
Distributed Upcalls: A Mechanism for Layering Asynchronous Abstractions

David L. Cohrs Barton P . Miller Lisa A. Call

Computer Sciences Department
University of Wisconsin - Madison

1210 W. Dayton Street
Madison, Wisconsin 53706

ABSTRACT
It is common to use servers to provide access to facilities in a distri-
buted system and to use remote procedure call semantics to access
these servers. Procedure calls provide a synchronous interface to
call downward through successive layers of abstraction, and remote
procedure calls allow the layers to reside in different address spaces.
Servers, however, often need the ability to initiate asynchronous and
independent actions. Examples of this asynchrony are when a net-
work server needs to signal to an upper layer in a protocol, or when
a window manager server needs to respond to user input.

Upcalls are a facility that allows a lower level of abstraction to pass
information to a higher level of abstract in a clean way. We
describe a facility for distributed upcalls that allows upcalls to cross
address space boundaries. The complement of remote procedure
calls for handling synchronous Server requests and distributed up-
calls for handling asynchronous server activities provide a powerful
tool for structuring servers. These facilities, together with the abili-
ty to dynamically load modules into a server, allow the user to arbi-
trarily place abstractions in the server or in the client.

Distributed Upcalls have been built into a server Structuring system
called CLAM, which is currently being used to support an extensible
window management system. The CLAM system, including distri-
buted upcalls, remote procedure call extensions to C++, dynamic
loading, and basic window classes, is currently running under
4.3BSD UNIX on Microvax workstations.

1. Introduction
The server model is a common structure for providing access

to facilities in a distributed system. Servers are typically accessed
using procedure call semantics. Procedure calls provide a synchro-
nous interface to call downward through successive layers of
abstraction, and remote procedure calls[l] allow the layers to reside
in different address spaces. A problem with layering using pro-
cedure calls is that it does not allow for asynchronous and indepen-
dent action on the part of the server. Actions generated at the
lowest level of abstraction should be able to, in effect, call upwards
through the layers of abstraction. There are natural applications for
this upwards calling structure in servers supporting layered network
protocols and user interface managers.

A design for structuring asynchronous upward calls, called
upcalls, was described by Clark [2]. Upcalls allow a programmer to
specify, for each layer in a system, a routine that will be called by a

lower layer in response to asynchronous events. Upcalls are imple-
mented between layers that reside in the same address space. This
paper describes a design for distributed upcalls, a mechanism for
propagating upcalls across address space boundaries. Distributed
upcalls provide a natural complement to remote procedure calls.

Distributed upcalls extend the programmer’s flexibility in
using layers. A server provides some abstraction to its clients, and
this abstraction is often implemented in several layers. The clients
(application processes) will layer their own abstractions on top of
the base abstractions provided by a server. Distributed upcalls
allow asynchronous actions to propagate upwards through any of
these layers - in the server’s address space and then in the client’s.

We have implemented a server structuring system called
CLAM [3]. CLAM allows clients to dynamically load new layers
(object modules) in the server, and then access these modules using
remote procedure calls. Users can layer abstractions in the client
processes (staticly bound) or dynamically load the layer into the
server. CLAM allows upcalls to cross between layers in different
address spaces. The user decides where to place a particular layer
based on frequency of access, speed on communication channels,
speed of client and server CPUs, and requirements for sharing,
debugging, and protection.

The next section describes the CLAM server and provides an
example of the use of distributed upcalls. CLAM’S RPC facility
directly affects the implementation of distributed upcalls. Section 3
discusses the interaction between a client and the CLAM server,
including the use of our RPC facility, parameter handling, and use
of the C++ [4] programming language. Section 4 describes how
CLAM supports distributed upcalls. This includes a discussion of
the upcall mechanism and the use of asynchronous threads. Section
5 describes the current status of CLAM, presents basic performance
data, and provides some general conclusions.

2. CLAM and an Example
The CLAM server is currently being used for development of

an extensible user interface (window) manager [3]. The server itself
consists of approximately 30K bytes of (VAX) code and contains no
code specific to window management. CLAM allows clicnt
processes to request new object modules to be dynamically loaded
into the server. These modules are then accessed by clients using
remote procedure calls. Dynamically loaded procedures access
other dynamically loaded procedures using normal procedure calls.
The server is written in C++ and the dynamically loaded modules

Research supported in part by the National Science Foundation
grant CCR-8703373, an Office of Naval Research Contract, and an
AT&T Graduate Fellowship.

CH254 1- 1/88/0000/0055$01 .OO 0 1988 IEEE
55

are C++ classcs. The server contains classes to support the dynamic
loading, version control, thread scheduling and synchronization, and
distributed upcalls. All application specific code is dynamically
loaded.

