
Mr. Scan: Extreme Scale Density-Based Clustering using a
Tree-Based Network of GPGPU Nodes

Benjamin Welton, Evan Samanas, and Barton P. Miller
Computer Sciences Department

University of Wisconsin
Madison, WI 53706

{welton,samanas,bart}@cs.wisc.edu

ABSTRACT
Density-based clustering algorithms are a widely-used class
of data mining techniques that can find irregularly shaped
clusters and cluster data without prior knowledge of the
number of clusters it contains. DBSCAN is the most well-
known density-based clustering algorithm. We introduce
our version of DBSCAN, called Mr. Scan, which uses a hy-
brid parallel implementation that combines the MRNet tree-
based distribution network with GPGPU-equipped nodes.
Mr. Scan avoids the problems of existing implementations
by effectively partitioning the point space and by optimizing
DBSCAN’s computation over dense data regions. We tested
Mr. Scan on both a geolocated Twitter dataset and image
data obtained from the Sloan Digital Sky Survey. At its
largest scale, Mr. Scan clustered 6.5 billion points from the
Twitter dataset on 8,192 GPU nodes on Cray Titan in 17.3
minutes. All other parallel DBSCAN implementations have
only demonstrated the ability to cluster up to 100 million
points.

1. INTRODUCTION
We investigate techniques for density-based clustering of

multi-billion point datasets such as geospatial data. Specif-
ically we have developed a clustering technique that uses
a hybrid computing model combining large-scale multicas-
t/reduction overlay networks operating with nodes equipped
with high-end GPGPUs. This hybrid computation allows for
clustering of extremely large datasets in an efficient manner.
In this paper, we introduce a new clustering algorithm, Mr.
Scan, and an end-to-end implementation of this algorithm
that we show can efficiently scale to billions of points on a
leadership class supercomputer.

Clustering is the act of classifying data points, where data
points that are considered similar are contained in the same
cluster and dissimilar points are in different clusters.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SC13 November 17-22, 2013, Denver, Colorado, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-2378-9/13/11 ...$15.00
http://dx.doi.org/10.1145/2503210.2503262.

Clustering helps researchers and data analysts gain insight
into their data, e.g., identifying and tracking objects such as
gamma-ray bursts in sky observation data [10], monitoring
the growth and decline of forests in the United States [23]
and identifying performance bottlenecks in large-scale par-
allel applications [12]. We focus on a type of clustering algo-
rithm called density-based clustering, which classifies points
into clusters based on the density of the region surrounding
the point. Density-based clustering detects the number of
clusters in a dataset without prior knowledge and is able to
find clusters with non-convex shapes.

Datasets such as the Sloan Digital Sky Survey [2] and geo-
located tweets from Twitter [3] are useful to cluster but are
too large (i.e., billions of data points) to be practically com-
puted on a small or medium-sized parallel computer (100’s
to 1000’s of nodes) by any non-trivial clustering algorithm.
These large data sizes require the largest-scale parallel sys-
tems that are in use today. However, there are few dis-
tributed density-based clustering algorithms designed to run
on these large-scale systems. Existing distributed density-
based algorithms typically reduce the quality of the output
when compared to the single-node version, or they do not
scale to the sizes needed for these datasets.

Mr. Scan is our implementation of the DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) clus-
tering algorithm [11]. DBSCAN is the most widely cited
density-based clustering algorithm and has been shown to
be well-suited for data analysis in many fields, e.g., the anal-
ysis of laser ablated material [26] and tracking population
movement by use of geotagged photographs [17]. The bene-
fits DBSCAN has over other clustering algorithms are that
it has the ability to find irregularly shaped clusters, it dis-
tinguishes data points that are considered noise (i.e., points
in low density regions) from clusters, and it is able to clus-
ter data where the number of clusters in the dataset is not
known in advance. These features come at a cost, since the
computational complexity of DBSCAN is O(n2) where n is
the number of points in the input dataset. This complexity
is a result of the calculation of a n x n matrix containing
the distances between all points. This matrix can be re-
placed with a spatial tree index which reduces the cost of
distance calculations leading to an average case complexity
of O(n logn).

Mr. Scan is the first implementation of DBSCAN that can
scale up to 6.5 billion data points and the first distributed
DBSCAN algorithm that incorporates the use of GPGPUs.
It uses a programming paradigm that organizes processes



into a multi-level tree with an arbitrary topology. In this
multi-level tree paradigm, DBSCAN calculations are done
on the GPGPU leaf nodes and these results are combined
on non-leaf nodes. Mr. Scan is also the first clustering algo-
rithm to use this programming paradigm to our knowledge.
Using this multi-level tree design we demonstrate the capa-
bility to cluster 6.5 billion points using 8,192 GPGPU nodes
in 17.3 minutes.

The ability to cluster billions of data points with DB-
SCAN can only be realized if the key obstacles to scaling
DBSCAN are overcome: load balancing, cluster merging,
and distributing data advantageously. The running time
of DBSCAN increases as a function of spatial density of
the input data points, which causes a load imbalance when
compute nodes contain regions of varying density. We mod-
ify DBSCAN to find the most dense regions and infer their
membership in a cluster without evaluating the points in-
side these dense regions. Results from DBSCAN compute
nodes must be merged accurately without requiring the en-
tirety of each cluster. We resolve this by requiring a small,
bounded number of representative points per cluster to per-
form a merge. Finally, data must be distributed in a manner
that balances DBSCAN’s clustering operation and the over-
head of merging clusters. We achieve this with a heuristic
that spatially decomposes the data into partitions to bal-
ance the merge overhead. Each partition contains roughly
equal point counts to aid in balancing DBSCAN clustering
time.

In Section 2 we describe the DBSCAN algorithm and dis-
cuss other methods that attempt to parallelize DBSCAN
and other related work. Section 3 introduces the Mr. Scan
algorithm and how it overcomes DBSCAN’s scaling obsta-
cles. Section 4 describes the experiments used to benchmark
Mr. Scan using data from the microblogging service Twit-
ter and the Sloan Digital Sky Survey. Section 5 presents
and discusses the scaling results of both datasets. Finally,
Section 6 presents our concluding thoughts.

