
Diogenes: Looking For An Honest CPU/GPU Performance
Measurement Tool

Benjamin Welton and Barton P. Miller
Computer Sciences Department

University of Wisconsin - Madison
Madison, Wisconsin

(welton,bart)@cs.wisc.edu

ABSTRACT

GPU accelerators have become common on today’s leadership-
class computing platforms. Exploiting the additional paral-
lelism offered by GPUs is fraught with challenges. A key
performance challenge faced by developers is how to limit
the time consumed by synchronization and memory transfers
between the CPU and GPU. We introduce the feed-forward
measurement (FFM) performance tool model that automates
the identification of unnecessary or inefficient synchroniza-
tion and memory transfer, providing an estimate of potential
benefit if the problem were fixed. FFM uses a new multi-
stage/multi-run instrumentation model that adjusts instru-
mentation based application behavior on prior runs, guiding
FFM to problematic GPU operations that were previously
unknown. The collected data feeds a new analysis model
that gives an accurate estimate of potential benefit of fixing
the problem. We created an implementation of FFM called
Diogenes that we have used to identify problems in four
real-world scientific applications.

KEYWORDS

GPUs, Performance Tools, Performance Analysis, Feed For-
ward Measurement, Multi-stage/Multi-run Performance Tool
Design

ACM Reference Format:
Benjamin Welton and Barton P. Miller. 2019. Diogenes: Looking

For An Honest CPU/GPU Performance Measurement Tool. In
The International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC ’19), November 17–22,

2019, Denver, CO, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3295500.3356213

1 INTRODUCTION

There are several challenges that a developer faces when
porting or creating applications on today’s leadership-class
high performance computing platforms. One of the more

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SC ’19, November 17–22, 2019, Denver, CO, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6229-0/19/11. . . $15.00
https://doi.org/10.1145/3295500.3356213

challenging aspects of programming for high performance
computing platforms is handling interactions between the
CPU and GPU accelerator efficiently. Synchronizations and
memory transfers between the CPU/GPU are two of the
most time intensive operations that can be performed by
an GPGPU application. Knowing the high cost of these op-
erations, developers attempt to limit their usage to only
locations in their program to where they think these opera-
tions are necessary. However, even in applications developed
by expert GPU programmers, problematic synchronizations
and memory transfers can account for as much as 85% of
execution time in real world applications [28].

Developers need tools to help unlock performance lost
due to problematic synchronizations and memory transfers.
Developers typically use a performance tool, such as HPC-
Toolkit [17], TAU [14, 26], and NVProf [21], to help identify
potentially problematic synchronizations and memory trans-
fers. However, the help existing tools provide is limited by
gaps in the performance data that they collect, including 1)
performance data not recorded for all GPU operations, 2)
incomplete performance data recorded for some GPU opera-
tions, and 3) for the information that is collected, its often
at an insufficient granularity to make a determination if an
operation that appears to be problematic can actually be im-
proved. These gaps are caused by vendor supplied interfaces
(on which all current tools depend) that provide incomplete
information about the operations taking place. In addition,
these interfaces are too coarse-grained because providing
the level of detail needed to detect and correct problematic
operations is considered to be too costly.

The results produced by existing tools describe the resource
consumption at points in the program, but not the benefit
that could be obtained if those points were made more efficient.
The assumption is that points of high resource consumption
correlate to the points with the highest obtainable benefit.
However, as early work on critical path analysis [10] showed,
resource consumption was not always a good predictor of the
obtainable benefit. When a potential problematic operation
is identified by a tool, a detailed manual analysis of the
operation is still required to determine if the operation is
problematic and to determine what action to take. The result
is that programmers spend time optimizing operations that
produce limited benefit, while missing others that might
provide significant improvements to performance. Providing
an estimate of expected benefit for fixing a problem would
enable programmers to identify these missed performance

https://doi.org/10.1145/3295500.3356213
https://doi.org/10.1145/3295500.3356213

SC ’19, November 17–22, 2019, Denver, CO, USA B. Welton. et al.

opportunities and spend their time effectively when improving
application performance.

Delivering actionable feedback requires a targeted ap-
proach to performance data collection and analysis. To this
end, we introduce a multi-stage, multi-run performance mea-
surement and analysis approach called feed forward measure-
ment (FFM). The principal idea of FFM is that the insertion
of instrumentation into an application and the performance
data that is collected is guided by the application’s behav-
ior. The applications behavior during execution guides FFM
to potentially problematic GPU operations, including those
that are hidden from existing tools with a reliance on vendor
supplied interfaces. The collection of performance data is
split over multiple stages of instrumentation conducted over
multiple runs, allowing for potentially problematic operations
that are discovered to be profiled and traced at increasing
levels of detail. The changing level of detail over multiple
stages allows the FFM approach to collect the fine-grained
details needed to automate analyses that are too costly for
other methods to collect. The analysis performed by FFM
gives targeted feedback on what operations are problematic
along with an estimate of the performance benefit that could
be obtained if the problem were corrected.

FFM is inspired by the dynamic instrumentation approach
originally developed in the Paradyn Performance Tool [9].
Unlike Paradyn’s approach of running each stage of instru-
mentation in a single run of the application, FFM runs each
stage in a separate complete run of the application. The
multi-run approach was chosen to gather the information
from a complete run before making decisions on what level
of detail to collect for an operation. With Paradyn’s single
run approach, if an operation is not known to be potentially
problematic before it’s last occurrence, the chance to collect
additional detail on the operation is missed.

FFM consists of five stages, four data collection stages that
take place in separate runs of the application and an analysis
stage that uses the data collected to identify problematic
operations. FFM uses binary instrumentation of CPU code
to collect performance data on synchronization and memory
transfer events, capturing events such as synchronizations
that are missed by vendor-supplied performance data collec-
tion frameworks and library interposition methods. Binary
instrumentation allows FFM to maintain compatibility with
applications written in a wide range of parallelization frame-
works (such as CUDA [19], OpenACC [29], and OpenMP [3]).
The five stages of the FFM model are:

Stage 1 - Baseline Measurement : Collect the list of ap-
plication called functions performing a GPU synchronization
and measure overall application execution time. The baseline
measurement stage is designed to be low overhead to ensure
that application execution time and behavior closely match
its uninstrumented form. The starting point of the FFM
model is a list of functions called by the application that
perform a synchronization operation. This list dictates where
more detailed information will be collected in stages 2 and 3.
We describe the Baseline Measurement stage in more detail
in Section 3.1.

Stage 2 - Detailed Tracing : Trace calls to functions
performing synchronization and memory transfers. For each
transfer and synchronization operation, we record the amount
of time spent in the call and a stacktrace. The traced functions
are the ones identified in stage 1 as performing a synchro-
nization and a predefined set of GPU driver function calls
known to perform memory transfers. We discuss the Detailed
Tracing stage in Section 3.2.

Stage 3 - Memory Tracing and Data Hashing : Collect
the data needed to determine if an operation is problematic.
Two different collection approaches are employed based on
the type of the operation. For a synchronization operation we
collect a stacktrace of the synchronization, the location of the
instruction that first accesses a memory location containing
data that could be modified by the GPU, and a stacktrace of
the instruction location that performed the access. For mem-
ory transfers, we collect hashes of the data being transferred
to and from the GPU. We discuss the details of the Memory
Tracing and Data Hashing stage in Section 3.3.

Stage 4 - Sync-Use Analysis: Collect timing information
to determine if a synchronization is misplaced. The time
between a synchronization and the first instruction that ac-
cesses data computed by the GPU after the synchronization
is recorded. A large time gap indicates a potentially mis-
placed synchronization and is used by the Analysis stage to
determine if the operation is problematic. The instruction
accessing GPU computed data is obtained from the Memory
Traces collected in stage 3. We discuss the details of the
Sync-Use Analysis stage in Section 3.4.

Stage 5 - Analysis: Determine if an operation is problem-
atic and what the potential benefit might be from correcting
the operation. For a synchronization operation, we use a
simple data flow analysis approach to determine the neces-
sity of the synchronization. We look for accesses to the data
protected by the synchronization on the CPU to detect if
the synchronization operation could be moved (or removed)
to improve CPU/GPU overlap safely. For data transfers, we
use a content-based data deduplication approach to detect
problematic data transfers. We describe the Analysis stage
in Section 3.5.

We have implemented the FFM model in a tool we call
Diogenes. Diogenes identifies problematic synchronizations
and memory transfers, estimating an expected benefit for the
correction of each issue. Through the use of the FFM model,
Diogenes is able to identify operations that are unreported by
existing performance tools (including vendor supplied tools
such as NVProf [21] and CUPTI [20]) and provides action-
able feedback on what problematic operations are correctable.
Note that for evaluation purposes, we built Diogenes specif-
ically to identify problematic synchronization and memory
transfer operations. Diogenes is not a replacement for a gen-
eral purpose profiling tool but a supplement that aids in the
identification of these problematic operations. Our next step
is to integrate our collection and analysis approaches into
an existing general purpose profiling tool. Diogenes collected
performance data is stored in a standard format (JSON) that
can be read by other tools. While we generate estimates of

Diogenes: Looking For An Honest CPU/GPU Performance Measurement Tool SC ’19, November 17–22, 2019, Denver, CO, USA

expected benefit for synchronization and memory transfers,
our techniques can be applied to other problem types and be
used in other tools.