Following is an example of the use of distributed upcalls,
based on the CLAM user interface manager. Input in user intcrfaces
has been done typicidly in one of several ways. One way to do
input is to make it completely synchronous. An input request
occurs at the highest level of abstraction. This request is propagated
down through the layers until it blocks at the lowest level. When
the low level input occurs, the return values from the procedures
form an upward mapping of the input abstraction. This scheme
make asynchronous input difficult. A second way to do input is to
have the low level input event asynchronously intermpt the user
task. The client will receive a low level input event containing
information such as X-Y window coordinates. This information
will thcn have to be passed down through the layers until wc find a
ievc: that can interpret the inpu:. and then passed back up
returns (ram procedures). This method is awkward because it force:;
higher icvcls to dcal with the details oi‘ abstraction representations
that they should no: see.

Inpu: is inherently asynchronous at some level. Asynchronous
inpu! events should be able to propagate up through the layers in 3
system, with each layer given the opportunity to map the event:
queue it, discard it, or pass it up to the next layer. Each successive
laycr can decide whether to propagate the asynchrony (passing the
event upwards) or limit the asynchronp (queuing the event). The
rollowing example demonstrates the use of distributed upcalls in
processing Inpur.

2.1. Upcall Example
A common operation supported by window managers is to

allow the user to be able to “sweep” out a new window. The user
invokes this function, and then uses the mouse to drag one comer of
the window outline until it has the desired size and shape. Swecp-
ing can be implemented in several places in a window system. One
place for the swceping code is directly in the window server. The
server can respond quickly to input evcnts and the dragging pro-
duces a smooth visual effect. A disadvantage of building sweeping
into the server is that options such as window alignment and tran-
sparency of the sweep window are decided in the server design; lit-
tle flexibility is provided to the client. A second place to put the
sweeping function is in client code, as is done in the X [5j window
manager. This allows flexibility in choosing implementation varia-
tions, but passing every input event across between the scn‘cr pro-
cess and a client process may be slow and can produce unpleasing
visual effects.

Upcalls provide a simple solution. The code to sweep OUI a
window is dynamically loaded into the CLAM server. Clients can
decide the details of window creation and load an appropriate vcr-
sion of the sweeping code. Different clients could have different
versions, depending on their application. Low level input routines
would perform an upcall to the sweeping layer (module). This layer
would process the event, redrawing the window border with new
event. Events would be processcd quickly, since upcalls are basicly
procedure calls. When the user finishes sweeping (indicated by
pressing a mouse button), the sweeping layer makes an upcall to the
next laycr, passing the single “window created” event. This last
upcall could pass to an application layer loaded into the servcr or tx

a distnbutcd upcall to a layer residing in a client.

3. Remote Procedure Calls
Our goal for the CLAM RPC mechanism is to minimize the

distinction between local and remote procedure calls. As we
minimize this distinction, we provide the programmer with more
flexibility in placing abstractions in a distributed system. Further-
more, CLAM does not require the use of an extemal specification
language for bindings on remote calls. We integrated the RPC stub
generator with the normal compiler, freeing the programmer from
writing stub specifications in addition to the procedures themselves.

Stubs are procedures added to the client and server to bundle
and unbiindie parameters being passed to the remote procedure.
Bundling is the task of converting a data object from its internal
representation to a machine independent representation. Unbun-
dling converts the data back into its internal representation. The
compilcr uses the available syntactic and typing infomution to
automatically generate bundlers for most remote parameterx. Wc
addc3 an extension to the C++ syntax to specify paramcicr bundlers
in tlie cases tha! cannot be handled automatically by the compile:.

This section firs: discusses tlie differences between liic
automatic and user-specified bundling of parameters to remote pro-
cedures. Next, we present the C++ modifications used by CLAM to
allow user-specified parameter bundling, and describe the implc-
mentation of remote parameter bundling. Last, we describe how
CLAM handles pointers that cross address space boundaries. If you
are familiar wi’h the issues involved in bundling parameters and the
basic operation of a remote procedure call mechanism, you may
skip to scction 3.5, which discusses CLAM’S support for passing
pointers and addresses, which is central to the support of remote
upcalls.

3.1. Automatic vs. User-defined Bundling
Two ways of generating bundlers are to make the compiler

automatically generate them, or to have the programmer write them.
Among those systems that have compiler generated bundlcrs are the
Lupine compiler in Grapevine[ll and Sun’s rpcgen[h]. Many, but
not all, data types can be automatically bundled. Primitive data
types, like integers and characters that are passed by value, and data
structures containing only primitive types are easy to bundle. In
thesc cases, the bundler just passes the parameter to its counterpart
in the sewer. Both Lupine and rpcgcn allow these types of pass-
by-value parameters.