2. BACKGROUND AND RELATED WORK
Due to DBSCAN’s popularity among density-based clus-

tering algorithms, optimization and parallelization of the al-
gorithm has been widely studied [5]. We first explain the
DBSCAN algorithm in detail, then present previous paral-
lelization efforts that are most significant to the paralleliza-
tion style of Mr. Scan along with the most scalable algo-
rithms.

2.1 The DBSCAN Clustering Algorithm
DBSCAN clusters data points by density. Its notion of

density comes from its two parameters known as Eps and
MinPts. DBSCAN operates by finding the Eps-neighborhood
of each point. The Eps-neighborhood of a point p is the set
of points that are located within Eps distance of p. The
point p is considered a core point if there are at least MinPts
points in its Eps-neighborhood. All other points are classi-
fied as non-core points. Non-core points can have two dis-
tinctions: a border point or a noise point. A border point is
a non-core point that contains at least one core point in its
Eps-neighborhood, whereas a noise point does not.

A cluster is formed by the set of core and border points
reachable from a particular core point. Once an unvisited
core point is found, it is considered a new cluster along with
its Eps-neighborhood. This cluster is expanded by finding

the Eps-neighborhood of each point classified in the cluster
until all points that are reachable from the first core point
are found. For this reason, DBSCAN’s clustering results
can vary slightly if the order in which Eps-neighborhoods
are discovered is changed.

The performance of the DBSCAN algorithm varies greatly
based on the presence (or lack thereof) of a spatial index.
DBSCAN without a spatial index is O(n2) in time com-
plexity. This is due to not limiting the amount of points
compared by the distance function. Without a spatial index
all points in the dataset must be compared with each other
to determine which points are core. A spatial index how-
ever reduces the number of points which must be compared
by limiting the search to a smaller subset of points that are
in the region of the point being queried. The average case
complexity improves to O(n logn) by use of a spatial index
(e.g., R*-tree or KD-tree).

2.2 Past Optimizations of DBSCAN
DBSCAN has been parallelized by multiple past projects.

One of the first was PDBSCAN [29]. This algorithm used a
distributed R*-tree to partition the dataset among many
compute nodes. Distributed R*-trees partition data but
they replicate the entire index on each node. If a neigh-
borhood query included an area of the dataset that resides
on different node, the node that started the query must send
a message to obtain the data. This algorithm showed linear
speedup up to 8 nodes, but the amount of messages sent
grew super-linearly in most cases, which hampered its scal-
ability. Another algorithm, DBDC [15], assumes that the
dataset to cluster is already distributed among the compute
nodes. DBDC pioneered the idea of using many slave nodes
to cluster a portion of the dataset and merging the final re-
sult at a master node, and also the idea of sending a smaller
number of points to represent the locally found clusters to
increase scalability. This technique scaled linearly up to 30
nodes, but the manner in which representative points were
picked decreased the quality of the clustering output when
compared to traditional DBSCAN, and the assumption of
already distributed data further degraded quality.

Recently, there have been some Map/Reduce implementa-
tions of DBSCAN, MR-DBSCAN [14] and DBSCAN-MR [9].
MR-DBSCAN was able to cluster 1.9 billion points of 2D
taxi-cab traces in approximately 5,800 seconds. However,
the authors preprocessed the data prior to running DB-
SCAN to reduce the negative effects of high-density regions
and did not account for this preprocessing time in their re-
sults. Also, the parameters for MR-DBSCAN’s runs were
chosen solely for speed and not for quality of the data anal-
ysis [13]. Aside from these issues, neither of the Map/Reduce
implementations showed near-linear speedup nor the ability
to scale weakly and only demonstrated their algorithms on
up to 12 multi-core nodes. The highest scale for DBSCAN
that we have seen prior to our current paper is from PDS-
DBSCAN [24], which was able to achieve a 5,765x speedup
on 8,192 distributed cores on a 72 million point astronomy
dataset with a random distribution. This algorithm moved
away from the master-slave approach and used a distributed
disjoint-set data structure. Speedup decreased beyond 8,192
cores because of a large increase in messages sent between
cores to access and update the data structure.

Several algorithms attempted to improve the single-core
performance of DBSCAN. TI-DBSCAN [18] uses the tri-



angle inequality. The input dataset is sorted to determine
a point’s Eps-Neighborhood, which is similar to the way
our GPU implementation of the algorithm uses its KD-tree.
Another version of DBSCAN [19] attempts to remove core
points early from the DBSCAN calculation. This idea is sim-
ilar to Mr. Scan’s dense box optimization, but their method
appears that it would change the result of DBSCAN signif-
icantly, even though the authors do not comment on this
effect in the paper. In comparison, Mr. Scan’s dense region
calculation has an extremely small impact on quality when
compared to traditional DBSCAN.

3. THE MR. SCAN ALGORITHM
Mr. Scan is a parallel implementation of the DBSCAN

algorithm with four phases: partition, cluster, merge, and
sweep. Mr. Scan starts with a single input file on a parallel
file system and writes a file of the points included in a cluster
and their cluster IDs as output. The input points are con-
tained in a single binary or text file. Each input point has a
unique ID number, coordinates, and an optional weight that
can be used for analysis of the clustered output.

Figure 1 gives an overview of the Mr. Scan algorithm. In
the partition phase, the input file is read by a partitioner
that creates one partition per clustering process. The input
file can contain billions of points and reach sizes up to 300
GB, so the partitioner is distributed using MRNet [25] to
parallelize this step. Each worker process of the partitioner
writes the partitions to the file system in parallel to prepare
for the next phase. The cluster phase is started by launch-
ing a second MRNet tree of processes. This tree has a user-
specified number of levels of intermediate processes and one
leaf process for each partition. Each Mr. Scan leaf process
clusters its assigned partition using our GPGPU version of
DBSCAN and picks a small, constant set of points to repre-
sent each cluster. The representative points are sent to the
intermediate processes to start the merge phase where the
clusters are progressively merged by each level of intermedi-
ate processes until they reach the root. The root performs
the final merge and assigns a global ID to each cluster. Mr.
Scan then starts the sweep phase, and sends the global clus-
ter IDs down the tree, where each point is identified with
its correct global cluster ID and written to the output file
in parallel by the leaf processes.

In this section, we describe the design of each of Mr.
Scan’s phases, and how they solve the three challenges in
scaling DBSCAN: load imbalance, distributed merge, and
data distribution.

