
.
~~ ~

P R O G R A M

A Visual

Distributed
progPamming b e n e f i

gPeatly fiom visual

separate the
interactions of

processes fiom their
implementation.

Upconn is wch a tool
for Unix pro#amrners

tools that help you

July 1988

for Unix

Mitali Bhattacharwa, David Cohrs, and Barton Miller
University of Wisconsin at Madison

pecifying the structure or the inter-
connection of processes in a dis-
tributed computation is a cumber-

some programming task. The Upconn
tool addresses this problem. Rather than
requiring you to describe process interac-
tion textually, Upconn lets you visually de-
scribe the connections between the
processes in a distributed program and
then execute the distributed program.
Upconn simplifies the creation of these
pe rmanen t connect ions between
processes and allows a structural specifica-
tion of the distributed program. Descrih
ing the connections with Upconn means
that the computation performed by
processes is separated from the creation of
the connections between them. Upconn
does all this with a simple, functional, and
extensible interface.

To achieve these goals, we divided U p
conn into severalmodules. Youcan extend
Upconn by adding to a library of tools
rather than by adding many special fea-

0 7 4 0 - 7 4 5 9 / 8 8 x) 7 0 3 ~ 0 1 .XI 0 1988 IEEE

tures to Upconn itself. For example, ifyou
wanted to add a message-monitoring facil-
ity to Upconn, y c h would add the monitor
as a process in the library instead of mak-
ing it a special property uf connections in
the Upconn definition. The lack of extra
integrated features prevents Upconn
from becoming a monolithic tool, allows a
modular design, and lets other applica-
tions use parts of the library package. You
create an Upconn program by taking
many of its parts from a library of
processes.

Upconn has three main uses. First, it lets
researchers study distributed processing
in common Unix emironments, reducing
the dependence 011 specialized environ-
ments. Second, it lets you rapidly p r o w
type new distrihuted applications. Third,
Upconn is a learning tool that can help
students focus on writing distributed p r o
grams without dealing with the complexi-
ties of the communication links.

43

Ideal process connector
By examining related work (see the box

below) and our own goals, we outlined a
set of features that we felt a process con-
nector should provide for a distributed
computing environment. Processes in a
distributed program communicate via
message passing, using a reliable, bidirec-
tional interprocess communication path

as their connections. Program objects can
be processors or connections.

In our minds, an ideal connector would
provide a visual, interactive environment
-with graphical displaysand pointingde-
vices - to specify a distributed program's
structure. In this environment, you could
construct, modify, and execute distributed
programs. You would specify processes -
whether new processes or existing sewer

processes - with a connector tool and
makr connections between them. As with
the hierarchical process-composition
model,' you could use this tool to define
and replicate complex structures of
processes and connections.

Second, our ideal tool would interac-
tively execute distributed programs and
monitor and control execution. Given a
structural description of the program, the

Related work
Many of the ideas used in Upconn came from other systems we had

studied, including the methods for connecting processes, the structural
specification of programs, and avisual and interactive environment for
program description and execution.

Process communication. Each system we studied includes a
method for connecting processes. A process must first locate the
process with which it wants to Communicate and then set upa connec-
tion to that process. But it is difficult for unrelated processes to locate
each other in a distributed system. Furthermore, code to handle these
connections must be included in every program, resulting in code du-
plication.

To address these problems, we followed the switchboard solution in
Demos.' The switchboard creates connectionsfrom itselfto processes
as they are created. For example, when process A wants to connect to
process B, itasks the switchboard to add a linkbetween process Aand
the switchboard to the link between the switchboard and process B.
This lets a process form connections with another registered process
by specifying the name of that process. Application programs need no
longer know how connections are established.

The switchboard provides low-level support for process connection,
so processes must still include the calls to the switchboard at runtime.
A higher level tool can make these calls for the program and execute
the program once its connections are in place. The Charlotte dis-
tributed operating system2 has such a higher level connector, which
separates the implementation of the processes from the imple-
mentation of the connections between these processes. The connec-
tor uses a special description file that lets you specify processes and
the connections between them. Using the description file, the connec-
tor creates the processes, forms connections between them, and tells
each processwhich connections it holds.Theconnector usesaswitch-
board to register the processes that it starts.

There are several ways to s p e w a description file's structure. You
can specify single processes or arrays of processes. Arrays allow the
specification and connection of several similar processes. They are
also a simple structuring technique that lets you quickly specify many
programs, such as replicated sewers.