Reference and pointer data types arc more difficult to bundle
automatically, because processes typically do not share address
spaces in an RPC system. Fuli reference parameter semantics are
difficult to support when there is no shared memop. Lupine does
not allow reference parameters to be passed to remote proccdurcs.
Pointers can be supported automatically, but require complex bun-
dling algorithms when they are part of a data structure. Consider,
for example, the ways in which a node of a threaded, binary tree can
be passed to a remote procedure. One way to pass the node would
be to just pass the node itself, and nothing else. This bundling
method will fail if the remote procedure wants to examine the
node’s children as well. The other extreme is to take the transitive
closure starting at the node by following its pointers recursively.
Rpcgen I S an example of a system which chooses this method. This
method produces correct results but can have a significant perfor-
mance penalty. Taking the transitive closure can cause the whole

56

tree to be passed remotely. When only the node itself is desired, the
work to bundle the other nodes is wasted.

The altemative to automatic stub generation is to have the pro-
grammer write bundlers. This method solves the problems the
automatic generators had with bundling pointers. Since the pro-
grammer may know how the data is to be used in the remote pro-
cedure, they can write the stubs to pass only as much data as neces-
sary. While reference parameter semantics still cannot be sup-
ported, the programmer can modify the program and the stubs so
that reference parameters are not required. This method has its
drawbacks. It is tedious, requiring the programmer to write addi-
tional code and to deal with the underlying IPC support. Also, sim-
ple data types can easily be bundled automatically, so requiring the
programmer to do so is unnecessary. It introduces the possibility of
additional programmer error while writing the bundlers.

In the CLAM RPC facility, we chose the middle ground. Usu-
ally, he compiler can generate appropriate stubs automatically. It
can handle the primitive data types and data structures without
pointers. When bundling pointers, the CLAM facility allows the
programmer to specify their own bundlers. Because the C++ type
system is rich, the compiler has sufficient information to generate
the stubs directly (similar to Lupine).

We wanted to have the compiler generate bundlers for all
parameters, but pointer data types in C++ have several meanings
and cannot be bundled correctly and efficiently in all cases. For
example, in the declaration

C h a r P o i n t e r could denote a pointer to a single character, a C
style string terminated by a NULL character, or a pointer to the first
character of an array of characters of some arbitrary length. Also, if
the stub generator is presented with a recursive data structure (a data
stmcture containing pointers), it has no idea how much data to pass
remotely. In both cases, passing too little data will produce
incorrect results, passing too much will degrade performance. To
alleviate this problem, we added a facility to allow the programmer
to specify user-defined bundlers for such parameters.

3.2. Grammar Modifications
A stub generator can generate procedure stubs from the source

code directly, or it can use a special stub specification language.
We chose to integrate stub and bundler generation with the base
compiler. Both altematives are used in other stub generators.
Lupine takes a Mesa interface module, a standard part of the Mesa
language, and generates the client and server bundlers directly from
this specification. No modifications were made to Mesa to support
RPC. Rpcgen is meant to work with the C language. Because C’s
typing is inadequate, rpcgen requires the programmer to specify
data types in a special language called WCL. It includes special
types to describe fixed and variable length arrays and C character
strings. Lupine, because it uses the Mesa interface module, cannot
allow all data types to be passed remotely. Rpcgen, by using a spe-
cial language, allows all types. Because rpcgen uses a separate
language, the programmer must write both the program itself and
the stub specification.

As was described above, C++ pointers can take on a several
meanings, necessitating programmer-specified bundlers. To
integrate programmer-specified bundlers, we extended the C++
grammar. The modified syntax allows a bundler specification to be

char* C h a r P o i n t e r ;

made for each parameter and retum value. With this extension,
almost all C++ data types may be passed to remote procedures.

The extension takes two forms: an in place specification, used
when declaring formal parameters and retum values, and a type
definition specification, used when declaring a new data type. The
first method gives the programmer the freedom to specify a different
bundler each time a data type is used. The second method, which is
a modified version of the t y p e d e f statement, associates the
bundler with the new type. Every time the new type is used as a
parameter or a retum value, the specified bundler will be used. This
is useful when a certain type of parameter is to be bundled in the
same way every time it is used. The typedef specification has the
additional benefit of making the body of a program look cleaner. If
the type of a parameter has a bundler associated with it and a
bundler is also specified in place, the in place bundler will be used.

Figure 3.1 shows examples of how bundlers are specified.
Only a portion of the class definition is shown. Bundlers are
specified following an at-sign (“ @ ’ I) . P t - b u n d l e r bundles a
single point, and p t -a r ray-bundler , bundles an array of
points. The bundler, p t - b u n d l e r , is associated with the type
P o i n t p t r , and is implied whenever this type is used in the code.
The procedures Drawpoin t and D r a w p o i n t s specify their

struct Point (

1;

extern Point* pt-bundler(Point*);
extern Point* pt-array-bundler(Point*, int);

typedef Point* PointPtr @ pt-bundler();

class 3Dgraphics (
public:

short x, y, z;

void drawpoint (Point* thept) ;
void drawpoints(int number, Point* pts);
void drawline(PointPtr startpt, PointPtr endpt);
PointPtr get-cursor-pos();

void 3Dgraphics::drawline(PointPtr startpt,

(/ * draw a l i n e f r o m startpt t o a+t * / 1

void 3Dgraphics::drawpoint(

{ / * d r a w a sinqle point */ 1

void SDgraphics::drawpoints(int number,

(/* d r a w number points * / 1

PointPtr endpt)

const Point* thept @ pt-bundler())

const Point* points @ pt_array-bundler(number))