3.1 Partitioner
In addition to the basic goal of dividing an input dataset

into n partitions given n leaf processes, we have three main
goals for the design of Mr. Scan’s partitioner. First and most
important, the partitioner must produce partitions capable
of yielding a correct DBSCAN result when clustered and
merged. Second, the output partitions must have roughly
equal computational costs when being clustered. The par-
titioner does not need to produce perfectly balanced par-
titions, since the dense box optimization described in Sec-
tion 3.2.3 plays a large role in controlling load balance. How-
ever, the partitioner does hold some responsibility for con-
trolling the load balance during the cluster phase. Third, the
partitioner must perform well enough to avoid becoming a
significant portion of Mr. Scan’s overall time, especially as

the size of the input dataset grows. This means as few op-
erations as possible should be I/O bound, and leads to the
design decision of distributing the partitioner among many
nodes. We will discuss how we meet these three goals below.

3.1.1 Correctness
We define a correct partitioning as a set of partitions that

merge to form a global clustering that is equivalent to exe-
cuting non-parallel DBSCAN on the entire input dataset. It
is impossible for this definition to be satisfied when the par-
titions each contain a disjoint subset of the input dataset,
because any point whose Eps-neighborhood includes points
in a different partition than its own would return an incom-
plete Eps-neighborhood [29] [14] [9]. To address this, we
add a shadow region to each partition. The shadow region
is the set of points not already included in the partition that
lie Eps distance from the partition’s boundary. A shadow
point is a point that lies in a shadow region with respect to
a partition, and a partition point is a point already included
in the partition. When the shadow region is added to a
partition, each partition point’s Eps-neighborhood contains
only partition points or shadow points, and thus is complete
within the partition.

3.1.2 Partitioning Algorithm
The second goal of the partitioner is to control load bal-

ance in the cluster phase by creating computationally equiv-
alent partitions. Therefore, we must have a way to estimate
a partition’s computational cost to DBSCAN. Mr. Scan uses
the partition’s point count for this estimation. We have es-
tablished in Section 1 that DBSCAN’s performance is largely
dependent on the spatial density of points and not pure point
count, so point count is not an ideal measure for an unmod-
ified DBSCAN implementation. We use point count instead
of density because our modified DBSCAN’s performance is
positively impacted by density, so point count is a more ac-
curate measure in this case.

A DBSCAN partitioning algorithm must output DBSCAN
partitions that are not only correct, but profitable. We de-
note a partition as profitable if it meets two constraints.
The first is that the longest distance across the partition
must be greater than Eps. If the distance is less than Eps,
the Eps-neighborhood of each point is guaranteed to include
each point in the partition, and there is no need to invoke
DBSCAN. The second constraint is that each partition must
contain at least MinPts points. Otherwise, we would already
know that every point is a noise point, and DBSCAN is not
needed.

We fulfill the first constraint in our algorithm by con-
structing the input dataset as a grid where each cell of the
grid is the same size, Eps x Eps. Each partition is made
up of at least one grid cell, which ensures that each parti-
tion’s longest distance across is greater than Eps. Thus, the
shadow region for each partition simply becomes the set of
grid neighbors not already in the partition.

The partitioning algorithm starts by setting the target size
of the partitions, which is an equal share of the input points.
Since our partitioning algorithm forms partitions from reg-
ular grid cells that contain varying amounts of points, it
is generally not possible to form partitions that are even
roughly similar in their point counts when partitioning non-
uniform data. Large grid cells do not pose a problem for
load balancing in Mr. Scan because of our dense box opti-



Figure 1: The Mr. Scan algorithm

mization described in Section 3.2.3.
For simplicity, we describe the algorithm for forming parti-

tions assuming that the input dataset’s grid is 2D, however
it can be extended to an arbitrary dimension. We iterate
over all cells in the input grid first along the y axis, and
then along the x axis. Partitions are formed sequentially
through this iteration. Grid cells are added to a partition
until the addition of the cell would cause the partition to
exceed the initial target size. The only time that a grid cell
will be added to a partition to make it exceed the target size
is if the partition is the final partition formed or the parti-
tion does not yet contain any grid cells. Given the existence
of grid cells that are larger than the target size, we must en-
sure that DBSCAN’s second partitioning constraint is met:
that every partition is greater than MinPts points. To meet
this constraint, we keep track of the running difference of
each partition’s size from the target size. If this difference
is positive, we form partitions proportionately smaller un-
til the difference is neutral or negative again, keeping the
minimum partition size set to MinPts. Once we finish par-
titioning grid cells, we add the correct shadow region to the
partition, as shown in Figure 2b.

It is common in practice for the last partition to be much
larger than most of the other partitions, because as the origi-
nal partitions are formed, they are kept below the target size.
The collective point difference of all partitions from the tar-
get size is then left for the final partition, resulting in the
need for a rebalancing phase of the partitioning algorithm.
Figure 2a demonstrates this, as the populous Eastern United
States is included entirely in the last partition formed. Fur-
thermore, the addition of the shadow regions increases the
total number of points in the partitioned dataset, and also is
likely to negatively affect whatever equality was established
by the first iteration through the grid cells. Because of the
increase in total points, we update the target size to the fi-
nal target size, which is the mean of the point counts of all
the partitions including shadow regions. Then, starting at
the last partition formed we remove a grid cell, update the

shadow region, and repeat until a specified threshold size
is reached. The threshold is set to 1.075 × finaltargetsize
because it worked well in practice on our datasets. The re-
moved grid cells are then added to the second-last partition
formed, as in Figure 2c. This process is repeated for each
partition, working sequentially backward through the parti-
tions until we reach the first.

3.1.3 Distributed Partitioner
The distributed partitioner is implemented using MRNet,

but it uses a separate network of processes than the final
three phases of Mr. Scan. The separate MRNet tree is used
because the partitioner is designed to output partitions in
parallel to the Lustre file system. We use the file system
instead of sending the points directly to the clustering nodes
for simplicity of implementation. The next version of Mr.
Scan will bypass use of the file system because Lustre has
been shown to limit the bandwidth of parallel writes beyond
2000 processes [7], which is significantly smaller than the
number of processes needed for the other three phases (up
to 20,000). In practice the partitioner did not come close
to this limit, as we did not require additional memory when
distributing our largest input dataset over 129 processes.
The partitioner uses a flat topology as is appropriate for the
size of its task.