The hierarchical process-Composition model3 uses an object-
oriented model to specify connections. It lets you define typed objects
and operations on these objects. The model's basic objects are
processes and links between processes. As in the Charlotte connec-
tor, the model separates the implementation of processes from con-
nections. Itdoessowithanobjectcalledthecontroller, whichcombines

sets of processes and channels into one object, like how object mod-
ules are combined into an executable program by a linking loader. The
hierarchical process-composition model is a low-level mechanism with
no friendly user interface.

Visual tools. With graphical tools, you can interactively edit a pic-
torial representation of the processes and the connections between
processes in a program.

The Poker Parallel Programming Environment: which runs on Dig-
ital Equipment Corp. VAX llU80s under Unix, developed such a
graphical tool forthe Configurable, Highly Parallel computer, which had
64interconnected processors and whose architecture is a lattice made
up of nodes that represent the processors in their system and arcs that
are the programmable or communication channels between them. To
create a parallel program, you edit a pictorial representation of the lat-
tice and speafy which processes should be placed on which proces-
sors and what the communication is between them. Poker is tailored
to support a specialized, regular communication architecture. This
simplified the display and specification of connections.

Avisual interface is especially useful when combined with a system
that lets youdynamically create anddestroy connections. The Conman
connectino manage? is one such process (and is similar to the switch-
board) that lets you control the connection between processes. In Con-
man, input and output ports are assodated with processes. These
ports have names and are registered with Conman when the process
starts. Connections are made by connecting an input port of one
process to the output port of another. But Conman is tailored for inter-
process communication on one workstation rather than for cornmuni-
cation in an distributed program.

References
1. F. Baskett. J.H. Howard, and J.T. Montague, 'Task Communication in

Demos," Proc. Siwth Symp. -rating Systems Princ., ACM, New York,

2. Y. Artsy. H. Chang. and R. Finkel. "Interprocess Communication in
Charlotte," IEEESoffware, Jan. 1987, pp. 22-28.

3. T. LeBlanc and S. Friedberg, "Hierarchical Process Composition in Dis-
tributed Operating Systems." Roc. Fifth IntlConf. Distributed Computing
Systems, CS Press, Los Alamitos. Calif., 1985. pp. 26-34.

4. L. Snyder, "Parallel Programming and the Poker Programming Environ-
ment," Computer, July 1984. pp. 27-36.

5. P. Haeberli, "A Dataflow Manager for an Interactive Programming En-
vironment," Proc. Usenix Summer Cont, Usenix, Seal Beach, Calif.,
1986, pp. 414428.

1977, pP. 23-31.

44 IEEE Software

connector would execute the program
processes on the hosts in the network. By
using multiple windows, the tool would
monitor process activity through a moni-
toring window for individual processes
and connections. It would automatically
gather statisticsabout message traffic, such
as the contents of messages and the times
they were sent. You could also control exe-
cution by modifying connections during
execution, as the Conman tool allows (the
box on p. 44 describes Conman and other
related work).

Third, the connector should provide
process placement. You would specify a
host on which a process should execute
(your choice would of course be restricted
to those hosts you may access). If you have
no preference, the tool - using an appre
priate load-sharing algorithm - would
place the process on a host that can most
readily handle the extraload. Chou has de-
scribed several such load-sharing algo-
rithms.2

Last, our ideal connector should be a
modular tool that supplies a structure to
which other functions can be added. Mod-
ularity is attained by including these func-
tions in a library of processes that you can
link to other programs. You would add
new functions by extending the library
and leaving the tool’s primitives un-
changed. Ordinary processes would p r e
vide the extended library functions. For
example, you could add file access to the
tool by providing a special process in the li-
brary instead of adding any new types of
objects to the tool.

We designed Upconn to provide as
many functions of the ideal connector as
possible in the Unix environment.

Upconn elements
Upconn runs on Unix 4.3 BSD worksta-

tions under the X Window graphical en-
vironment. As Figure 1 shows, it has three
major modules, each ofwhich isaseparate
program:

The Upedit editor graphically con-
nects modules in distributed programs.

Upsh executes the distributed pro-
gram.

Upstart, which is invoked by Upsh,
starts the individual processes on the a p
propriate hosts.

Upedit lets you pictorially describe

user interface

program execution

process initiation

Fwre 1. Upconn’s functional hierarchy.

processes and the connections between
them. With its command menu, you can
manipulate the description of processes
and connections. Upedit is an interactive
editor whose objects are processes and
connections rather than text files or docu-
ments.