In Section 4, we describe the implementation of Diogenes.
In Section 5, we evaluate Diogenes by using it to iden-
tify problematic operations in four real world applications
(cumf als [27], cuIBM [12], AMG [31], and Rodinia [4]). By
fixing the problems identified by Diogenes, we were able to
improve the performance of these applications by as much as
17%. We also compare Diogenes results to the performance
tools HPCToolkit [17] and NVProf [21]. Diogenes expected
benefit output differs significantly, in both output order and
magnitude, for synchronizations and memory transfer op-
erations. The difference in magnitude can be as much as
99% for these operations. While the implementation details
of Diogenes focus on applications accelerated with Nvidia’s
GPUs, the general techniques described in this paper of the
FFM model can be applied to different types of accelerators.

2 THE PERFORMANCE TOOL GAP

We benefit from a long history of performance tool research.
Tools such as TAU [14, 26], ParaProf [2], HPCToolkit [17],
Periscope [7], ScoreP [11], Scalasca [6], Paraver [23], Quartz [1],
Jumpshot [30], and KOJAK [18], plus the contributions of
many others, built the foundation on which modern parallel
performance tools are based. While a survey of these tools is
outside the scope of this paper, the influence they have had
on performance tool development can be felt today in the new
generation of tools built to support profiling and tracing of
GPU applications. Existing tools have been modified and new
tools created to detect GPU idleness [5, 11, 15, 16, 21], CPU
idleness waiting on GPU completion [5, 11, 15, 21], warp
occupancy [5, 15, 21], cache behavior [15, 21], and on-device
synchronization issues [5, 21].

The performance tools developed for new architectures
today share a common structure with their ancestors. These
tools typically operate with a single stage of instrumentation
performed on a single run of the application, focus on the
task of collecting resource utilization information at points in
the program, and rely on vendor supplied performance data
collection frameworks when resource information cannot be
collected directly. While this structure has helped to produce
tools that can find performance issues in applications, there
are problems that are hard to detect even with the help of
a performance tool. In this section, we describe the benefits
and drawbacks that a single stage instrumentation structure
imposes on tools and their reliance on vendor supplied black
box frameworks for performance data collection.

2.1 Single Stage Instrumentation

Most existing tools are structured such that the instrumenta-
tion inserted and the types of performance data collected is
static for a single run of the program. The instrumentation
used for a given run of the program is set, typically by the
tools user, before execution even begins and is not adjustable
during execution. For the problems that can be exposed in a

single run of a program, this design allows a general purpose
tool to be applied to a wide array of different problem types.

However, it is often the case that a single fixed set of in-
strumentation performed during a single run of the program
is not sufficient to fully diagnose a problem. Diagnosing a
problem may require the measurement of multiple different
resources where the measurement of one resource impacts
the accuracy of the measurements of another or changes
application behavior in such a way to make the measure-
ments inaccurate. Identifying problematic synchronization
and locking behavior are classic examples of problem types
that experience these issues. Both problems are sensitive
to even small changes in application behavior but require
detailed instrumentation to detect that changes the behavior
of the application. The result of these limitations is that in
practice a user must run a tool (or multiple tools) many times
to gather the resources information necessary and perform
their own analysis to detect a problem.

The notable exceptions to single stage tool structure are
Paradyn [9] and NVProf [21]. Paradyn performs multiple
stages of instrumentation over a single run of the application.
The multi-stage approach allows Paradyn to focus the collec-
tion of additional detail on only the most resource consuming
operations. As the application executes, the operations con-
suming more resources are instrumented at increasing levels
of detail. However, operations that are impactful can be
missed if the operation completes before Paradyn determines
the operation is important. To avoid potential gaps in col-
lection and analysis, FFM uses a multi-run model to ensure
that all important operations are known in advance so that
detail is not missed.

NVProf uses selective multi-run instrumentation when
collecting performance counter information from the GPU.
NVProf will rerun a GPU kernel within an application mul-
tiple times to record the values of different performance
counters. The rerun of a GPU kernel is required due to hard-
ware limits on the number of performance counters that can
be recorded in a single execution. Unlike NVProf, FFM per-
forms reruns on the entire application and targets CPU code
for its multi-stage instrumentation approach.

2.2 Black Box Collection Frameworks

The introduction of accelerators into HPC platforms, such
as GPUs, has changed the way in which performance tools
collect performance data. HPC accelerator vendors attempt
to limit details about their physical hardware and software
subsystems, instead providing developers an abstracted frame-
work when using their platforms. Without detailed hardware
and software information, performance tools must rely on
closed source vendor supplied frameworks for performance
data collection. With closed source collection frameworks,
tools have no means to check if the performance data collected
is accurate and complete.

For Nvidia GPUs, virtually all GPU profiling and tracing
tools rely on the closed source performance data collection
framework CUPTI [20]. Existing tools rely on CUPTI to

SC ’19, November 17–22, 2019, Denver, CO, USA B. Welton. et al.

Figure 1: Overview of the stages of the FFM model

report when a driver call is made, when certain high impact
operations like memory transfers and synchronizations take
place, and to collect performance counter data from the GPU
itself. During the course of creating the FFM model, we have
discovered that CUPTI does not report when all CPU/GPU
synchronizations take place or all the function calls made to
the driver.

For most implicit and conditional synchronization opera-
tions, CUPTI does not create synchronization (CUPTI Activi-

tySynchronization) records containing information on how
long the synchronization with the GPU took. Implicit synchro-
nization operations are those that occur as a side effect to an-
other operation such as a memory transfer (e.g, cudaMemcpy).
Conditional synchronization operations are those that oc-
cur if certain arguments are supplied to a GPU API call.
For example, cudaMemcpyAsync performs an unreported syn-
chronization when a device-to-host transfer is performed to
a CPU memory address not allocated via cudaMallocHost.
These behaviors are not reported by CUPTI and are not
always well documented. In addition, they may be subject
to change based on driver version. We believe that CUPTI
only generates synchronization timing information for explicit
synchronization operations such as cudaStreamSynchronize.

In certain circumstances, CUPTI does not record driver
calls and operations. If an operation is performed via the
proprietary non-public part of Nvidia’s driver, the call and
the operation it performs are not reported. The proprietary
driver components are used by Nvidia-created libraries like
cuBLAS and can perform all the same operations as the pub-
lic facing driver API. The extent to which these proprietary

components are used and how their behaviors effect appli-
cation performance is still being explored. Finally, CUPTI
might omit calls to the public API if they are called from
Nvidia-created libraries.

The lack of a full detailed accounting of GPU operations
results in the tools and techniques built using CUPTI being
potentially less effective. While we hope that these problems
are fixed in future versions of CUPTI, FFM does not use
CUPTI for performance data collection. We directly instru-
ment the internal functions of the GPU user space driver
using binary instrumentation to capture when operations
such as synchronizations take place. FFM can capture and
time the synchronization delay of implicit, conditional, and
non-public API synchronizations.

CUDAAdvisor [25] is one of the few existing tools that does
not rely on vendor supplied frameworks for GPU performance
data collection. CUDAAdvisor is an LLVM-based runtime
profiler that performs fine grained memory and control flow
analysis of GPU kernels, detecting performance issues such as
inefficient GPU kernel memory access patterns and branching
behavior. Memory, arithmetic, and control flow operations
performed on the GPU are traced by CUDAAdvisor. An
application GPU kernel is modified at compile time by an
LLVM plugin to insert instrumentation directly into the
GPU kernel. The collected GPU trace data is associated
with memory allocations and transfers performed by the
CPU, allowing a data flow to be constructed to show which
GPU kernels are accessing the same underlying data. Using
the data flow graph, CUDAAdvisor can detect potentially
problematic memory access behaviors such as differences
in GPU kernel memory access patterns accessing the same

Diogenes: Looking For An Honest CPU/GPU Performance Measurement Tool SC ’19, November 17–22, 2019, Denver, CO, USA

underlying data. First party performance tool frameworks
were deemed insufficient by the authors because they could
not collect the fine-grained GPU trace data necessary to
perform their analysis. FFM targets a different set of problems
than those of CUDAAdvisor, though FFM also relies on
binary modification for instrumentation. Note that FFM
focuses on the collection of fine-grained details of operations
performed on the CPU instead of the GPU.

3 FEED FORWARD PERFORMANCE
MODEL

The fundamental problem that the Feed Forward Perfor-
mance Model (FFM) was created to address is improving
the actionability of feedback given to the user. For the task
of improving performance, a tool user needs to know what
problems exist and the potential benefit they may obtain
from fixing the problems.