The strategy for distributing the partitioner is based on
the fact that the algorithm for forming partitions does not
use information about each individual point. The only in-
formation needed is a grid of Eps x Eps cells and the point
count for each cell. Therefore, the partitioner is able to
distribute the entire input dataset across the memory of the
leaf processes and only send a point count of each non-empty
Eps x Eps cell to the root. The root then serially executes
the algorithm described in Section 3.1.2 to determine the
boundaries of each partition and broadcasts the boundaries
to the leaves. The leaves then write the complete point in-
formation to the correct position in a single output file in
parallel, where the output file contains the points of each



(a) Partition boundaries be-
fore rebalancing.

(b) Last two partitions after
adding shadow regions

(c) The first step of rebalanc-
ing. We remove grid cells
from the last partition formed
until a threshold is reached
and update its shadow re-
gion. The removed cells are
added to the second-last par-
tition, which gets rebalanced
the same way.

(d) Partitions after rebalanc-
ing finishes (shadow regions
not shown).

Figure 2: Mr. Scan’s partition algorithm

partition in sequential order. Additionally, the root gener-
ates a metadata file to specify the offset from which each
partition starts in the output file. When the output data
is extremely dense, we have an optional optimization for
the partitioner that chooses representative points for each
shadow grid cell in the same manner as described in Sec-
tion 3.3.1. The partitioner writes out these representative
points instead of the contents of the shadow grid cell. This
optimization drastically reduces the amount of data written
to Lustre and local DBSCAN quality is preserved, but it
also may cause the merge algorithm to occasionally miss the
opportunity to combine clusters.

3.2 Clustering Phase
The clustering phase runs in parallel on each leaf node,

executing a highly multi-threaded implementation of DB-
SCAN that executes on a GPGPU. The GPGPU algorithm
developed for Mr. Scan is an extension of the CUDA-DClust
algorithm [6], adding two key modifications to increase scal-
ability both at the clustering and merge steps. The main
contribution of these extensions is a reduction of run-time
variability caused by differing point density. We start with
an overview of the CUDA-DClust algorithm in Section 3.2.1.
Our two extensions to CUDA-DClust, improving the host-
GPGPU interaction and Dense Box point elimination, are
described in Sections 3.2.2 and 3.2.3.

3.2.1 The CUDA-DClust algorithm
The design of the CUDA-DClust algorithm is conceptu-

ally similar to the DBSCAN implementation described in
Section 2.1. Clustering in CUDA-DClust differs from DB-
SCAN in that multiple DBSCAN operations to take place

on the dataset simultaneously. The number of DBSCAN op-
erations running concurrently is determined by the number
of GPGPU blocks. A GPGPU block is the CUDA term for
the logical grouping of threads running on a multiprocessor.
Figure 3 shows CUDA-DClust at the GPGPU block-level.

Figure 3: CUDA-DClust GPGPU blocks expanding seed
points [6].

Each GPGPU block is assigned a single seed point, which
is a point that has not yet been expanded. The DBSCAN
algorithm is then run on this point to expand the cluster and
find neighboring points. CUDA-DClust uses a modified KD-
tree to help DBSCAN determine possible neighbor points.
The difference between a standard KD-tree and the CUDA-
DClust modified KD-tree is that a leaf represents a region
of points instead of a single point. The use of a KD-tree
reduces the cost of point expansion by limiting the number
of neighbors that need to be checked to the points in the
same region of the point being expanded. Other indexing
structures, such as the R*-tree typically used in a CPU im-
plementation of DBSCAN, cannot be used on the GPGPU
due to the overhead of traversing a tree of arbitrary depth.

After expansion, if the point is determined to be a core
point, it is marked as being a member of a cluster and all of
its neighbors are added to the block’s queue for expansion
on subsequent DBSCAN iterations. Otherwise the point is



marked as noise.

Figure 4: Collision between two concurrently running
blocks [6].

After all blocks have completed the expansion of their re-
spective seed points, control is transferred back to the CPU.
The CPU then copies the current state for each block from
the GPGPU, checks for collisions between blocks, and re-
seeds the blocks that have an empty point queue with a new
unprocessed point. A collision occurs between two blocks
when one block attempts to expand a point that has already
been expanded by another block or if the point is already
in the queue to be expanded by another block. Figure 4
shows an example of this collision where two blocks share a
point after an expansion. These collisions indicate that the
clusters being expanded in two different GPGPU blocks are
actually the same cluster. Collisions between blocks must
be tracked and corrected by merging the clusters expanded
by all blocks that collide.

3.2.2 Limiting Host to GPGPU interaction
Synchronous memory transfers between CPU and GPGPU

are costly operations which should be kept to a minimum.
CUDA-DClust has the negative property of performing at
least two memory operations between the host and GPGPU
after every DBSCAN iteration. This results in a total of
2× (Points/BlockCount) copy operations between the host
and GPGPU. Since leaf nodes in Mr. Scan may have widely
varying point counts due to differing shadow area densities,
nodes that have high point counts can take much longer to
cluster. We modified CUDA-DClust so that there is only a
single round trip memory operation regardless of point and
block count (copying raw input to the GPGPU and retriev-
ing the clustered result from the GPGPU).

In our new clustering algorithm, there are now two passes
over the point data. Pass one classifies all the core points
in the dataset and uses a method similar to CUDA-DClust
to expand points. One difference is that points are not
placed into a block’s queue if the number of neighbor points
is greater than MinPts, and expansion during this phase
stops as soon as MinPts is reached. Instead of requiring a
synchronous memory copy after every input seed point is
expanded, the next input seed point for DBSCAN is de-
termined by the parameters of the CUDA kernel call. This
allows for all kernel invocations needed to cluster the dataset
to be issued in bulk without any intervening memory copies.

The second pass expands the core points found in the
first pass to generate the clusters. The clusters are found
by running the same operation as above on only the core
points in the dataset. When a point is expanded, all of that
points neighbors are marked as being members of the clus-
ter. When a collision occurs between two expanded clusters,
the collision between these clusters is marked and rectified
on the CPU after all points in the dataset has been classi-

fied. When all points have been classified, the CPU merges
clusters that have collided and the final clusters are revealed.