Upedit creates a description file to per-

manently store a program’s pictorial r e p
resentation. This file is the only way that
Upedit and Upsh communicate, using a
file format understood by both programs.

Upsh and Upstart execute the dis-
tributed program. Upsh interprets the de-
scription file and uses Upstart to execute
the individual processes. Upstart forms

pedlt: e d l t l n g te8tflle LQUIT] lrarq lcoprl kfElE hJ NDC4 /RUN

Figure 2. Example Upedit display.

July1 988 45

DONE I CANCEL
Process name:
Program and args:
Use host:
Window:

DONE I CANCEL
Process 1 :

Process 2:
File descriptor 1 :

File descriptor 2:

Process properties
processl

romano
-dave/reader a b

Yes

Connection properties
processl
5
process2
5

Figure 3. Upedit process and connection property sheets.

the connections between processes using
aswitchboard service3 and executes the in-
dividual processes. Upsh and Upstart s e p
arate the execution of a distributed prcl
gram from its description.

Figure 2 shows the description file for
the display in Figure 3; Figure 4 shows the
description grammar. This separation of
Upedit from the description file lets other
programs generate description files. For
example, if an application needs a differ-
ent user interface or does not require a
user interface at all, it can generate the de-
scription file itself. This is useful in an a p
plication that uses a program to perform a
computation; the application can auto-
matically generate a description file for
the program and execute it with Upsh.

This modular design means Upsh users

are not restricted to the Upedit environ-
ment.

Upedit. The editor is the primary user
interface to Upconn. Upedit's basic func-
tions are creating, modifymg, replicating,
and deleting processes and connections.
You use Upedit to describe a distributed
program's structure and to interactively
execute the program.

Upedit displays the program in a win-
dow, as Figure 3 shows. With a mouse and
keyboard, you create processes and define
the connections between them. The
Upeditwindow isdivided into two regions.
The upper section of the window, called
the banner, displays the program name
and the main editing options. Other com-
mands are entered from the keyboard.

#!/usr/local/upsh
Unix magic necessary to run this program

#first, the name of the process: "processl"
process processl ;
#next, the command line necessary to execute the process

#the host on which to run the process

#the location to display the process in Upedit

a flag that causes a monitor window to appear when the process runs

args reader ab;

using romano;

at (100,100);

window;

the description for process "process2"
no specific host or window for this process
process process2

args writer;
at (300,100);

a connection between processl, on descriptor 5, and process 2, on descriptor 5
connect <5,processl> <5,process2>;

Figurer. Example Upconn description file.

46

The area below the banner is used to edit
the program.

The Upedit display represents a process
by a circle that you can display by pressing
a mouse button. Connections are repre-
sented by a line and are created by select-
ing the two processes to connect with the
mouse. Aprocess may have connections to
many other processes. In our current im-
plementation, only one connection may
exist between any pair of processes.

After you have created processes and
connections, you can specify attributes of
these objects. Process attributes include its
name, the host i t will run on, and whether
the process needs its own monitor window
to display debugging information. Con-
nections attributes include the Unix file
descriptors through which the processes
should communicate.

If you do not specify some attributes,
such as the process name or file descriptor,
Upedit supplies default values. Upedit dis-
plays attributes in a property sheet (see
Figure 5. We took the concept of property
sheets from a similar mechanism in the
Xerox Star word processor!

Several commands are available to edit a
program, including Copy, Delete, and
Undo.

Once you have created the pictorial r e p
resentation, you can use Upedit to start
program execution. Upedit first translates
the picture into the description-file format
and then invokes Upsh to execute that de-
scription file.

After invoking Upsh, Upedit has noth-
ing to do with the program execution.
When execution is completed, control re-
turns to Upedit.

Upsh and Upstart. Upsh reads the de-
scription file, constructs the commands
necessary to execute the program on the
remote hosts, and calls Upstart to execute
the individual processes. If no host is
specified in the description file, Upsh
picks one arbitrarily from a list of hosts in
a configuration file.

If a process's executable image does not
exit on the host that is selected to execute
it, Upsh opens a special connection
(called the file-transfer path) to the copy
of Upstart on the remote host and then cc-
pies the executable image to it (see Figure
6) .

IEEE Software

After the program begins, Upsh waitsfor
all the processes to complete and then
exits. You can cancel execution at any time
by sending an interrupt request to the win-
dow running Upsh.