PointPtr
3Dgraphics::get-cursorgos~)
(/ * return the location of a 3D cursor * / 1

Figure 3.1: C++ Procedure Declarations with Bundlers

bundlers in place. These procedures also take advantage of the type
specifier, const, to denote that the parameter is read-only. The
compiler uses this information to only generate a bundler to pass the
parameter from the client down to the server, because the parameter
cannot change during the call. Two additional specifiers, out and
inout, were added to the C++ syntax to allow the compiler to
optimize the use of bundlers. Out tells the compiler to only gen-
erate a bundler to pass that parameter from the server to the client (a
result parameter); inout specifies that the associated parameter
must be passed in both directions. The drawline and
get-cursorgos declarations make use of the PointPtr type
and its associated bundler.

In most cases, we expect that bundlers will only take one
parameter, the object to be bundled. The first parameter to the
bundler is always implied; the programmer does not specify it. This
also simplifies specifying a bundler with a typedef declaration,
because the programmer may not know the name of the parameter
to bundle, only its type. There are occasions when additional
parameters are needed to bundle the data correctly. For example,
when bundling an array of an arbitrary length with no well-known
terminal value, as in the drawpoints procedure, the bundler
needs to be passed the array length in addition to the data to be bun-
dled. We do not limit the number of parameters to bundlers.

3.3. Programmer-defined Parameter bundlers
When the programmer writes a parameter bundler, certain

rules must be followed. These rules are necessary because the com-
piler expects all bundlers to behave the same way, allowing the
compiler to use the bundlers at any time based on this behavior.
The rules cover parameter specification, the communications proto-
col, and the use of global variables. First, for parameter
specification, the first parameter to the bundler and the bundler’s
return value must have the same type as the parameter to be bun-
dled. Second, to satisfy the communications protocol, the bundler
must be bidirectional; that is, it must be able to both bundle its first
parameter or unbundle data from its machine independent form and
retum the unbundled data as the return value. This is pattemed after
the SUN XDR[7] philosophy for data bundling. Third, the bundler
must stand alone and must not access any global variables. The
bundler is dynamically loaded into the CLAM server with the class
that uses it, so extemal references will not be satisfied. Further-
more, since the server may have multiple threads of execution, glo-
bal state might change unpredictably. The programmer must follow
these three rules, if their bundlers are to function properly.

As an example of a bundler definition, Figure 3.2 shows the
definition of the pt-bundler used in Figure 3.1. This bundler is
used to bundle Point* data types. so the first parameter and the
return value are both of this type. The lowest level data bundling is
performed by the bidirectional SUN XDR filters, which have been
embedded in a C++ class. The variable, RPC-XDR-stream,
denotes the IPC connection on which the bundler will send the
Point when it is bundling, and from which it will read a bundled
Point when it is unbundling. Except for the special case of allo-
cating space when unbundling data, the bundler is symmetric. The
same code is used for both bundling and unbundling, and a
Point* is retumed, making the pointerbundler bidirec-
tional. Pointerbundler uses no global variables to store the
data when it unbundles a Point. When the bundler has no place
to store the return value (when it is passed a NLL pointer), it

allocates additional storage. More complex bundlers follow the
same rules and structure as our example in Figure 3.2.

3.4. Compiler and Runtime Operation
The CLAM RPC runtime system depends on the compiler to

provide it with the appropriate stubs and bundlers to make remote
calls work. The compiler, given a procedure declaration, will gen-
erate a pair of stubs, one for clients and one for the server, and the
code for the procedure itself. The stubs are used whenever a process
makes a remote procedure call. Bundlers and stubs have no effect
on local procedure calls. The client stub contains code to bundle
each parameter to the procedure and code to unbundle any return
value or result parameter. The server stub is complementary. The
stubs contain additional code to synchronize the IPC channel and to
interact with the Rpc runtime code.