3.2.3 Dense Box Algorithm
The dense box algorithm allows for points in dense data

regions to be marked as members of a cluster without incur-
ring the cost of expanding each point individually. Dense
regions of data are detected by using the sub-divided point
space generated by the modified KD-tree described in Sec-
tion 3.2.1. All points in a sub-division with dimension size
less than or equal to Eps

2
√
2

by Eps

2
√
2

and pointcount ≥MinPts

will be marked as members of a cluster. The points that
are marked as being members of a cluster are not expanded
when they are encountered by DBSCAN.

Since we are using an existing sub-division of the point
space, there is little added complexity for detecting and
eliminating dense boxes. The worst case complexity of this
algorithm is O(l) where l is the number of sub-divisions.
In return we see a reduction in the complexity of DBSCAN.
Worst case DBSCAN complexity drops fromO(n2) toO((n−
p)2) where p is the number of points eliminated by dense
box. Average case run time for DBSCAN drops fromO(nlog(n))
to O((n− p)log(n)). We see that as the complexity of DB-
SCAN rises, the number of points p removed by dense box
increases.

3.3 Merge Algorithm
Merging clusters generated by multiple nodes is needed to

generate the final output clustering. The merging process is
not trivial because a single cluster may span multiple nodes
and these clusters only merge if they have a core point in
common. Mr. Scan’s merge algorithm detects and merges
clusters with overlapping core points quickly without requir-
ing the presence of the entire clustered output. Using the
entire clustered output would exhaust computational and
memory limits as the output grows in size so we select a
fixed number of points per grid cell (eight points) to repre-
sent the cluster’s core points. The points selected to repre-
sent the core points are called representative points and are
described in Section 3.3.1. The representative points and
the set of non-core points of the cluster are used for merging
in a method described in Section 3.3.2.

3.3.1 Selection of Representative Points
The set of representative points is the minimum set of core

points from a single cluster that can correctly detect a merge
inside a single grid cell. Clusters that have overlapping core
points need to have at least one core point of overlap within
the collective Eps-neighborhood that is formed by the set of
representative points of the grid cell. We have determined
that eight points can represent the core points of a grid cell
of arbitrary density. The eight selected representative points
are the points closest to the center of the sides of the grid
cell and the corners of the grid cell. Figure 5 shows that
when two clusters have an overlapping core point in a grid
cell that at least one will be within the Eps-neighborhood
of a representative point.

3.3.2 Merging
The merge algorithm is run on all clusters with overlap-

ping grid cells. At this point in the algorithm, all clusters
are composed of grid cells with each grid cell containing a set
of representative points and the set of non-core points. The



Figure 5: Any overlapping core point P must be within
1
2
× Eps of at least one corner or side of the grid cell. We

label this point Ref. This means that the representative
point for Ref must fall within a 1

2
× Eps-neighborhood of

Ref. Since this entire region (shown as the blue circle) is
contained in the Eps-neighborhood of P this means that P
is always within Eps of a representative point.

merge operation is done on every pair of overlapping grid
cells between two clusters. There are three types of grid cell
overlaps that the merge operation must be able to handle.

The first type, a core point overlap, is when both clusters
marked the same point as a core point (shown in Figure 6).
Whenever a core point overlap occurs we know the two clus-
ters merge. This case is detected if any representative point
from one cluster falls within Eps of a representative point
from the other cluster.

Figure 6: Example of a core point overlap between clusters
detected on different nodes.

The second type, a non-core/core overlap, is when one
cluster detects a point as being core and another cluster
in the grid cell detects the same point as being non-core.
This case (shown in Figure 7) arises in Mr. Scan because
shadow cells by definition do not have a complete set of
neighbor cells on a node. We have shown in Section 3.1.1 the
partitioner guarantees that all points within Eps of any point
in the non-shadow region will be included in the partition,
however this is not true of shadow regions. Points in shadow
regions could have neighbors that are not visible to the node
causing a misclassification of the point. We take advantage
of the fact that a non-shadow region will always have the
correct classification for points in its cell to detect and merge
clusters that have a non-core/core overlap. If we obtain the
difference between the set of non-core points found by the
shadow region and the set of non-core points found by the
non-shadow region we get a set of points that is unique to
the shadow region. If any point in the resulting set is within
Eps of any representative point in the non-shadow region,
the clusters merge.

The third type, a non-core/non-core overlap, is when two
clusters do not merge but have overlapping non-core points.

Figure 7: Example of the second type of merge where a core
point detected by one node is being detected as a non-core
point in a neighboring node. This case is caused by a shadow
region not having all neighbor points available (furthest left
and furthest right grid cells shown).

We detect this case so that we can remove duplicate non-core
points from the output data. Since the non-core points are
members of both clusters we can remove the duplicate non-
core points from either of the clusters. We resolve this case
by removing all duplicate non-core points from the shadow
region.

3.4 Sweep Step
The purpose of the sweep step is to write the finalized

clusters out to the file system. The sweep step starts with
the results of the completed merge operation. It first cal-
culates file offsets to be used by the leaf nodes to write out
the points for each cluster. Next a globally unique identi-
fier is assigned to each cluster. This information is then sent
down the tree with each level of the tree reversing the merge
operation. When a leaf node receives the unique identifier
labeling information, it writes all points present in those
clusters out to the file system.

4. EXPERIMENT SETUP
We have two goals in evaluating Mr. Scan. The first goal

is to test our ability to run DBSCAN on datasets that are
several billion points in size in a reasonable amount of time.
These datasets must represent real-world problems, and our
experiments must use DBSCAN parameters that are useful
to the problem. Datasets this size have not been successfully
clustered with any density-based clustering algorithm. The
second goal is to evaluate whether Mr. Scan exhibits good
scaling properties. This is a difficult proposition because
memory limits make comparison to a single node implemen-
tation impossible. We first evaluate weak scaling, where
each leaf process is responsible for roughly 800,000 points.
We then evaluate strong scaling, comparing performance at
scale to the smallest Mr. Scan instantiation that memory
limits allowed on our largest dataset.