On the remote hosts, the local copies of
Upstart form the connections between the
processes and begin their execution. U p
start forms connections to the process
using the switchboard server, imple-
menting connections as a pair of 4.3 BSD
Unix sockets.

Upsh uses Unix's remote-shell facility
(Rsh and Rshd) to execute Upstart on the
remote host. This facility authenticates
users and initializes the remote runtime
environment before letting processes exe-
cute. Figure 6 shows the interactions be-
tween Upsh, Upstart, Rsh, and Rshd.

When program execution begins, U p
conn creates awindow that displaysoutput
generated from Upsh. You may create a
monitoring window for any process; out-
put from Upstart and your process will be
displayed in these windows. Monitoring
windows are process attributes that you
specify when you describe the program in
Upedit.

Utilities. We designed Upconn so users
can add features to its basic set of primi-
tives. We have added several utility
processes and interface procedures de-
signed so you can link them to your p r e
gram with Upedit:

The Upmonitor utility monitors mes
sages between any pair of of user processes
and either displays the messages in a win-
dow or logs them for later use. Upmonitor

<file> <process-defs> <connect-defs>

<process-defs> process-def { process-def 1

<process-def> "process" <word> ";" <clauses>
<clauses> [<clause> I

<clause> "using" <word> ";" I
"arg" <arglisb ";" I
"at" "(" <number> "," <number> ")" 'I;" I
"window" 1 9 . 1 ,

<arglist> <word> { <word> }

cconnec t-defs> { connect-def]

<connect-def> "connect" "<" <number> "," <word> ">'I

"<" <number> '*," <word> ">'I 'I;''

<word> <char> { <char>]
<number> <digio { <digit> I

<char>
<letter>

<other>

<letter> I <digio I <other>
"a" ,,. llzll I "A"

, , ,U 1 "@" , "$, , "yo" "A"

. . . "Z"
<digit> "0" . . . "9"

I ...

Fire 5. Description-file grammar.

also lets you stop the message flow between
the processes it is monitoring. To use U p
monitor, you connect two processes to U p
monitor rather than to each other.

The Upfileserver utility process lets
processes treat files as ordinary processes
and access these files by passing messages.
By providing file access through Upfile-
server, we have incorporated file access
into the Upconn semantics without
adding special object types. Upfileserver
supports read, write, seek, begin-transac-
tion, and end-transaction operations. The
begin-transaction and end-transaction re-
quests provide mutual exclusion and syn-
chronization.

Upconn's modular design meant that
wecouldaddtheseutilitiesthroughtheex-

tended librarywithoutchanging the other
parts of Upconn.

Upconn provides interface procedures
through a library, called Uplibrary, that
can be linkedwith individual processes. Li-
brary procedures include routines to p r e
vide mappings between process names
and their associated file descriptors and
routines to simplify access to Upfileserver.

T h e rout ines get-conn-fd and
get-conn-name map between the Unix
file descriptor and the Upconn name for a
connection. Given the name of a process,
get-conn-name returns the file descrip
tor associated with the connection to that
process. You use get-conn-name when a
process does not know the file descriptor
to use to communicate with a specific

~

standard I10 path - c -
4 Monitoring window

\
Hello World \

\

_ - - - - -
nrint P'hdlq

U W network \
\

file-transfer path
Upstart

Rcplre 6. Interaction and communication of Upconn support processes.

July 1988 47

c l i e n t l 0 n c l i e n t 2

LJ

cl 1 e n t 3

Process P r o p e r t i e s

U
30NE I CRNCEL I
Process Name: tml
P r o g r m and Rrgo: / u s r / t e s W t m
Use Host:
J I n d w : No

Figure 7. Adding trnl to dbsirn.

process. For example, if you do not specify
a file descriptor when creating a connec-
tion in Upedit, Upstart will choose the file
descriptor. Rut while LTpstart knows the
name of thr process, it will not know the
file descriptor’s name. Calling
get-conn-name will determine this name
for the process.

Several routines - upfs-read,
upfs-write, upfs-seek,upfs-begin-trans,
and upfs-end-trans- provide access rou-
tines for Upfileserver, so you can treat 1Jp
fileserver as a file even though i t is imple-
mented as a process. The read, write, and
seek routines have the same semantics a
the standard Unix read, write, and seek
routines, so access to files through Upfile-

server is the same as access to regular Unix
files.