The RPC protocol departs slightly from the traditional RPC
semantics by allowing remote calls to proceed asynchronously.
This departure allows the CLAM RPC facility to achieve greater
performance than a traditional system. In other RPC systems, such
as Grapevine[l], remote calls are fully synchronous; the client
makes a remote call and waits until that call finishes before continu-
ing. This is necessary whenever there are retum values, but, when
no return values are needed, the remote call can be delayed, and put
in a batch with other calls. To further improve performance, the
CLAM RPC facility batches several asynchronous calls together
into a single message. Batching reduces the amount of interprocess
communication, and introduces asynchrony into the RPC model.
Our underlying communication medium guarantees reliable, in-
order delivery of messages, so batched calls will amve in the
correct order. To force synchronization, the client program can
either call a procedure that returns a value, or call a special syn-
chronization procedure, which flushes the current batch to the
server.

struct Point (

1;

Point* point-bundler(Point* p)
(

short x, y, z ;

/ / allocate some space if unbundling
/ / and the passed a NIL pointer
if (p -- 0 & &

RPC-XDR-stream->xget-op() -3 XDR-DECODE)
p = new Point:

// (un)bundle each member of the Point structure
RPC-XDR-stream->xint (&p->x) ;
WC-XDR-st ream->xint (&p->y) ;
RPC-XDR-s t ream->xint (&p->z) :

return p;
1

~

Figure 3.2: A Bundler Definition

58

35. Pointers and Addresses - Crossing Address Spaces

An example of the way bundlers are used in our RPC system
is in the way pointers and addresses are bundled. If the programmer
does not specify a bundler for a pointer data type, the compiler pro-
vides a default bundler. This bundler does not make a transitive
closure of pointers; it bundles only the object referred to by the
pointer. Because this bundling method is not always appropriate, as
was described in section 3.1, user-specified bundlers are useful here
to achieve the correct semantics.

The compiler automatically provides special bundlers for two
types of pointers, pointers to objects (i.e. class instances) and
pointers to procedures. Object pointers are common because of our
object-oriented design, and procedure pointers are common because
of our emphasis on distributed upcalls. These bundlers are used
automatically by the compiler, so the programmer can use object
and procedure pointers without specifying bundlers. Like all other
bundlers, these bundlers follow the three rules laid out above and
still provide the semantics the programmer expects from object and
procedure pointers. The way in which these semantics are
preserved is described below.

35.1. Pointers to Objects
Our system operates under three basic assumptions that affect

the bundling of object pointers. First, each process has its own
address space, implying that an address is local to only one address
space. Second, we assume that all objects are created dynamically,
during program execution. Third, an object pointer must be passed
out of the server before a client attempts to pass it in, except for nil
pointers, which are handled specially. When a pointer to an object
is retumed to the client, it must be retumed in such a way that when
the client performs a class member operation on this object, the
operation becomes an RPC back into the server.

Remote operations on objects are achieved by converting a
pointer to an object into a handle when passing it to a client. A han-
dle is a capability for an object. The handle contains an object
identifier and a tag, an arbitrary bit pattem for checking the validity
of the handle. The object identifier refers to the object itself in the
server, and is the only information needed to make remote object
references work.

Since handles, not object pointers, cross address space boun-
daries, the compiler generates code to automatically bundle object
pointers that are passed out of the server to a client. The use of such
pointers is easy to detect. They include the object pointers that are
retum values of procedures, and those that are o u t parameters.
For every such parameter, the compiler generates a call to an object
pointer bundler. The server version of this bundler will pass a han-
dle for the object back to the client. The client bundler assumes that
an incoming object pointer is a handle, stores the handle, and
retums a pointer to the stored handle.

The compiler must also detect when an object pointer is being
passed to the server from the client and generate the appropriate
bundler calls. The client bundler assumes that the pointer it is bun-
dling points to a handle and passes the handle to the server. The
sewer unbundles the handle and uses it to find its local pointer to
the object. Figure 3.3 shows this operation. The object identifier in
the handle is a pointer to a data structure in the server containing a
class identifier, a version number and the tag, and a pointer to the
object itself. The class identifier and version number are used to
locate the correct version of the correct class of the object. The tag

in the object identifier is compared with the tag in the handle and, if
they match, the real object’s address can be returned by the bundler
inside the server. Because we assume object pointers must be
passed out of the server before they can be passed back in, it is not
possible for the client to pass a pointer to an object of a class that is
not loaded into the server.

3.5.2. Pointers to Procedures

The other common type of pointer that the compiler automati-
cally bundles is a pointer to a procedure. We are interested in pro-
cedure pointers that a client passes into the server. It is assumed
that the procedure pointer will be used inside the server to perform a
distributed upcall. While the server might pass a procedure pointer
to the client, we have not implemented any automatic means of han-
dling these pointers.

A procedure pointer requires the compiler to generate more
code than pointers to other data types. Code to bundle and unbun-
dle the pointer itself must be generated, just like other pointers. In
addition, because we expect the pointer to be used in a distributed
upcall. a pair of stubs must be generated to bundle and unbundle the
parameters when the upcall is made. Here, the server stub bundles
parameters and unbundles xtum values, like the client stub in a nor-
mal procedure call. The standard C++ syntax requires that the
declaration of a procedure pointer include a specification of the type
of each parameter the procedure expects to be passed. The compiler
uses this specification to generate the upcall stubs. The parameter
specification also allows the programmer to specify bundlers for the
parameters of an upcalled Procedure.