The Feed Forward Performance Model (FFM) is a multi-
stage/multi-run approach to performance analysis that is
designed to allow more actionable feedback to be delivered
to the user. The multi-stage/multi-run instrumentation style
enables FFM to adjust instrumentation based on application
behavior and allows high overhead instrumentation to be
used without hiding problems sensitive to overheard. The
results produced by FFM’s analysis list specific problems
in the application with an estimate of potential benefit. We
apply these principals to create a model for the identification
of problematic synchronizations and memory transfers.

The FFM model for identifying problematic synchroniza-
tions and memory transfers consists of five stages where
each stage is driven by the instrumentation inserted and the
data collected in the proceeding stages. Figure 1 shows an
overview of the stages of FFM, the data each stages collects,
and how the stages interact. It is important to note, no user
interaction is required between stages and the execution of
these stages is designed to be automated.

The FFM model detects two types of problematic synchro-
nization operations, unnecessary and misplaced. When the
removal of a synchronization operation would have no impact
on application correctness, the synchronization is potentially
unnecessary. When a synchronization operation is required
but could be moved to a more performance-advantageous
location, the synchronization is potentially misplaced. The
problematic memory transfers that the FFM model detects
are duplicate data transfers. When a problem is identified,
FFM’s analysis will display the potential benefit that could
be obtained by fixing the problem.

In this section, we describe the role that each stage plays
in detecting problematic operations including the data they
collect, how each stage of the multi-stage approach uses prior
performance data to make instrumentation decisions, and the
analysis we perform to generate targeted actionable feedback
that a user can use to improve application performance.

3.1 Baseline Measurement

The baseline measurement stage is responsible for recording
application execution time and recording stack traces of
where synchronization operations are performed. Application
execution time is stored for use by the analysis stage to
determine the percentage of execution time a problematic
synchronization or memory transfer consumes. The stack
traces are used to determine the GPU driver functions called
by the application that synchronize with the GPU. This list
of functions is then traced in the Detailed Tracing stage. We
collect the list of synchronizing functions in advance of the
Detailed Tracing stage to ensure complete trace information
can be collected for all synchronization operations.

The stack traces are obtained by inserting binary instru-
mentation into the internal driver function (See Figure 3)
that waits for completion of compute stream activity. This
underlying function is called by all operations, including
conditional and private API operations, that need to synchro-
nize (such as cuMemcpy and cuCtxSynchronize). The direct
instrumentation of the function implementing the wait allows
FFM to detect synchronization operations that are missed
by the vendor supplied performance data collection methods.
We identify the underlying function that performs the wait
by a set of simple tests that launches a never completing
GPU kernel, calling known synchronous functions (such as
cuCtxSynchronize) to identify the function where the CPU
waits.

3.2 Detailed Tracing

The detailed tracing stage traces all synchronization and
memory transfer operations performed by the application.
For each operation, we collect a stacktrace of the operation,
the time spent performing the synchronization (if applicable),
and the total time spent in the driver function performing
the operation. This information is used by the analysis stage
to determine the time that could be saved removing an
operation.

We insert exit/entry instrumentation into three classes of
functions: 1) synchronizing functions identified in the Baseline
Measurement stage, 2) functions described by the GPU driver
API as performing memory transfers (such as cuMemcpy), and
3) internal synchronization function shown in Figure 3.

3.3 Memory Tracing and Data Hashing
Stage

The Memory Tracing and Data Hashing stage detects if an
operation is problematic. An operation is problematic if it can
be removed or moved to a more performance-advantageous lo-
cation while maintaining application correctness. Problematic
synchronizations are ones that are not required to maintain
correctness and ones that are required for correctness but
unnecessarily reduce CPU/GPU overlap. Problematic mem-
ory transfers are duplicate transfers where the data being
transferred has been previously transferred.

FFM relies on binary modification to collect the infor-
mation needed to determine if an operation is problematic.

SC ’19, November 17–22, 2019, Denver, CO, USA B. Welton. et al.

cuMemcpyDTHAsync(CPU_Mem,…);

…

…

cuCtxSynchronize(…);

…

…

… = CPU_Mem[…];

1. Capture CPU memory ranges that GPU computation may
change (CPU_Mem)

2. When synchronization called, use load/store analysis to
identify accesses to captured CPU memory ranges.

3. If access occurs, synchronization is required for correctness.
Store the location of instruction that performed access

Figure 2: An illustrative example of the steps the FFM model takes to identify problematic synchronizations

For synchronization operations, we use memory tracing. For
memory transfer operations, we use a content-based data
deduplication strategy.

3.3.1 Identifying Problematic Synchronizations. FFM deter-
mines if a synchronization operation is required by identifying
the accesses to the data protected by the operation. If a syn-
chronization is not protecting data accessed by the program,
the synchronization is problematic. FFM must identify the
locations of protected data and identify if any instruction
accesses the data after a synchronization takes place.

Figure 2 shows an example of how FFM identifies prob-
lematic synchronizations. FFM first identifies the locations
of protected data by intercepting calls that transfer data and
allocate pages shared between the CPU/GPU. We record the
CPU memory addresses and the size of the memory region
used in the operation. After the synchronization completes,
load/store analysis is used to determine if any instruction
accesses data in these regions. If an instruction accesses GPU
computed data, the instruction’s address and a callstack of
the synchronization are saved.

3.3.2 Identifying Problematic Memory Transfers. Problem-
atic memory transfers are transfers that contain data that
has already been transferred between the CPU/GPU. FFM
uses a content-based data deduplication approach to identify
problematic memory transfers. FFM intercepts calls, such as
cuMemcpy, to obtain the location of the data being transferred.
The data being transferred is hashed and then compared to
the stored hashes from prior transfers. If a match is found,
FFM marks the transfer as being a duplicate. FFM collects
a stacktrace of the duplicate transfer, the location of the first
transfer of the duplicated data, and the hash of the data that
was transferred.

GPU Driver (libcuda.so)

cuCtxSynchronize

cuStreamSynchronize

cuMemcpy

cuMemFree

…

cuMemcpyAsync

cuMemset

…

CUPTI Profiled
Synchronizations

Implicit
Synchronizations

Conditional
Synchronizations

Shared
Internal

Synchronization
Function

Figure 3: The internal synchronization function in-
strumented by FFM

3.4 Sync-Use Analysis

The Sync-Use Analysis stage collects timing information to
determine if a synchronization is misplaced. For synchroniza-
tions identified as being required for correctness, we record
the time between the end of the synchronization and the
first access of protected data. Sync-Use analysis is based on
load/store instrumentation of those instructions identified as
accessing protected data in stage 3.

3.5 Analysis Stage

The actual benefit obtained from (re)moving a problematic
operation is impacted by the duration of the problematic
operation and the operations that remain. As first observed
in early work on critical path analysis [10], changes in the
behavior of remaining operations can eliminate any benefit
from fixing problematic operations. An example can be seen in
Figure 4. Removing the first wait operation (𝐶𝑊𝑎𝑖𝑡0) from
both examples results in different outcomes, even though
the removed wait has an identical duration. The difference
is due to the impact the removal has on the second wait.
In the limited-benefit case, the second wait grows to fill
up most of the time saved from the first wait. Modeling
the behavior of the (re)moved problematic operation on the
remaining operations is critical to generating an effective
estimate. For each problematic operation identified in stage
3 and 4, we want to model the effect of fixing the problem
has on application execution time.

We model application execution as a graph (see Figure 4)
𝐺 = (𝑁,𝑉), where 𝑁 is the set of events on each processor
and 𝑉 is the set of edges. An edge between processors denotes
communication to signal the other processor. 𝑁 = 𝐶,𝐺 where
𝐶 is the set of CPU nodes in the graph and 𝐺 is the set of
GPU nodes in the graph.

Each node has attributes (𝑁𝑇𝑦𝑝𝑒, 𝑆𝑇 𝑖𝑚𝑒, 𝑃𝑟𝑜𝑏𝑙𝑒𝑚, 𝐹 𝑖𝑟𝑠-
𝑡𝑈𝑠𝑒𝑇 𝑖𝑚𝑒) associated with it, where 𝑁𝑇𝑦𝑝𝑒 denotes the
event performed by the node, 𝑆𝑇𝑖𝑚𝑒 is the start time of
the event, 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 is the problematic operation identified
in stages 3 and 4 (None, Unnecessary Synchronization, Mis-
placed Synchronization, Unnecessary Transfer), and 𝐹𝑖𝑟𝑠𝑡-
𝑈𝑠𝑒𝑇 𝑖𝑚𝑒 is the duration between a synchronization event
and the first use of protected data on the CPU (calculated
in stage 4). 𝑁𝑇𝑦𝑝𝑒 can be a wait event where a processor is
waiting on the other processor (𝐶𝑊𝑎𝑖𝑡 on the CPU, 𝐺𝑊𝑎𝑖𝑡
on the GPU), a work event where the processor is performing
computation (𝐶𝑊𝑜𝑟𝑘 on the CPU, 𝐺𝑊𝑜𝑟𝑘 on the GPU),

Diogenes: Looking For An Honest CPU/GPU Performance Measurement Tool SC ’19, November 17–22, 2019, Denver, CO, USA

Figure 4: Example of the different outcomes from removing a problematic synchronization

or a CPU event that requests that the GPU perform work
(𝐶𝐿𝑎𝑢𝑛𝑐ℎ).

