques must discover more
general properties of author style.

Authorship falls into the broad category of program provenance: those de-
tails that characterize the process through which the program was produced.
Our previous investigation of toolchain provenance [15, 16] heavily informs this
work, providing a general framework for extracting the characteristics of pro-
gram binaries as well as providing the base representations on which we build
more sophisticated authorship features. The current paper investigates a higher
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level of the provenance hierarchy, moving beyond those program properties that
are attributable to the production toolchain.

8 Conclusion

We have presented techniques to extract stylistic characteristics from program
binaries to perform authorship attribution and to cluster programs according
to programmer style. Our authorship attribution techniques identify the correct
author out of a set of 20 candidates with 77% accuracy, and rank the correct
author among the top five 94% of the time. These techniques enable analysts to
determine, for example, whether a new program sample is likely to have been
written by a person of interest, or to test for the existence of multiple, stylisiti-
cally dissimilar authors in a collection of programs. Framing authorship attribu-
tion and clustering as machine learning problems, we designed instruction- and
structure-based representations of binary code that automatically capture binary
code details that reflect programmer style. We developed program clustering
techniques that transfer stylistic knowledge across different domains, assigning
new programs to clusters based on stylistic similarity with no training data. The
results of our evaluation strongly support our claim that programmer style is
preserved through the compilation process, and can be recovered from charac-
teristics of the code in program binaries. Our approach to discovering stylistic
features builds on our previous research into recovering toolchain provenance,
and is part of a general framework for information retrieval in program binaries,
with applications in security and software forensics.
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