We tested Mr. Scan with a synthetically generated dataset
derived from geo-located tweets from Twitter and an image
dataset obtained from the Sloan Digital Sky Survey. All
experiments were run on the Titan supercomputer located
at Oak Ridge National Laboratory. Titan is a Cray XK7
system with 18,688 compute nodes. Each compute node
has sixteen 2.2GHz AMD Opteron processors with 32 GB of
memory, and an NVIDIA Tesla K20 accelerator with 6 GB
of memory. Titan is connected to a large Lustre file system.
When we ran our experiments, only 8,972 compute nodes
were available.



4.1 Twitter Experiment
Research that analyzes user activity on social media sites

like Twitter and Facebook is rapidly increasing in popular-
ity. Twitter has been used to detect and predict flu out-
breaks [21], alcohol consumption [8], rainfall [21], overall
mood of a nation [22], political biases [20], and popular top-
ics [16]. The importance of this research is evidenced by
the United States Library of Congress archiving all Twit-
ter tweets from 2006 to the present [27]. Facebook is also
used for social science research [28], and Flickr has been
used to analyze popular places in a city using photo location
data [17]. Many of these research efforts lacked the ability
to add location-based information to large scale analyses, so
Mr. Scan should make large scale analysis using location
information from social media more feasible.

To test Mr. Scan’s ability to cluster these datasets, we
collected a set of 8,519,781 geo-located tweets from Twit-
ter’s public API between August 11-21, 2012. We then used
the distribution of these tweets to generate random datasets
of arbitrary size for ease of experimentation. In our experi-
ments, we used latitude and longitude as 2D Cartesian Co-
ordinates and fixed our Eps value at 0.1 degree to represent
a fine-grained analysis. We tested four different MinPts val-
ues: 4, 40, 400, and 4000 to represent a wide range of output
densities.

4.2 Sloan Digital Sky Survey Experiment
The Sloan Digital Sky Survey (SDSS) is an imaging survey

that is used to map and catalog astronomical objects using
images obtained from terrestrial based telescopes [2]. The
images generated by the telescopes in the survey may con-
tain hundreds of new objects which need to be classified and
cataloged. Since there are tens of thousands of such images,
an automated process is needed to detect these objects. The
DBSCAN algorithm has been used to automate the process
of detecting, tracking, and classifying objects obtained from
terrestrial based telescopes [10] [24]. As data sizes in grow,
automated cataloging (and re-cataloging) of these datasets
will be needed. Testing was done on the Baryon Oscillation
Spectroscopic Survey [1] γ frame photo object data released
by SDSS in Data Release 9.

5. EVALUATION
We present results from the evaluation of Mr. Scan for

both the Twitter and Sky Survey datasets. In Section 5.1
both the weak and strong scaling results are presented for
the Twitter dataset. A breakdown of the running time for
each portion of the Mr. Scan algorithm is also provided and
discussed. Section 5.2 contains the weak scaling results for
the SDSS dataset.

5.1 Twitter Experiment
We evaluated both the weak and strong scaling properties

of Mr. Scan using our Twitter datasets. We tested weak
scaling by clustering a fixed number of points per leaf node
and increasing the data size proportionally to the number of
leaf nodes. Table 1 describes the configurations of nodes and
data sizes tested for weak scaling. We tested strong scaling
by clustering our largest dataset of 6.5 billion points, starting
at the number of leaf nodes that had sufficient memory to
support their partition size. We then increase the node count
to the highest amount the machine allowed. Finally, we

# of # of MRNet # of # of
points internal processes leaves partition nodes
1,600,000 0 2 2
6,400,000 0 8 4

25,600,000 0 32 8
102,400,000 0 128 16
409,600,000 2 512 32

1,638,400,000 8 2048 64
3,276,800,000 16 4096 96
6,553,600,000 32 8192 128

Table 1: Configurations used in weak scaling experiment

Figure 8: Elapsed time of Mr. Scan for the configurations
listed in Table 1. Eps=0.1 and MinPts varies as indicated.

evaluated the quality of Mr. Scan’s output compared to a
single CPU implementation of DBSCAN.

For all experiments, we use a fixed Eps value of 0.1 degree.
MRNet uses trees with one compute node per process be-
cause there is one GPGPU per compute node on Titan. We
use tree topologies that aim to decrease the amount of non-
leaf processes in the allocation. Each topology has at most
three levels, and each intermediate process has a 256-way
fanout of child processes whenever possible. The number of
nodes used for the partitioner for each run was determined
by selecting the best performing configuration from a prior
experiment.

5.1.1 Weak scaling
We first present the total time of all Mr. Scan phases in

Figure 8, and then we break down this result into the phases
that showed different scaling behaviors in Figures 9a, 9b,
and 9c. We used four different MinPts values for this weak
scaling benchmark. The total time of all Mr. Scan phases in-
cludes startup and I/O costs, which has not been reported
by previous projects that have parallelized DBSCAN. We
were able to successfully cluster 6.5 billion points, while
largest prior results we found only clustered up to 100 million
points. Figure 8 shows that this was accomplished between
1,040 and 1,401 seconds depending on parameters, or be-
tween 17.3 and 23.4 minutes. We see that Mr. Scan weak
scales linearly with a relatively gentle slope: as the data in-
creases by 4096x (from 1.6 million to 6.5 billion), the total
elapsed time has a growth between 18.48x to 31.68x. While
the total elapsed times achieved by this scaling property are
reasonable and enabling, Mr. Scan does not demonstrate
ideal weak scaling.

We will see the reason for this growth in total time when
we look at the scaling behavior of the partition phase. Fig-
ure 9a shows that the partition phase scales linearly with the
amount of data, and comparing with Figure 8, we see that
this phase takes up roughly 68% of Mr. Scan’s overall time.
This performance is the largest reason for Mr. Scan’s less
than favorable weak scaling and is due to the step of writing



(a) Partition Time (b) Cluster-Merge-Sweep Time

(c) GPGPU DBSCAN Time

Figure 9: Breakdown of Mr. Scan showing the scaling patterns of the various steps for the Twitter dataset. Figures 9a and 9b
show a breakdown of Mr. Scan’s total excecution time. Figure 9c shows only the time spent clustering in the GPGPU, which
represents a portion of the time in Figure 9b.

partitions to Lustre for consumption by the cluster phase.
We observed that with MinPts set to 400, this write opera-
tion took 65.2% of the partition phase, while the initial read
operation took 29.92% of the time. The write operation
performs poorly because it is dominated by small random
writes. This behavior exists because each partitioner leaf
process can hold a random portion of data, and may need to
contribute some point data to nearly every partition. These
contributions are generally small, and each must be writ-
ten at a specific offset for its respective partition. A better
design for this step would be to send partitioned data as
messages over the network directly to Mr. Scan’s cluster-
ing processes. Writing to Lustre was the quickest path to
determine the scalability of the other phases, and we plan
to implement directly sending data to the leaf nodes as our
next step.