Edges have a label 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 that denotes the real-time du-
ration of the event. We define the functions𝑂𝑢𝑡𝐺𝑃𝑈𝐸𝑑𝑔𝑒(𝑁)
and 𝑂𝑢𝑡𝐶𝑃𝑈𝐸𝑑𝑔𝑒(𝑁) to obtain the out-edge from node 𝑁
that ends on a node with the given processor type. There
can be only one edge leading from 𝑁 to a node of a given
processor type.

There are three problem types that we model: unnecessary
synchronization, misplaced synchronization, and unneces-
sary memory transfer. For unnecessary synchronizations, we
model the removal of the event performing the unnecessary
synchronization. To model the removal of an unnecessary
synchronization from node 𝑁 (of type 𝐶𝑊𝑎𝑖𝑡), we set the la-
bel of the edge to zero (𝑂𝑢𝑡𝐶𝑃𝑈𝐸𝑑𝑔𝑒(𝑁) 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 0). For
misplaced synchronizations, we model moving the event per-
forming the synchronization. To model moving a misplaced
synchronization from a node 𝑀 (of type 𝐶𝑊𝑎𝑖𝑡), we subtract
the time to first use (collected in stage 4) from the current la-
bel of the edge (𝑂𝑢𝑡𝐶𝑃𝑈𝐸𝑑𝑔𝑒(𝑁)𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛−𝐹𝑖𝑟𝑠𝑡𝑈𝑠𝑒𝑇 𝑖𝑚𝑒).
For an unnecessary transfer, we model the removal of the
event performing the transfer. To model the removal of the
transfer from a node 𝑇 (of type 𝐶𝐿𝑎𝑢𝑛𝑐ℎ), we set the label
of the edge to zero (𝑂𝑢𝑡𝐶𝑃𝑈𝐸𝑑𝑔𝑒(𝑁)𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 0). The
expected benefit algorithm alters the graph based on the
problem types present, calculating the expected performance

improvement that is obtainable by fixing the problematic
operation.

3.5.1 Expected Benefit Algorithm. Figure 5 shows the al-
gorithm for calculating expected benefit. We assume that the
graph has already been annotated with the data collected in
stages 1-4. In function ExpectedBenefit we iterate through
the graph evaluating nodes that represent problematic oper-
ations.

If a node performs an unnecessary synchronization, the
function RemoveSyncronization on line 10 removes the syn-
chronization and returns the expected benefit. RemoveSyncro-
nization updates the duration of the next synchronization
at node 𝑁𝑒𝑥𝑡𝑆𝑦𝑛𝑐 (line 19) and sets the duration of 𝑁𝑜𝑑𝑒 to
zero (line 21). The removal of𝑁𝑜𝑑𝑒 results in𝑁𝑒𝑥𝑡𝑆𝑦𝑛𝑐 start-
ing 𝑁𝑜𝑑𝑒 duration earlier (𝑁𝑒𝑥𝑡𝑆𝑦𝑛𝑐.𝑆𝑇 𝑖𝑚𝑒 = 𝑁𝑒𝑥𝑡𝑆𝑦𝑛
𝑐.𝑆𝑇 𝑖𝑚𝑒−𝑂𝑢𝑡𝐶𝑃𝑈𝐸𝑑𝑔𝑒(𝑁𝑜𝑑𝑒)𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛). The duration of
the synchronization operation started in 𝑁𝑒𝑥𝑡𝑆𝑦𝑛𝑐 poten-
tially increases due to having to wait on GPU events that
started prior to 𝑁𝑜𝑑𝑒 to complete. The increase of 𝑂𝑢𝑡𝐶𝑃𝑈
𝐸𝑑𝑔𝑒(𝑁𝑒𝑥𝑡𝑆𝑦𝑛𝑐)𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 can be as large as 𝑂𝑢𝑡𝐶𝑃𝑈𝐸𝑑𝑔𝑒
(𝑁𝑜𝑑𝑒)𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛, negating any benefit. 𝑂𝑢𝑡𝐶𝑃𝑈𝐸𝑑𝑔𝑒(𝑁𝑒𝑥𝑡
𝑆𝑦𝑛𝑐)𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 is determined by the amount of GPU work
remaining when 𝑁𝑒𝑥𝑡𝑆𝑦𝑛𝑐 starts. We must estimate how the
GPU graph will change when 𝑁𝑜𝑑𝑒 is removed.

The removal of a synchronization does not alter the work
events that are performed by the GPU, so the duration of

SC ’19, November 17–22, 2019, Denver, CO, USA B. Welton. et al.

𝐺𝑊𝑜𝑟𝑘 events stays the same. However, the duration of
𝐺𝐼𝑑𝑙𝑒 events between 𝐺𝑊𝑜𝑟𝑘 events is reduced. The reduc-
tion is caused by 𝐶𝐿𝑎𝑢𝑛𝑐ℎ events that take place between
the nodes 𝑁𝑜𝑑𝑒 and 𝑁𝑒𝑥𝑡𝑆𝑦𝑛𝑐 having their start time re-
duced by 𝑂𝑢𝑡𝐶𝑃𝑈𝐸𝑑𝑔𝑒(𝑁𝑜𝑑𝑒)𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛. The total GPU idle
time between 𝑁𝑜𝑑𝑒 and 𝑁𝑒𝑥𝑡𝑆𝑦𝑛𝑐 can contract by as much
𝑂𝑢𝑡𝐶𝑃𝑈𝐸𝑑𝑔𝑒(𝑁𝑜𝑑𝑒)𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛. GPU idle time cannot be neg-
ative, so the contraction of GPU idle duration is limited to
the sum of the duration of GPU idle events between 𝑁𝑜𝑑𝑒
and 𝑁𝑒𝑥𝑡𝑆𝑦𝑛𝑐.

We have found that an effective estimate for the change
in GPU idle duration between 𝑁𝑜𝑑𝑒 and 𝑁𝑒𝑥𝑡𝑆𝑦𝑛𝑐 can
be made with only the CPU graph. With only the CPU
graph, we can determine the upper bound of the change
in GPU idle duration after 𝑂𝑢𝑡𝐶𝑃𝑈𝐸𝑑𝑔𝑒(𝑁𝑜𝑑𝑒)𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

is set to zero. In practice, we have found that the bene-
fit typically is close to the upper bound. On line 16, we
estimate GPU Idle time to be the duration of all nodes be-
tween 𝑁𝑜𝑑𝑒 and 𝑁𝑒𝑥𝑡𝑆𝑦𝑛𝑐. This is the maximum duration
that the GPU can be idle before the next synchronization.
The estimated benefit is calculated on line 18 to be the
minimum of the duration of the synchronization removed
(𝑂𝑢𝑡𝐶𝑃𝑈𝐸𝑑𝑔𝑒(𝑁𝑜𝑑𝑒)𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) and the maximum period of
GPU idle time. On line 19 we calculate the new duration of

1 // SumDuration ([Nodes]) sums the duration of a list of nodes

2 // GetNextNode(Node) returns the node at OutCPUEdge(Node)

3 // GetNextSyncNode(Node) returns the next synchronization node

4 // in the CPU graph after Node

5 def ExpectedBenefit(Graph):

6 for Node in Graph.ProblematicNodes:

7 if Node.Problem == UnnecessarySynchronization:

8 EstBenefit = RemoveSyncronization(Graph , Node)

9 else if Node.Problem == MisplacedSynchronization:

10 EstBenefit = MoveSynchronization(Graph , Node)

11 else if Node.Problem == UnnecessaryTransfer:

12 EstBenefit = RemoveMemoryTransfer(Graph , Node)

13

14 def RemoveSyncronization(Graph , Node):

15 NextSync = GetNextSyncNode(Node)

16 EstMaxGPUIdle = SumDuration(CPUNodesBetween(Node , NextSync ,

17 𝐶𝐿𝑎𝑢𝑛𝑐ℎ or 𝐶𝑊𝑜𝑟𝑘))

18 EstBenefit = min(EstMaxGPUIdle , OutCPUEdge(Node).duration)

19 OutCPUEdge(NextSync).duration += max(0,

20 (OutCPUEdge(Node).duration - EstBenefit))

21 OutCPUEdge(Node).duration = 0

22 return EstBenefit

23

24 def MisplacedSynchronization(Graph , Node):

25 EstBenefit = Node.FirstUseTime

26 OutCPUEdge(Node).duration = max(0,

27 (OutCPUEdge(Node).duration - EstBenefit))

28 return EstBenefit

29

30 def RemoveMemoryTransfer(Graph , Node):

31 EstBenefit = OutCPUEdge(Node).duration

32 OutCPUEdge(Node).duration = (OutCPUEdge(Node).duration -

33 EstBenefit)

34 return EstBenefit

35

36 def CPUNodesBetween(StartNode , EndNode , Type):

37 ret = list()

38 while (StartNode = GetNextNode(StartNode)) != EndNode:

39 if StartNode.NType == Type:

40 ret.append(StartNode)

41 return ret

Figure 5: The expected benefit algorithm

𝑁𝑒𝑥𝑡𝑆𝑦𝑛𝑐 by adding (𝑂𝑢𝑡𝐶𝑃𝑈𝐸𝑑𝑔𝑒(𝑁𝑜𝑑𝑒)𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛−𝐸𝑠𝑡𝐵
𝑒𝑛𝑒𝑓𝑖𝑡) to the current duration of 𝑁𝑒𝑥𝑡𝑆𝑦𝑛𝑐.