You can also use simple Unix utilitieslike
Cat, Sed, Tee, Yes, and Grep. A Unix utility
will generally read from its standard input
file and write to its standard output file
when no special input or output files are
specified, so they can be inserted into a
program and have connections attached
to their input and output descriptors.

For example, you can use Cat to
generate astream ofdata from afile and to
display all incoming messages in a moni-
toring window. Sed can edit a stream of
data passing between two processes. You
can use Tee to log messages in a file while
also passing them through to another

padl t: cdl t ine dbslm lPUlTl Wmq U NOq PIopsl [RUN

FigureS. Creating connections in dbsim.

48

process. You can use Yes to repeatedly
generate messages, which is useful when
debugging programs. And you can use
Grep to filter out unnecessary messages
when testing a program.

Upconn example
An example of how you could use U p

conn is to set up a simulation of a simple
distributed database system. Consider a
database system wi th several file managers,
transaction coordinators, and client?. We
used Upconn to set up the processes in the
simulation, run the simulation, and make
changes to the program layout. In this ex-
ample, there are four simulated client
processes: clientl through client4, a trans
action-manager process (“tm” in Figure
6), and a file-manager process (“fm” in
Figure 6). The file manager uses Upfile-
server to store the database files.

First, we set up a simulation with four
clients, two transaction managers, and two
file managers. We created each process
with Upedit. Figure 7 shows the Upedit
window after we specified the four clients
and while we were describing one of the
transaction managers, tml .

Next,wemadeconnections between the
processes. We needed a connection from
each client to each transaction and file
manager. We also needed connections be-
tween the transaction managers and from
the file managers to the Upfileservers.
Figure 8 shows the clients’ connections to
the transaction managers and a new con-
nection being created between clientl
and the fml file manager. Figure 9 shows
the completely described program.

We then ran the simulation by selecting
the Run command in the upper right
corner of the Upedit window. After run-
ning it, we decided to change the simula-
tion slightly by deleting client2. To do this,
we first deleted all of client2’s connections
(one to each transaction manager and file
manager) and then deleted client2 itself.
Figure 10 shows the new version of the p r o
gram. We could have then run the prcl
gram again, made further changes, and
run it yet again.

Upconn’s visual interface can help you
rapidly describe, modify, and execute p r o
grams. Compared to using a text editor,
this graphical approach gives you more
immediate feedback tochangesin the p r o

IEEE Software

gram specification.

Applications
One of the main uses for Upconn is to

teach students programming. A common
student complaint about programming is
that i t is difficult at first to conceptualize
and work with programs.

Upconn has also aided a research proj-
ect in our department, the DIB p r ~ j e c t , ~
which generates automatic parallel imple-
mentations of backtracking programs.
DIB uses Upsh and Upstart to place
processes, form the necessary connec-
tions, and start program execution. DIB
was originally developed for the Crystal
multicomputer,6 running on the Nugget
operating system. Before Upconn was in-
stalled, DIB was not available on our Unix
machines because there were few tools for
distributed computing on these ma-
chines. Upconn is one of the first tools
available in our environment to ease the
constructino of distributed programs.

Upconn provides most - but not all -
of the features our ideal connector tool
would have. It still needs:

Better process placement because,
while Upconn now provides a placement
mechanism, it does not help you develop
load-balancing policies.

Better facilities to replicate objects and
groups of objects so we can build higher
level semantic descriptions from the basic
functions. Fortunately, this requires no
changes to the description file’sgrammar.

Faster start-up time because Unix’skh
facility, which Upconn uses to start process
execution, is relatively slow. We intend to
have Upconn directly start remote
processes.

Greater support of distributed debug-
ging by extending Upmonitor, which now
only records and displays messages in an
easy-teread format. Planned extensions
will let you stop and restart the monitor
and let you replay and insert messages.

pconn is designed to visually help
you connect and execute pro- U grams. It simplifies your task by

providing a graphical and structural a p
proach to writing programs. It also sepa-
rates the implementation of processes
from the implementation of connections
between them. Rather than provide an

F i r e 9. The full dbsim program.

elaborate set of options, our connector
tool provides a simple, functional inter-
face and lets you add new features easily.
You can use Upconn’s functions without
direct knowledge of the underlying imple-
mentation.

We designed Upconn to make program-
ming possible on the workstations in our
research environment and to make de-
scribing these programs easier. One key
test of any such programming tool is
whether people actually use it. People
in our research community do use U p .:. conn.