The compiler detects when a procedure pointer is an incoming
parameter to a procedure in the same way as it detects incoming
object pointers. The compiler first generates stubs for the client and
server to bundle the parameters when the upcall occurs. It then gen-
erates calls to bundle the procedure pointer. The client bundler bun-
dles the procedure pointer and a pointer to a stub that unbundles

Read From Data Stream

Handle 1-1

Server
Object

7-
Locate Procedure List Retuned by

HandleBundler

Figure 3.3: Handle Operation

59

upcalls of this type. The server bundler does most of the work,
because the procedure pointer appears to be an arbitrary bit pattem
in its address space. It stores the client’s procedure pointer, a
pointer to the server’s upcall bundler, and the client’s IPC connec-
tion identifier in a object of a Remote Upcall (RUC) class. The pur-
pose of the RUC class is to control distributed upcalls. Finally, the
compiler generates code to call a procedure in the RUC class when-
ever this procedure pointer is used, and returns the pointer to the
start of this code, which looks like a normal procedure pointer.
When the procedure pointer is used, this RUC procedure is exe-
cuted.

This procedure, called the upcallhandler is passed the object
that the procedure pointer bundler created when the pointer was sent
down to the server. It bundles the pointer to the client’s upcall stub
and the client’s procedure pointer, passing them over the IPC con-
nection saved in the RUC object. It then calls the server upcall stub
to bundle the parameters themselves and unbundle any retum
values. The compiler-provided bundlers and the RUC class are the
basis upon which distributed upcalls are implemented.

4. Distributed Upcalls
Remote procedure calls provide for the downward flow

through the layers of abstraction. Distributed upcalls provide the
flow of information upwards through these layers. We divide the
description of upcalls into three parts. First, an upper layer must
inform a lower layer of its intent to receive upcalls. This part con-
sists of a registration mechanism. Second, there are the actual
upcalls that pass information up to the upper layers. This part sup-
ports calls that flow upwards through the layers. Third, is a
mechanism to support asynchronous activities within an address
space. In CLAM, these activities are called tusk.

Since CLAM allows layers of abstraction to be linked either
(statically) in the client or (dynamically) in the server, both registra-
tion and upcalls must be able to travel between the client and server
address spaces. The flow of information associated with a task must
also be able to span address spaces. Distributed upcalls are concep-
tually the same as basic upcalls and the goal is to make the differ-
ence between local and distributed upcalls transparent to the user.
The RF’C mechanisms described in the previous section are used to
achieve this goal.

4.1. Upcall Mechanism
This section describes thc upcall mechanism for both basic

and distributed upcalls. The registration process and support for
upward calls is described.

Registration involves informing a lower level object how to
call a higher level object when an event occurs. The lower level
object provides the upper level object with a registration procedure
to call. When its registration procedure is called, a lower level
object stores the information it receives in its own state. When an
event occurs that requires an upcall to be made, the lower level
object uses this stored information to determine which higher level
object should receive the call. It is possible that zero or more higher
layers maybe registered to receive the upcall. If there are no higher
layers interested in the event, then the lower level object decides
what to do with the event. For example, it may queue up the event
for later use or may throw it away.

When both the upper and lower level objects are in the same
address space, registration is a matter of passing a procedure pointer

to the registration procedure in the lower level object. Registration
is a simple procedure call. When the appropriate event occurs, the
lower level object will use a simple procedure call to call the
registered procedure.

The mechanisms that support distributed upcalls are more
complex than for local calls, information must be passed between
address spaces. The goal is to make distributed and local upcalls
look the same to the applications. During registration, the upper
level makes a remote procedure call to the lower level’s registration
procedure. The higher level object passes the address of a pro-
cedure for the lower level object to call. Using the RPC described
in Section 3, this remote procedure call looks like a local procedure
call to the user. The lower level object can not simply store the pro-
cedure address it received from the higher level object. This
address is only valid in the higher level object’s address space. The
RUC class, described in Section 3, provides the necessary address
translation for the procedure addresses. The lower level object actu-
ally stores the address for a procedure in the RUC class. Through
the intervention of the RUC class, the lower level object cannot dis-
tinguish between registration requests from local objects and those
from remote objects. When the appropriate event occurs, the lower
level object will call the RUC procedure to pass on the information
to the higher level object. The RUC procedure will make the neces-
sary remote call back to the higher level object. The lower level
object views the upcall as a simple procedure call. The higher level
object behaves the same in a distributed upcall as it would for a
local upcall. Distributed upcalls, in most cases, are indistinguish-
able from the local upcalls to applications.

A final issue is how procedures are typechecked when they are
registered with a lower level abstraction. When a pointer to a pro-
cedure is declared as parameter to another procedure in C++ (as is
the case in the registration procedure), the types of the parameters
must be specified when declaring the pointer. The lower level pro-
cedure specifies exactly what kind of procedure is allowed to regis-
ter itself to receive upcalls. Therefore, typing issues are resolved at
compile time.