If the node has a misplaced synchronization, the function
MisplacedSynchronization on line 14 calculates the effect
on the edge label of the node performing the synchronization
if it was moved. For a misplaced synchronization at node
𝑁𝑜𝑑𝑒, we model how 𝑂𝑢𝑡𝐶𝑃𝑈𝐸𝑑𝑔𝑒(𝑁𝑜𝑑𝑒)𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 would
change if 𝑁𝑜𝑑𝑒𝑆𝑇𝑖𝑚𝑒 was increased. 𝑁𝑜𝑑𝑒𝑆𝑇𝑖𝑚𝑒 increases by
the time to first use (𝐹𝑖𝑟𝑠𝑡𝑈𝑠𝑒𝑇 𝑖𝑚 𝑒), the time between the
end of the synchronization event and the first use of protected
data collected in stage 4. Moving the synchronization forward
in time results in some CPU and GPU work being moved
forward in time. While the start time of some work events
change, their duration still does not. The only events with
durations that change are GPU idle events.

The calculation of change in expected benefit for moving a
misplaced synchronization is similar to removing a synchro-
nization. On line 25, we calculate the estimated benefit to
be 𝑁𝑜𝑑𝑒.𝐹 𝑖𝑟𝑠𝑡𝑈𝑠𝑒𝑇 𝑖𝑚𝑒. This is the maximum duration that
the GPU can be idle between 𝑁𝑜𝑑𝑒𝑆𝑇𝑖𝑚𝑒 and its new loca-
tion (𝑁𝑜𝑑𝑒𝑆𝑇𝑖𝑚𝑒 + 𝐹𝑖𝑟𝑠𝑡𝑈𝑠𝑒𝑇 𝑖𝑚𝑒). We calculate the new
duration of 𝑂𝑢𝑡𝐶𝑃𝑈𝐸𝑑𝑔𝑒(𝑁𝑜𝑑𝑒)𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 on line 26 to be
the original duration subtracted by 𝑁𝑜𝑑𝑒.𝐹 𝑖𝑟𝑠𝑡𝑈𝑠𝑒𝑇 𝑖𝑚𝑒.

If a node has a unnecessary memory transfer, the function
RemoveMemoryTransfer on line 37 calculates the effect of
removing the transfer. A transfer operation consists of a CPU
event of type 𝐶𝐿𝑎𝑢𝑛𝑐ℎ and a GPU event of type 𝐺𝑊𝑎𝑖𝑡.
The 𝐶𝐿𝑎𝑢𝑛𝑐ℎ event performs setup and initiates the transfer
while the 𝐺𝑊𝑎𝑖𝑡 event waits for the transfer to complete.
We estimate that the expected benefit to be the duration of
𝐶𝐿𝑎𝑢𝑛𝑐ℎ (line 31). The net effect is that the node’s duration
is set to zero (line 32).

3.5.2 Node Groupings. In real applications, multiple prob-
lematic operations often have the same underlying cause. For
example, a single line of source code or a single function might
be responsible for many problematic operations. Making a
single fix can result in multiple problematic operations being
corrected. We group problematic nodes together to expose
problems where a single fix could be applied at a single point
in the program (single point), to a single function in the
program (folded function), and to problematic nodes that
appear in a contiguous sequence (sequence).

The single point grouping combines the expected benefit
of nodes with identical stack traces that are matched by in-
struction address. We modify the ExpectedBenefit function
in Figure 5 to combine the estimated benefit of nodes with
the same stack trace. The stack traces for the nodes in the
graph were collected in stage 2.

The folded function grouping combines the expected bene-
fit of nodes with identical stack traces that are matched by
function name. We compare stack traces by the base function
name. For C++ functions, we demangling the function name
and discard template parameter type information before
matching. Template function calls with the same function
name with instances that differ only by template parameter
types often are the same function in source code. A fix to

Diogenes: Looking For An Honest CPU/GPU Performance Measurement Tool SC ’19, November 17–22, 2019, Denver, CO, USA

Diogenes Actual

Application Diogenes Estimated Runtime
Name Application Size Application Discovered Benefit Reduction

(Version) (Lines of Code) Organization Description Issues (% of exec) (% of exec)

cumf als [27] 5 K IBM/UIUC Matrix Factorization Sync and 137s (10.0%) 106s (8.3%)

(git rev: a5d918a) Mem Trans

cuIBM [12] 36 K Boston University Immersed Boundary Sync 202s (10.8%) 330s (17.6%)

(git rev: 0b63f86) Method

AMG [31] 65 K LLNL Algebraic Multigrid Sync 0.34s (6.8%) 0.29s (5.8%)
(v2.14) Solver

Rodinia [4] < 1 K UVA Gaussian (CUDA) Sync 0.13s (2.2%) 0.12s (2.1%)

(v3.1)

Table 1: Applications improved by correcting a subset of Diogenes discovered issues

a problem in the source code for the template would affect
all instances. The ExpectedBenefit function in Figure 5 is
modified in an identical manner to the single point grouping.

The sequence grouping combines the expected benefit of
problematic nodes that appear in a contiguous sequence on
the CPU graph. A sequence starts at a problematic node
𝑁0 and traverses the CPU graph, ending when a node 𝑁𝑖

is discovered that performs a synchronization that is neces-
sary. No synchronizations need to take place in the sequence
set {𝑁0, ..., 𝑁𝑖−1}. This property allows for the spreading of
unnecessary synchronization delay across a wider timespan,
increasing the number of 𝐺𝑊𝑎𝑖𝑡 events with durations that
could be reduced, allowing for large unnecessary synchroniza-
tion delays to be profitable corrected. Supporting sequences
requires a small modification to RemoveSyncronization to
carry forward unrealized savings (𝑂𝑢𝑡𝐶𝑃𝑈𝐸𝑑𝑔𝑒(𝑁𝑜𝑑𝑒).𝑑𝑢𝑟
𝑎𝑡𝑖𝑜𝑛 that could not be absorbed by GPU idle time) to future
nodes that may have GPU idle time that could be reduced.

4 DIOGENES

We created a prototype implementation of FFM called Dio-
genes that targets applications running on systems with
Nvidia GPUs. Diogenes is a dynamic binary instrumentation
performance tool that automates the data collection and
analysis of FFM’s stages, leveraging Dyninst [24] to create
and insert instrumentation into the application. Diogenes
is launched in a similar fashion to HPCToolkit’s hpcprof
and NVProf, no user involvement is necessary to advance
diogenes through the stages of FFM.

Diogenes has a simple terminal-based command line inter-
face to explore data analyzed by FFM. The results are sorted
by potential benefit and then exported in the JSON format,
allowing other tools the ability to access data collected by
Diogenes. Diogenes runs stages 1 through 3 to separately
collect performance data for problematic synchronization
and memory transfer operations, combining the results in
the analysis stage.

Diogenes requires the application program to be compiled
with debug symbols and must be linked against a version of
CUDA greater than 9.0. Our initial prototype of Diogenes
targets the PowerPC 8/9 architectures with most of the de-
velopment and testing taking place on Coral early access

machines at Lawrence Livermore National Laboratory. How-
ever, Diogenes is not limited solely to PowerPC architectures
and can be used on any architecture supported by Dyninst
with minor modifications.

5 EXPERIMENTS AND DISCUSSION

We tested the effectiveness of FFM’s ability to identify prob-
lematic operations and predict benefit by applying Diogenes
to four real world applications: cumf als [27] an alternating
least square matrix factorization library developed at IBM
and University of Illinois Urbana-Champaign, cuIBM [12]
a 2D Navier-Stokes solver using the immersed boundary
method developed at Boston University, AMG [31] an MPI
based parallel algebraic multigrid solver developed at LLNL,
and the Gaussian GPU benchmark from Rodinia [4] devel-
oped at the University of Virginia. All experiments were
run on the Ray Coral early-access cluster located at LLNL.
Each compute node on Ray contains a 20-core PowerPC
8-processor node with four Nvidia Pascal-class GPUs.