References
1. T. LeBkdnc and S. Friedberg, “Hierarchical

Process Composition in Distributed Oper-
ating Systems,” Proc. Fifth Int ’1 Con5 Dis-

tributed Computing Systmns, CS Press, Los
Alamitos, Calif., 1985, pp. 2634.

2. T.C.K. Chou and J.A. Abraham, “Load
Balancing in Distributed Systems,” E!:
Trans. SoJwareEng., July 1982, pp. 401412.

3. D. Draheim, B.P. Miller, and S. Snyder, “A
Reliable and Secure Unix Connection Ser-
vice,” Proc. Sixth Symp. Reliability in Dis-
tributed Sojware and Database Systems, CS
Press, LosAlamitos, Calif., 1987, pp. 15-21.

4. D.C. Smith et al., ‘The Star User Interface:
An Overview,” h c . Nat’l Cornpuler ConJ.
AFIPS, Reston,Va., 1982, pp. 515-528.

5. R. Finkel and U. Manber, “DIB: A Dis-
tributed Implementation ofBacktracking,”
h o c . Fvth In1 ’I Con5 Distributed Computing
S y s h , CSPress,LosAlamitos,Calif., 1985,
pp. 446452.

6. D. Dewitt,R. Finke1,andM. Solomon,‘The
Crystal Multicomputer: Design and Imple-
mentation Experience,” L E E Trans. sofl-
wamEng.,Aug. 1987, pp. 953-966.

pedlt: ed i t ing dbslm [OUlll DaIE] lcopd a LflfI PNDq [RUh]

n

Figure 10. The modified dbsim program.

July 1988 49

Mitali Bhattacharyya is working toward a PhD
in computer science from the University of
Wisconsin at Madison. Her research interests
include database systems and user interfaces.

Bhattacharyya received a BS and MS in com-
puter science from the UniversityofWisconsin
at Madison.

David Cohrs is working toward a PhD in com-
puter science from the University ofWisconsin
at Madison. His research interests include user
interfaces, operating systems for multiproces-
sor and distributed systems, and networks.

Cohrs received a BS and MS in computer
science from the University of Wisconsin at
Madison. He is the recipient of an AT&T
graduate fellowship.

Barton Miller is an assistant professor of coni-
puter science at the University of Wisconsin at
Madison. His researrh interrsts include die
tributed operating systems, parallel and di.;
tributed debugging, distributed program me:\-
suremerit, aud user interfaces.

Miller received a BA in computer srience
from the University of California at San Diego
and an MS and PhD in computer science from
the University of California at Berkeley.

Address questions about this article to the authors at Computer Sciences Dept., University of Wisconsin, 1210 W. Dayton St., Madison, WI 53706: In-
ternet bart@cs.wisc.edu

THE BOOK
Object-Oriented Software Construct ion
by Bertrand Meyer
Prentice-Hall (1988), 552 pp, ISBN 0-13-629049-3.
The first complete presentation of the approach
that is revolutionizing software engineering.
In America: Order from your book8eller or Interactive
Software Engineering. In Europe: From your bookseller or Soc.
der Outilr du Logiciel. 4 NC R. BarthCICmy, 92120 Montrouge,
Frmce. Phone: 1-46 5 1 13 36, F8x: 1-46 51 01 03.

THE COURSE
"Object-Oriented Design:
The New Breakthrough in the Search f o r
Sof tware Quality and Productivity"
taught by Dr. Bertrand Meyer. A unique
opportunity to learn firsthand how the next
generation of software will be developed.
B o r n , July 14-15; Toronto. July 18-19.

See our Eiffel ad. inrsid. fr0.r cover.

ViiiiiF
WITH SCREENS,

TIDEMOS AND GRAPHICS?
Try the Disp1ayEqress.M and C-Display
LibrarianrM! This software can improve
your competitive position and increase your
productivity. SATISFACTION GUARANTEED
OR YOUR MONEY BACK.

Tremendous productivity tools"
(PC Week oCtober27, 1987)

"Many applications will benefit from the quick development times and
minimal pmgramming r e q u i d to implement a finished, quality product"

(IEEE Softwan, November, 1987)

"If you want to include bit-mapped graphics in your applicalon,
then this might be the package for you"

(Computer Language June, 1987)

Send check or money order now to:

SYDETECH
SYSTEM DEVELOPMENT TECHNOLOGIES, INC

43-23COLDEN STREET, #17C. FLUSHING. N Y 11355

~~ ~

Reader Service Number 7 Reader Service Number 8

mailto:bart@cs.wisc.edu