4.2. An Example
This section presents an example of the use of upcalls. It

illustrates the behavior of the upcall mechanism for distributed
upcalls. This includes a description of the registration process and
the flow of information during an upward call. The example is
taken from the CLAM of window manager.

In this example there are two system classes, window and
screen, shown in Figure 4.1, and two additional application defined
classes, user1 and user2. Screen is a low level class that handles
updates to the display screen. The window class provides a window
abstraction layered over the screen abstraction. User1 is a class
linked into a client process and accesses the window class using a
remote upcall. Used has been dynamically loaded into the server.

When the server begins execution, it creates an instance, S, of
the screen class and an instance, BaseW, of the window class.
While creating BaseW, the window class registers the
window::mouse procedure with S (by calling Spstinput) to handle
all mouse button events. S.postinput saves the pointer to BaseW
and window::mouse in S’s state. Later, an instance, U2, of the
used class is created. It creates an instance, W2, of the window
class and registers its user2::mouse procedure to receive mouse
events by calling W2.postinput. Let us assume that creating W2

60

\ I U\
screen

\ I I /

Figure 4.1: Registering Distributed Upcalls

notifies BaseW of the new window, so it can pass events to objects
that have registered themselves with W2. An instance, U1, of the
client class user1 is also created. U1 creates a window, W1, and
registers its user1::mouse procedure to receive mouse events.
Notice that the parameter bundler will automatically translate the
procedure pointer into a pointer to the RUC class. For each transla-
tion, an object instance is created in the RUC class.

At this point, the state of the system is ready to handle mouse
events. If a mouse button is pressed, the screen::mouse procedurc
sees the event and, using the previous registration, makes an upcall
to the BaseWmouse procedure. This procedure determines if the
mouse was inside any other windows and, if so, makes upcalls to
them as well. If the mouse was in the region covered by W1,
BaseW then attempts to make an upcall to Ul.mouse. This actually
involves the RemCall procedure to make a remote procedure call to
the client process containing U1.

43. Tasks

CLAM uses lightweight processes, called tusks, to create asyn-
chrony in the server and clients. Tasks are provided by a thread
class, which supports tasks at the user level, (as opposed to imple-
menting them at the kernel level.) The thread class includes func-
tions for the creation, deletion, blocking and resumption of tasks.
Tasks are created by an asynchronous call to a procedure in the
thread class. Tasks are non-preemptive, but a task can voluntarily

block itself by waiting on a specific event. The task is reactivated
when that event occurs.

Both the client and the server processes are multithreaded.
Like distributed upcalls, the flow of information associated with a
task must span address spaces. When a task in the server (a server
task) makes a distributed upcall, the flow of information crosses
address space boundaries. While the server task cannot span this
boundary, the flow of information must continue in the client. A
new task is start in the client (a client task) to cany out the work on
the client. The flow of control has crossed the address space boun-
dary into the client. While the client task is active the server task is
blocked, waiting for the client task to finish. When the client task
completes, it informs the server (usually by making a WC) and then
terminates. The server task becomes active, and the flow of control
returns to the server.

CLAM uses tasks to create a new thread for objects that handle
input events. A new task is started in the server in response to input
from the external devices, such as the keyboard and mouse. This
task propagates the information from the input event upward
through layers of abstraction by using upcalls. If the higher layers
of the abstraction are in a client process, a task is started in the
client to continue handling of the input event. The task on the
server waits for the client task to complete.

Another application of upcalls and tasks is for error reporting.
The CLAM server can protect itself from user bugs by catching error
signals (such as memory faults or divide by zero.) Once the server
has determined that an error exists in a dynamically loaded class, it
must decide what to do with the class. The server can choose to
notify a client that it tried to use a faulty class. A new task is
created in the sewer that handles the error reporting. This task will
make an upcall and then wait for any response the client may have.

4.4. CIiedServer Channels
Conceptually there are many channels of communication

between the server and clients. There would be one channel for
each client’s Rpc requests and one channel for each upcall between
a client ana the server. In CLAM, we allow only one upcall to be
active per client process. This limitation simplifies our first imple-
mentation and may be relaxed in future designs, So there are actu-
ally at most two channels of communication between each client
and the server. One channel is used for RPC requests from the
client and the other is used for upcalls from the scrver. Without
typed messages, multiplexing mulhplc channels of communication
onto one unix stream is difficult, and requires extra information to
be passed to specify which conversation is currently active. There-
fore, CLAM provides separate unix streams for each communication
channel.

Each client requires at least two tasks, which are created when
the client initially connects with the server. The first task executes
the code of the application. This task blocks during W C requests,
while waiting for the retum value. The second task handles all
upcalls. The second task is initially blocked, and is unblocked on
receipt of an upcall. After handling the event, any return value is
sent back to the server, and then the task is blocked again.