For each application, we used Diogenes to identify the
problems present in the application, fixed the problems with
the highest potential benefit, and compared the results of
Diogenes to other profiling tools. In Section 5.1 we detail the
problems detected by Diogenes and the fixes applied in each
application. Section 5.2 compares the output of Diogenes
to NVProf and HPCToolkit. In Section 5.3 we discuss the
limitations of Diogenes and the FFM model.

5.1 Application Problems

Table 1 shows the problem types Diogenes discovered in each
application, the estimated benefit Diogenes produced for
the problems we addressed, and the actual benefit obtained
for fixing the problems. In cumf als, we corrected a single
sequence of composed of 13 different problematic operations
that spanned across two functions. In cuIBM, we corrected
problematic synchronizations that appeared in a template
function. In AMG and Rodinia, we corrected unnecessary
operations that appeared at single points in the program.
The estimates produced by Diogenes were 77% (cumf als),
61% (cuIBM), 85% (AMG), and 92% (Rodinia) accurate
to the real benefit obtained. The major outlier was cuIBM,

SC ’19, November 17–22, 2019, Denver, CO, USA B. Welton. et al.

where the fix also corrected other problematic behavior not
targeted by Diogenes, resulting in a much larger benefit.

cumf als [27] is a GPU-based large matrix factorization
library that uses the alternating least square (ALS) method.
We ran our experiments using the GroupLens MovieLens [8]
10M input data set, a dataset containing 10 million user
ratings for movies, created by the University of Minnesota
with a cumf als iteration count of 5000. Diogenes estimated
that correcting a sequence containing problematic synchro-
nization and memory transfer operations in cumf als could
result in a reduction in execution time by 11% (see Figure 6).
This sequence contained 23 problematic operations spread
across two functions in two different source files. 18 operations
were problematic synchronizations and 5 were problematic
synchronous memory transfers (with both an unnecessary
transfer and synchronization).

To remove the problematic synchronizations at the cudaFr
ee operations at the beginning of the sequence in Figure 6,
a major rework of the structure of GPU memory handling
within the application would be needed, however we wanted
to avoid making large structural changes to the application.
We inspected each problematic operation in Figure 6, looking
for the problems that we could fix easily. The operation at
entry 10 of Figure 6 was the first one we could easily fix.
We then used the subsequence feature of Diogenes, which
allows a user to create a sequence between any two points
of an existing sequence, to generate a subsequence from
entry 10 to entry 23. Figure 8 shows that the benefit that
could be obtained by fixing the subsequence was 10% of
execution time, close to the estimated 11% benefit from
fixing the entire sequence. Note that the evaluation of the
benefit of fixing this subset of operations does not require
additional data collection. It can be invoked directly from
the command line interface of Diogenes. We are working
on ways to automate the identification of the high-impact
subsequences. To properly automate subsequence generation,
we need to be able to estimate the complexity of fixing the
problematic behavior and weight it against the benefit that
could be obtained.

The fix applied to cumf als removed function calls per-
forming unnecessary synchronizations and removed memory
transfer calls that would repeatedly retransfer the same data
to the same destination. For problematic synchronizations

Figure 6: A sequence of unnecessary operations iden-
tified by Diogenes in cumf als

at cudaFree, there is no asynchronous version of cudaFree,
we could not remove the call to cudaFree as it would lead to
not freeing memory allocated on the GPU by the application.
Instead of removing the call, we moved the cudaFree call
and its associated cudaMalloc call outside of the for-loop in
which they were contained, resulting in memory allocation
and deallocation that occurs only once instead of once per
loop iteration (approximately 5000 loop iterations).

To remove a memory transfer, we need to ensure that the
removal of the transfer did not result in incorrect computation
when the application was used with another data set. To
guard against such incorrect application behavior, we use
compiler and system based methods. Our first approach is
to make use of the C/C++ const qualifier on the variables
in the removed transfers. By using the const qualifier, the
compiler will notify (via a compile time error) if there is an
attempt to write to these variables in either the CPU or GPU
code. However, since a developer can still perform an unsafe
cast to get around the restrictions of const, we also use the
system mprotect primitive to ensure that the data cannot
be modified. We allocate the variables used in the removed
transfers on page aligned boundaries and use mprotect to
write protect the variables memory pages.

cuIBM [12] is a computational fluid dynamics (CFD) ap-
plication that uses an immersed boundary method (IBM),
allowing fluid flows to be calculated on a cartesian grid.
We ran our experiments using the lid-driven cavity with
Reynolds number 5000 dataset supplied in the public source
code repository for cuIBM [13] (lidDrivenCavityRe5000). In
cuIBM, Diogenes reported that the 22% of execution time
could be saved by removing problematic cudaFree operations
(see left hand side of Figure 7). Asking Diogenes for more
details on the cudaFree revealed that a single template func-
tion accounted for 10.8% of application execution time (see
right hand side of Figure 7). The issue Diogenes identified
is one that was also recently identified via manually analy-
sis [28]. The issue was caused by the repeated (millions of
times) allocation and deallocation of temporary GPU mem-
ory regions. Each deallocation performs a synchronization
with the GPU that was unnecessary. The template function
allocates a temporary GPU data region via the Thrust [22]
parallel algorithms library and frees it on exit. The result
is many calls to cudaFree that synchronize with the GPU.
To avoid this problem, we wrote a simple memory manager
that reuses temporary GPU data regions on subsequent calls
to the function. We modified cuIBM to use this method in-
stead of allocating storage via Thurst. The fix resulted in the
synchronization being eliminated. However, the fix also elim-
inated over 2 million cudaFree and cudaMalloc operations,
providing additional benefit.

AMG [31] is a parallel algebraic solver for linear systems,
specializing in 3-dimensional problems on unstructured grids.
We ran our experiments using the ij matrix benchmark con-
tained within AMG. In AMG, Diogenes estimated that 6.8%
of execution time could be saved by fixing a problematic

Diogenes: Looking For An Honest CPU/GPU Performance Measurement Tool SC ’19, November 17–22, 2019, Denver, CO, USA

Time(s) (% of execution time)
421.716s(22.52%) Fold on cudaFree

202.985s(10.84%) thrust::detail::contiguous_storage<...>
Conditionally unnecessary (see: conditions)

113.375s(6.06%) thrust::pair<...>
Conditionally unnecessary (see: conditions)

65.258s(3.49%) void cusp::system::detail::generic::multiply<...>
Conditionally unnecessary (see: conditions)

…

Time(s) (% of execution time)
421.716s (22.52%) Fold on cudaFree
150.353s (8.03%) Sequence starting at call ….
136.150s (7.27%) Fold on cudaDeviceSynchronize
98.803s (5.28%) Sequence starting at call …
80.938s (4.32%) Fold on cudaMemcpyAsync
…
Back/Previous
Exit

Diogenes Overview Display Expansion of Problem

Figure 7: Diogenes overview of problematic operations (left) and the expansion of problems at cudaFree (right)
for cuIBM

synchronization at a cudaMemset operation. cudaMemset per-
forms a synchronization only when it used on a unified mem-
ory address (a memory address accessible by both the CPU
and GPU). Since the memory pages being set were already
located in CPU memory, we replaced cudaMemset call with
a normal C memset operation.

Rodinia [4] is a benchmark suite for heterogeneous comput-
ing designed to study the performance effect new computing
architectures have on a variety of well known algorithms. We
ran our experiments using Rodinia’s Gaussian GPU bench-
mark. In Rodinia, Diogenes estimated that 2.2% of execution
time could be saved by fixing a problematic synchronization
at a cudaThreadSy nchronize operation. There were no other
operations that had potential benefits greater than 1% of
execution time. We fixed the issue by commenting out the
cudaThreadSynchronize call.

5.2 Comparison to NVProf and
HPCToolkit

Table 2 shows a comparison of the expected-benefit provided
by Diogenes against the results produced by NVProf [21]
and HPCToolkit [17]. We compare the call times reported by
each tool and, in Diogenes’ case, the expected benefit for the
CUDA functions called. The entries are sorted by the order
in which they appear in the summary generated by NVProf.

NVProf and HPCToolkit show similar results while Dio-
genes differs significantly for synchronizations and memory
transfer operations. An example can be seen in the profil-
ing results for cumf als. NVProf and HPCToolkit reported
that the function cudaDeviceSyn chronize executed for 745
and 628 seconds respectively. Diogenes reported that only 1
second of the execution time could be saved if you removed

Figure 8: The estimate of benefit reported by Dio-
genes for fixing a subsequence of the operations in
Figure 6.

the calls to cudaDeviceSynchronize. We verified that there
was no impact on the execution time of cumf als when only
the cudaDeviceSynchronize calls were removed. Other sig-
nificant differences between Diogenes and other tools for
synchronization and memory transfer calls can be seen in
cudaMemcpyAsync (in cuIBM), cudaThreadSynchronize (in
Rodinia), cudaDeviceSyn chronize (in cumf als), cudaMemset
(in AMG), cudaFree (in cumf als), and cudaMemcpy (in
cumf als).