Figure 9b shows the scaling results for Mr. Scan’s final
three phases and Figure 9c breaks out the time spent inside
the GPU running DBSCAN and CPU-GPU interaction. We
see that for MinPts 4, 40, and 400, DBSCAN time actually
decreases at one point for each because of our dense box
optimization. The 6.5 billion point dataset, however, sug-
gests a further linear trend upward after the decrease. At
this high scale, the slowest clustering process is clustering a
dense partition that consists of one Eps x Eps grid cell, and
the time of the cluster phase is dictated by the slowest node.
This result suggests that the clustering time cannot be de-
creased by a different grid-based partitioning algorithm. We
believe that this upward trend may show the limit of possi-
ble optimization using our dense box strategy. With MinPts
set to 4000, DBSCAN time does scale logarithmically, even
though it takes longer to complete. Since our dense box op-

Figure 10: Elapsed time of Mr. Scan when clustering 6.5
billion points and varying the number of cluster processes.

timization is based on finding MinPts points in a small area,
it is not as effective when MinPts is higher, and we see the
optimization producing good scaling at higher point counts
than the other three runs. The final three Mr. Scan phases
in Figure 9b exhibit similar characteristics to Figure 9c, ex-
cept that when MinPts is 4000, there is still a slight linear
growth caused by MRNet startup time. This problem is ei-
ther due to linear behavior in Cray ALPS on Titan, or to
the 256-way fanouts we use in our MRNet tree.

5.1.2 Strong scaling
Figure 10 shows results from the strong scaling experi-

ment, where the smallest tree is a tree with no intermediate
processes and 256 leaves and each configuration clusters 6.5
billion points. The GPU DBSCAN time improves well at
first, providing a 4.7x speedup at 2048 leaves from the small-
est tree. Additional leaves do not provide any speedup after
2048 because, again, the slowest cluster process is executing
a partition made up of a single dense grid cell. Since this
partition cannot be subdivided further, we have again found



a limit to the dense box optimization or we need to subdi-
vide grid cells when they have extremely high density. This
performance also suggests that for this dataset, the ideal
number of points per leaf process is closer to 3.2 million
than 800,000. The total time reflects DBSCAN’s inability
to improve at higher scale, and also some linear performance
that occurs in the partition phase. The linear performance
likely comes from the smaller writes to Lustre needed to
output more partitions for the same amount of data.

Figure 11: Quality score of Mr. Scan’s output compared to
the output of DBSCAN on a single CPU.

5.1.3 Quality
We evaluated the quality of Mr. Scan’s output in com-

parison to DBSCAN on a single CPU. Quality is measured
with a metric defined by the authors of DBDC [15]. The
metric assigns a quality score between 0 and 1 to each point

as |A∩B|
|A∪B| , where A is the cluster the point belongs to in DB-

SCAN’s output, and B is the equivalent cluster from Mr.
Scan’s output. If a point is misidentified as a noise or non-
noise point, it gets a quality score of 0. The final quality
score is an average of the points’ quality scores. Therefore,
this metric is maximized when all clusters found contain the
exact same points in the output, and when all noise points
are identical as well. We were limited to 12.8 million points
for this experiment by the memory of a single compute node.
We used ELKI 0.4.1 [4] as our reference DBSCAN implemen-
tation, which took over 35 hours to cluster the 12.8 million
points. Figure 11 shows near-perfect quality at the scales
we were able to test, as Mr. Scan did not get lower than a
.995 quality score.

5.2 SDSS Experiment
The SDSS experiment consisted of a weak scaling exper-

iment with maximum point count of 1.6 billion points pro-
cessed on 2048 nodes. This experiment was run with a fixed
Eps value of 0.00015 and a fixed MinPts of 5. Figure 12
shows the weak scaling results for this experiment.

Figure 12: Elapsed time of Mr. Scan for the SDSS dataset
at 0.00015 Eps and 5 MinPts

The weak scaling behavior of the SDSS dataset resembles
that of the Twitter dataset. We see similar upward trends in

Figure 13: Elapsed partitioning time for Mr. Scan for the
SDSS dataset

time as the number of nodes increase. As with the Twitter
dataset most of the increase in time is contributed by the
partitioner. The partitioning time for the SDSS dataset is
shown in Figure 13. The reason for the lack of scaling of
this portion of Mr. Scan for the SDSS dataset is identical
to performance issues discussed for the Twitter dataset (file
I/O performance issues).

6. CONCLUSION
We have shown that Mr. Scan is capable of clustering 6.5

billion points in 17.3 minutes, which is the largest known
run of DBSCAN by point and node count. Mr. Scan shows
that a tree-based distribution network of GPGPU-equipped
nodes is useful for developing large-scale data analysis ap-
plications. The scaling efficiency of Mr. Scan was impacted
by the I/O time needed to transfer partitions to clustering
nodes. As future work, we plan to correct this I/O prob-
lem by either sending partitions over the network or using
Lustre more efficiently. On the current datasets, we achieve
maximum efficiency at around 2,000 nodes. This leads us
to believe that as we scale up to more nodes, we should be
able to efficiently run even larger datasets.

7. REFERENCES
[1] SDSS - Baryon Oscillation Spectroscopic Survey, April

2013. http://www.sdss3.org/surveys/boss.php.

[2] Sloan Digital Sky Survey, April 2013. www.sdss.org.

[3] Twitter, April 2013. https://twitter.com.

[4] E. Achtert, A. Hettab, H.-P. Kriegel, E. Schubert, and
A. Zimek. Spatial Outlier Detection: Data,
Algorithms, Visualizations. In Advances in Spatial and
Temporal Databases, volume 6849 of Lecture Notes in
Computer Science, pages 512–516. Springer Berlin
Heidelberg, 2011.