The server can have multiple tasks active at any given time.
The main task handles RPC requests from clients. A new task is
started in response to input events and performs upcalls to handle
the input. If the upcall is distributed, the task is blocked while the
client task is active, The task is terminated after the final remote

61

procedure call related to the input event has completed. Tasks are
reused, instead of being newly created on each input event to reduce
overhead.

5. Status and Performance
CLAM is a running system. The C++ remote procedure call

facility, the dynamic loading facility in the server, and the distri-
buted upcalls facility are all working. The initial use of CLAM was
to build an extensible user interface manager, and the basic classes
for screen and window management are running. This includes 10
main classes, representing about 10,OOO lines of code. This system
makes use of all of the features we described in this paper, making
extensive use of remote upcalls for propagating user input and other
window management events to client programs. Current work is to
experiment with CLAM in building interactive user interfaces [8].

An important motivation for providing flexibility in placing
layers is the cost of interactions between layers. We have taken
measurements of the CLAM system to compare the costs of remote
calls (calls between address spaces) to that of local calls. These
results are summarized in Figure 5.1.

The results in Figure 5.1 show that local calls within the
CLAM server are cheap. Dynamically loaded procedures can call
built-in procedures or other dynamically loaded procedures at a cost
similar to that of static procedure calls. Calls that cross address
spaces, even on the same machine, are significantly more expensive.
Dynamically loading classes into the server can have a significant
performance benefit. The performance numbers in Figure 5.1 are
similar to those found in other systems. For example, the Argus[9]
and Mach[lO] systems show local and remote calls costs of similar
magnitude.

Time per call
(pets)

Staticly linked procedure calls

Dynamically loaded procedure calling another
dynamically loaded procedure

Upcall - both procedures dynamically loaded in
the server

Remote call - both process on same machine
(UNIX domain connection)

Remote upcall - both process on same machine
(UNIX domain connection)

Remote call - both process on same machine
(TCP/IF’ connection)

Remote upcall - both process on same machine
(TCP/IP connection)

Remote call - process on different machines
(TCP/IP connection)

Remote uvcall - process on different machines
(TCPD connection)

Figure 5.1: Procedure Call Costs

19

21

19

7200

7200

115W

11500

12400

12800

6. Conclusions
CLAM provides flexibility by allowing the programmer to

specify the placements of layers between the clients and the server.
The remote procedure call facility hides most of the details of cross-
ing address spaces, and distributed upcalls provide a clean mechan-
ism for layering input abstractions and hide the details of upward
address space crossings. The RPC and distributed upcalls together
form a powerful for structuring servers. Remote procedure calls
provide the synchronous access associated with requests to a server,
and the distributed upcalls allow the server to initiate asynchronous
operations. Both of these mechanism allow the programmer to
work within a clean, layered structure.

REFERENCES

A. D. Birrell and B. J. Nelson, “Implementing Remote Pro-
cedure Calls,’’ ACM Transactions on Computer Systems
Z(1) pp. 39-59 (February 1984).

D. Clark, “The Structuring of Systems Using Upcalls,”
Proceedings of the 10th Symposium on Operating System
Principles, pp. 171-180 Orcas Island, WA, (October 1985).

L. A. Call, D. L. Cohrs. and B. P. Miller, “CLAM - an
Open System for Graphical User Interfaces,” Proceedings
of the Conference on Object-Oriented Programming Sys-
tems, Languages and Applications, pp. 277-286 Orlando,
E, (October 1987).

B. Stroustrup, The C + + Programming Language,
Addison-Wesley, Reading, Mass. (1986).

J. Gettys, R. N e w ” , and T. Della Fera, Xlib - C
Language X Interface, MIT Project Athena movember
1985).

Sun Microsystems, Inc., “Rpcgen - an RPC Protocol Com-
piler,” in Neworking on the Sun Workstations, (1986).

Sun Microsystems, Inc., “External Data Representation
Protocol Specification,” in Networking on the Sun Worksta-
tions, (1986).

B. P. Miller and C.-Q. Yang, “IPS: An Interactive and
Automatic Performative Measurement Tool for Parallel and
Distributed Programs,” Proceedings of the 7th Interna-
tional Conference on Distributed Computing Systems, pp.
482-490 Berlin, (September 1987).

B. Liskov, D. Curtis, P. Johnson, and R. Scheifler, “Imple-
mentation of Argus,” Proceedings of the 11th Symposium
on Operating Systems Principles, pp. 11 1-122 Austin,
Texas, (November 1987).

M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger,
J. Chew, W. Bolosky, D. Black, and R. Baron, “The Dual-
ity of Memory and Communication in the Implementation
of a Multiprocessor Operating System,” Proceedings of the
1 I th Symposium on Operating Systems Principles, pp. 63-
76 Austin, Texas, (November 1987).

62