Unlike NVProf and HPCToolkit, Diogenes does not collect
performance data on calls that do not contain a problematic
synchronization or memory transfer operation. We collect
no data on calls such as cudaMalloc and cudaLaunchKernel

because they do not perform a synchronization or a memory
transfer. The calls we collect data on is determined during
stage 1 of the FFM model when we identify what calls are
performing a synchronization or memory transfer. In the
future, if these calls become synchronous or perform memory
transfers, Diogenes will collect data on them automatically.

It should be noted that we were unable to run NVProf on
cuIBM due to a crash of NVProf during profiling. We tried
several different versions of NVProf between CUDA version
9.1 and 9.2, all of which crashed before producing a result. The
crash was likely caused by the large number of cuda calls that
take place during cuIBM’s execution (Diogenes collected data
on > 75 million cuda function calls). For HPCToolkit, the
reported percentage of execution time in Table 2 is lower than
expected for the applications cuIBM and cumf als. cumf als
has an uninstrumented execution time of 1360 seconds but
HPCToolkit reports that cudaDeviceSynchronize took 628
seconds and consumed 24.5% of execution time (when it
should be closer to 40%). We are still investigating why this
discrepancy exists.

5.3 Limitations of Diogenes

While we have seen success using Diogenes, there are some
limitations. Given that Diogenes runs an application multiple
times, it performs best when the execution pattern of the
application does not change dramatically between runs with
the same inputs. While Diogenes can tolerate small changes
in behavior between runs, applications with large changes in
behavior could result in missed problematic behavior.

SC ’19, November 17–22, 2019, Denver, CO, USA B. Welton. et al.

NVProf Profiled HPCToolkit Profiled Diogenes Estimated

Application Time (% of exec, Time (% of exec, Savings (% of exec,
Name Operation pos in profile) pos in profile) pos in profile)

cumf als cudaDeviceSynchronize 745s (52.0%, 1) 628s (24.5%, 1) 1s (0.07%, 3)

cudaFree 275s (18.7%, 2) 258s (10.1%, 2) 214s (15.73%, 1)

cudaMalloc 218s (17.3%, 3) 230s (9.1%, 3) -
cudaMemcpy 158s (11.8%, 4) 119s (4.7%, 4) 30s (2.2%, 2)

cuIBM cudaFree Profiler Crashed 447s (12.3%, 1) 421s (22%, 1)

cudaLaunchKernel 395s (12.1%, 2) -
cudaMalloc 382s (10.8%, 3) -
cudaDeviceSynchronize 170s (4.8%, 4) 136s (7.2%, 2)

cudaMemcpyAsync 163s (4.4%, 5) 80s (4.32%, 3)
cudaFuncGetAttributes 154s (4.2%, 6) -
cudaStreamSynchronize 52s (1.4%, 7) 4s (0.23%, 4)

AMG cudaFree 0.937s (18.7%, 1) 0.392s (3.3%, 2) 0.316s (6.34%, 2)

cudaMemset 0.813s (16.3%, 2) 0.577s (6.0%, 1) 0.343s (6.87%, 1)

cudaMallocManaged 0.157s (3.1%, 3) 0.069s (0.7%, 4) -
cudaStreamSynchronize 0.133s (2.6%, 4) 0.129s (1.3%, 3) 0.071s (1.41%, 3)

Rodinia cudaThreadSynchronize 6.05s (94.9%, 1) 5.01s (75.7%, 1) 0.13s (2.2%, 1)
cudaMemcpy < 0.01s (0.9%, 2) 0.07s (1.2%, 2) 0.06s (0.9%, 2)
cudaFree < 0.01s (0.01%, 3) < 0.01s (0.2%, 3) < 0.01s (0.04%, 3)

Table 2: Comparison of cuda function call profiling results between Diogenes, HPCToolkit, and NVProf

The overhead of running Diogenes is significantly higher
than that of other performance tools. The multiple runs and
the use of high cost instrumentation result in data collec-
tion times between 8x (cumf als) and 20x (cuIBM) of the
applications original execution time. While the cost is high of
running Diogenes, the automated nature of the tool and the
targeted feedback Diogenes provides can save programmer
time as compared to identifying these problems manually.

Diogenes has a limited ability to analyze applications using
CUDA’s unified memory. Unified memory provides a single
virtual memory address space accessible by any CPU or GPU
device on the system, removing the need to explicitly trans-
fer data between the devices. The transfer of data between
CPU and GPU physical memory still takes place but is au-
tomatically performed by the GPU device driver. Though
the transfer of data is automatic, problematic transfers can
still occur. However, unlike a normal memory transfer, the
source and destination of a unified memory transfer are not
known until after the transfer completes. The notification
of transfer completion is not immediate. The result is that
the data transfer could be modified before a hash could be
calculated and the presence of a problematic transfer would
be hidden. We have indirectly detected issues with unified
memory transfers in AMG (cudaMemset issue) and we are
looking at methods to expand Diogenes to directly detect
problems with unified memory transfers.

6 CONCLUSION

We have presented the FFM model that automates the identi-
fication of unnecessary/inefficient synchronization and mem-
ory transfer operations in GPU programs. FFM gives targeted
feedback on what problems exist in the application and what
the benefit would be if the problem were corrected. FFM is
not reliant on vendor supplied performance data collection

frameworks for data collection, instead FFM uses binary
instrumentation to directly capture and time events such
as synchronizations. The multi-stage/multi-run method of
data collection allowed FFM to collect performance data
that would otherwise be missed or is too costly for other
performance tools to collect.

We created a new analysis model that uses the data col-
lected by FFM to accurately identify problematic operations.
The analysis model groups problematic operations together
to identify problems where a single fix could be applied and
gives an estimate of the benefit of fixing the problems. The
prototype implementation of FFM, Diogenes, was able to
identify performance issues in four real world applications.
Diogenes was able to provide accurate feedback (around 77%
combined accuracy across all applications) on what the ben-
efit would be if the problem were fixed. Using Diogenes we
were able to improve the performance of these applications
by as much as 17%.

The problems identified by Diogenes in the applications
we tested typically had a similar underlying cause with a
common remedy that could be applied to correct the problem.
The existence of a common underlying cause along with a
common remedy used to correct a problem signals that they
may be automatically correctable if the cause and remedy can
be automatically identified. An automated method would be
able to correct issues that a typical user may not be able or
may not want to correct, such as issues that occur in closed
source binaries or those that offer low benefit. Problematic
synchronizations caused by inefficient memory management
and improper use of asynchronous memory transfers are of
particular interest given their high impact on performance in
the applications we tested. We are working to refine the pro-
cess of automatic correction and to integrate this capability
into Diogenes in the near future.

Diogenes: Looking For An Honest CPU/GPU Performance Measurement Tool SC ’19, November 17–22, 2019, Denver, CO, USA

7 ACKNOWLEDGEMENTS

This work is supported in part by the Department of En-
ergy under contacts 4000164398 and 4000151982 from Oak
Ridge National Labs, National Science Foundation grant
ACI-1449918, Lawrence Livermore National Lab contracts
B617863 and B634650, and a grant from Cray Inc.

REFERENCES
[1] T. E. Anderson and E. D. Lazowska. 1990. Quartz: A Tool for

Tuning Parallel Program Performance. In The 1990 Conference
on Measurement and Modeling of Computer Systems (SIGMET-
RICS ’90). Boulder, Colorado, 115–125. https://doi.org/10.1145/
98457.98518

[2] R. Bell, A. D. Malony, and S. Shende. 2003. ParaProf: A Portable,
Extensible, and Scalable Tool for Parallel Performance Profile
Analysis. In EuroPar Conference on Parallel Processing (Eu-
roPar ’03), Harald Kosch, László Böszörményi, and Hermann
Hellwagner (Eds.). Berlin, Heidelberg.

[3] C. Beyer, J, E. J. Stotzer, A. Hart, and B. R. de Supinski. 2011.
OpenMP for Accelerators. In the 7th International Workshop
on OpenMP ((IWOMP ’11)). Chicago, IL. https://doi.org/10.
1007/978-3-642-21487-5 9

[4] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and
K. Skadron. 2009. Rodinia: A Benchmark Suite for Heterogeneous
Computing. In Proceedings of the 2009 IEEE International
Symposium on Workload Characterization (IISWC) ((IISWC
’09)). IEEE Computer Society, Austin, TX. https://doi.org/10.
1109/IISWC.2009.5306797

[5] B. R. Coutinho, G. L. M. Teodoro, R. S. Oliveira, D. O. G. Neto,
and R. A. C. Ferreira. 2009. Profiling General Purpose GPU
Applications. In the 21st International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD
’09). Sao Paulo, Brazil, 7. https://doi.org/10.1109/SBAC-PAD.
2009.26

[6] M. Geimer, F. Wolf, B. JN. Wylie, E. Ábrahám, D. Becker, and
B. Mohr. 2010. The Scalasca performance toolset architecture.
Concurrency and Computation: Practice and Experience Vol 22,
Num 6 (2010), 702–719.