[5] T. Ali, S. Asghar, and N. Sajid. Critical Analysis of
DBSCAN Variations. In International Conference on
Information and Emerging Technologies 2010 (ICIET
2010), Karachi, Pakistan, June 2010.

[6] C. Böhm, R. Noll, C. Plant, and B. Wackersreuther.
Density-Based Clustering using Graphics Processors.
In Proceedings of the 18th ACM Conference on
Information and Knowledge Management (CIKM ’09),
pages 661–670, Hong Kong, China, November 2009.
ACM.

[7] L. Crosby. Performance Characteristics of the Lustre
File System on the Cray XT5 with Respect to
Application I/O Patterns. In Cray User Group 2009
Proceedings (CUG 2009), Atlanta, GA, USA, 2009.



[8] A. Culotta. Lightweight Methods to Estimate
Influenza Rates and Alcohol Sales Volume from
Twitter Messages. Language Resources and
Evaluation, 47(1):217–238, 2013.

[9] B.-R. Dai and I.-C. Lin. Efficient Map/Reduce-Based
DBSCAN Algorithm with Optimized Data Partition.
In IEEE 5th International Conference of Cloud
Computing (IEEE CLOUD 2012), Honolulu, HI, USA,
June 2012.

[10] S. Davidoff and P. Wozniak. RAPTOR-scan:
Identifying and Tracking Objects Through Thousands
of Sky Images. In Gamma-Ray Bursts: 30 Years of
Discovery: Gamma-Ray Symposium, Santa Fe, NM,
USA, September 2003.

[11] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise. In The Second
International Conference on Knowledge Discovery and
Data Mining (KDD ’96), Portland, OR, USA, August
1996.

[12] T. Gamblin, B. R. de Supinski, M. Schulz, R. J.
Fowler, and D. A. Reed. Clustering Performance Data
Efficiently at Massive Scales. In ACM/SIGARCH
International Conference on Supercomputing (ICS
2010), Epochal Tsukuba, Tsukuba, Japan, June 2010.

[13] Y. He. Personal communication, March 2013.

[14] Y. He, H. Tan, W. Luo, H. Mao, D. Ma, S. Feng, and
J. Fan. MR-DBSCAN: An Efficient Parallel
Density-Based Clustering Algorithm Using
MapReduce. In The 17th IEEE International
Conference on Parallel and Distributed Systems
(ICPADS ’11), Tainan, Taiwan, December 2011.

[15] E. Januzaj, H.-P. Kriegel, and M. Pfeifle. DBDC:
Density Based Distributed Clustering. In Int. Conf. on
Extending Database Technology (EDBT ’04), pages
88–105, Heraklion, Crete, Greece, March 2004.

[16] A. Karandikar. Clustering Short Status Messages: A
topic model based approach. Master’s thesis,
University of Maryland, Baltimore County, 2010.

[17] S. Kisilevich, F. Mansmann, and D. A. Keim.
P-DBSCAN: A Density Based Clustering Algorithm
for Exploration and Analysis of Attractive Areas
Using Collections of Geo-Tagged Photos. In 1st
International Conference on Computing for Geospatial
Research & Application (COM.Geo ’10), Washington,
DC, USA, June 2010.

[18] M. Kryszkiewicz and P. Lasek. TI-DBSCAN:
Clustering with DBSCAN by Means of the Triangle
Inequality. In The Seventh International Conference
of Rough Sets and Current Trends in Computing
(RSCTC 2010), Warsaw, Poland, June 2010.

[19] M. Kryszkiewicz and L. Skonieczny. Faster Clustering
with DBSCAN. In International Conference on
Intelligent Information Systems 2005: New Trends in
Intelligent Information Processing and Web Mining
(IIPWM 2005), pages 605–614, Gdansk, Poland, June
2005.

[20] V. Lampos. On Voting Intentions Inference from
Twitter Content: A Case Study on UK 2010 General
Election. ACM Computing Research Repository
(CoRR), abs/1204.0423, 2012.

[21] V. Lampos and N. Cristianini. Nowcasting Events

from the Social Web with Statistical Learning. ACM
Transactions on Intelligent Systems and Technology
(ACM TIST), 3(4):72, 2012.

[22] T. Lansdall-Welfare, V. Lampos, and N. Cristianini.
Effects of the Recession on Public Mood in the UK. In
22nd International World Wide Web Conference
(WWW ’12), pages 1221–1226, Lyon, France, April
2012.

[23] R. Mills, F. M. Hoffman, J. Kumar, and W. W.
Hargrove. Cluster Analysis-Based Approaches for
Geospatiotemporal Data Mining of Massive Data Sets
for Identification of Forest Threats. Procedia CS,
4:1612–1621, 2011.

[24] M. M. A. Patwary, D. Palsetia, A. Agrawal, W. keng
Liao, F. Manne, and A. N. Choudhary. A New
Scalable Parallel DBSCAN Algorithm using the
Disjoint-Set Data Structure. In ACM/IEEE
Supercomputing Conference 2012 (SC 2012), Salt Lake
City, UT, USA, November 2012.

[25] P. Roth, D. Arnold, and B. Miller. MRNet: A
Software-Based Multicast/Reduction Network for
Scalable Tools. In ACM/IEEE Supercomputing
Conference 2003 (SC 2003), Phoenix, Arizona,
November 2003.

[26] S. Sonntag, C. T. Paredes, J. Roth, and H.-R. Trebin.
Molecular Dynamics Simulations of Cluster
Distribution from Femtosecond Laser Ablation in
Aluminum. Applied Physics A, 104(2):559–565, 2011.

[27] Telegraph. Library of Congress Is Archiving All Of
America’s Tweets, January 2013.
http://www.businessinsider.com/library-of-congress-
is-archiving-all-of-americas-tweets-2013-1.

[28] R. E. Wilson, S. D. Gosling, and L. T. Graham. A
Review of Facebook Research in the Social Sciences.
Perspectives on Psychological Science, 7(3):203–220,
2012.

[29] X. Xu, J. Jäger, and H.-P. Kriegel. A Fast Parallel
Clustering Algorithm for Large Spatial Databases.
Data Mining and Knowledge Discovery, 3(3):263–290,
1999.