[7] M. Gerndt, K. Fürlinger, and E. Kereku. 2005. Periscope: Ad-
vanced Techniques for Performance Analysis.. In the 2005 In-
ternational Conference on Parallel Computing (PARCO ’05).
Malaga, Spain.

[8] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens
Datasets: History and Context. ACM Trans. Interact. Intell.
Syst. 5, 4, Article 19 (Dec. 2015), 19 pages. https://doi.org/10.
1145/2827872

[9] J. K. Hollingsworth and B. P. Miller. 1993. Dynamic Control
of Performance Monitoring on Large Scale Parallel Systems. In
The 7th International Conference on Supercomputing (ICS ’93).
Tokyo, Japan, 185–194. https://doi.org/10.1145/165939.165969

[10] J. K. Hollingsworth and B. P. Miller. 1994. Slack: A New Per-
formance Metric for Parallel Programs. Technical Report. Uni-
versity of Wisconsin - Madison. https://doi.org/10.13140/RG.2.
2.27600.97285

[11] A. Knüpfer, C. Rössel, D. A. Mey, S. Biersdorff, K. Diethelm,
D. Eschweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Malony,
W. E. Nagel, Y. Oleynik, P. Philippen, P. Saviankou, D. Schmidl,
S. Shende, R. Tschüter, M. Wagner, B. Wesarg, and F. Wolf.
2011. Score-P: A Joint Performance Measurement Run-Time
Infrastructure for Periscope, Scalasca, TAU, and Vampir. In the
5th International Workshop on Parallel Tools for High Perfor-
mance Computing. Berlin, Heidelberg. https://doi.org/10.1007/
978-3-642-31476-6 7

[12] S. Layton, A. Krishnan, and L. A. Barba. 2011. cuIBM - A
GPU-accelerated Immersed Boundary Method. In the 23rd Inter-
national Conference on Parallel Computational Fluid Dynamics
((ParCFD ’11)). Barcelona, Spain.

[13] S. Layton, A. Krishnan, and L. A. Barba. 2019. cuIBM Source
Code Repository (commit 0b63f86 ed.). https://github.com/
barbagroup/cuIBM

[14] K. A. Lindlan, J. Cuny, A. D. Malony, S. Shende, B. Mohr, R.
Rivenburgh, and C. Rasmussen. 2000. A Tool Framework for
Static and Dynamic Analysis of Object-Oriented Software with
Templates. In 2000 ACM/IEEE Conference on Supercomputing

(SC ’00). Dallas, TX. https://doi.org/10.1109/SC.2000.10052
[15] A. D. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G.

Juckeland, R. Dietrich, D. Poole, and C. Lamb. 2011. Parallel
Performance Measurement of Heterogeneous Parallel Systems
with GPUs. In the 2011 International Conference on Parallel
Processing (ICPP ’11). Taipei City, Taiwan, 10. https://doi.
org/10.1109/ICPP.2011.71

[16] A. D. Malony, S. Biersdorff, W. Spear, and S. Mayanglambam.
2010. An Experimental Approach to Performance Measurement
of Heterogeneous Parallel Applications Using CUDA. In the
24th ACM International Conference on Supercomputing (ICS
’10). ACM, Tsukuba, Ibaraki, Japan. https://doi.org/10.1145/
1810085.1810105

[17] J. Mellor-Crummey, R. Fowler, and D. Whalley. 2001. Tools for
Application-oriented Performance Tuning. In Proceedings of the
15th International Conference on Supercomputing (ICS ’01).
Sorrento, Italy. https://doi.org/10.1145/377792.377826

[18] B. Mohr and F. Wolf. 2003. KOJAK: A tool set for automatic
performance analysis of parallel programs. In The 2003 European
Conference on Parallel Processing (EuroPar ’03). Klagenfurt,
Austria.

[19] Nvidia. 2016. CUDA Compiler Driver NVCC - Reference Guide
(8.0 ed.).

[20] Nvidia. 2018. The CUDA Profiling Tools Interface (9.2 ed.).
[21] Nvidia. 2018. The Nvidia CUDA Profiler Users’ Guide (9.2

ed.).
[22] Nvidia. 2018. The Thrust Quick Start Guide (9.2 ed.).
[23] V. Pillet, J. Labarta, T. Cortes, and S. Girona. 1995. Paraver: A

tool to visualize and analyze parallel code. In Proceedings of the
18th Technical Meeting on Transputer and Occam Developments
(WoTUG-18). Manchester, England.

[24] Paradyn Project. [n. d.]. Dyninst: Putting the Performance in
High Performance Computing. http://www.dyninst.org

[25] Du Shen, Shuaiwen Leon Song, Ang Li, and Xu Liu. 2018. CU-
DAAdvisor: LLVM-based Runtime Profiling for Modern GPUs.
In Proceedings of the 2018 International Symposium on Code
Generation and Optimization (CGO 2018). ACM, New York,
NY, USA, 214–227. https://doi.org/10.1145/3168831

[26] S. Shende and A. D. Malony. 2006. The TAU parallel perfor-
mance system. The International Journal of High Performance
Computing Applications Vol 20, Num 2 (2006), 287–311.

[27] W. Tan, S. Chang, L. Fong, C. Li, Z. Wang, and L. Cao. 2018.
Matrix Factorization on GPUs with Memory Optimization and
Approximate Computing. In Proceedings of the 47th Interna-
tional Conference on Parallel Processing ((ICPP ’18)). ACM,
Eugene, OR, USA, Article 26, 10 pages. https://doi.org/10.1145/
3225058.3225096

[28] B. Welton and B. P. Miller. 2018. Exposing Hidden Performance
Opportunities in High Performance GPU Applications. In 18th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID ’18). Washington, D.C., 301–310.
https://doi.org/10.1109/CCGRID.2018.00045

[29] S. Wienke, P. Springer, C. Terboven, and D. an Mey. 2012. Ope-
nACC: First Experiences with Real-world Applications. In the
18th International Conference on Parallel Processing ((Euro-
Par ’12)). 12. https://doi.org/10.1007/978-3-642-32820-6 85

[30] C E. Wu, A. Bolmarcich, M. Snir, D. Wootton, F. Parpia, A.
Chan, E. Lusk, and W. Gropp. 2000. From trace generation to
visualization: A performance framework for distributed parallel
systems. In Proceedings of the 2000 ACM/IEEE conference on
Supercomputing. IEEE Computer Society, 50.

[31] U. Yang. 2018. AMG: Algebraic Multigrid Benchmark. https:
//github.com/LLNL/AMG. (2018).

https://doi.org/10.1145/98457.98518
https://doi.org/10.1145/98457.98518
https://doi.org/10.1007/978-3-642-21487-5_9
https://doi.org/10.1007/978-3-642-21487-5_9
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/SBAC-PAD.2009.26
https://doi.org/10.1109/SBAC-PAD.2009.26
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://doi.org/10.1145/165939.165969
https://doi.org/10.13140/RG.2.2.27600.97285
https://doi.org/10.13140/RG.2.2.27600.97285
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1007/978-3-642-31476-6_7
https://github.com/barbagroup/cuIBM
https://github.com/barbagroup/cuIBM
https://doi.org/10.1109/SC.2000.10052
https://doi.org/10.1109/ICPP.2011.71
https://doi.org/10.1109/ICPP.2011.71
https://doi.org/10.1145/1810085.1810105
https://doi.org/10.1145/1810085.1810105
https://doi.org/10.1145/377792.377826
http://www.dyninst.org
https://doi.org/10.1145/3168831
https://doi.org/10.1145/3225058.3225096
https://doi.org/10.1145/3225058.3225096
https://doi.org/10.1109/CCGRID.2018.00045
https://doi.org/10.1007/978-3-642-32820-6_85
https://github.com/LLNL/AMG
https://github.com/LLNL/AMG

	Abstract
	1 Introduction
	2 The Performance Tool Gap
	2.1 Single Stage Instrumentation
	2.2 Black Box Collection Frameworks

	3 Feed Forward Performance Model
	3.1 Baseline Measurement
	3.2 Detailed Tracing
	3.3 Memory Tracing and Data Hashing Stage
	3.4 Sync-Use Analysis
	3.5 Analysis Stage

	4 Diogenes
	5 Experiments and Discussion
	5.1 Application Problems
	5.2 Comparison to NVProf and HPCToolkit
	5.3 Limitations of Diogenes

	6 Conclusion
	7 Acknowledgements
	References

