
Abstract
We presenttwo systems,reliable sockets (rocks) and reliable
packets (racks), that provide transparent networkconnection
mobility using only user-level mechanisms.Each systemcan
detecta connectionfailure within secondsof its occurrence,
preservethe endpointof a failed connectionin a suspended
state for an arbitrary period of time, and automatically
reconnect,even whenone end of the connectionchanges IP
address,with correct recoveryof in-flight data.To allow rocks
andracksto interoperatewith ordinary clientsandservers,we
introducea general user-levelEnhancementDetectionProtocol
that enablesthe remotedetectionof rocks and racks, or any
other socket enhancementsystem, but does not affect
applicationsthatuseordinarysockets.Rocksandracksprovide
the same functionality but have different implementation
models:rocks interceptandmodifythebehaviorof thesockets
API by usingan interposedlibrary, while racks usesa packet
filter to intercept and modify the packets exchanged over a
connection.Racks and rocks introducesmall throughputand
latency overheadsthat we deemacceptablefor the level of
mobility and reliability they provide.

1 INTRODUCTION
We presenttwo new systems,reliablesockets(rocks)andreli-
able packets (racks), that eachprovides transparentnetwork
connectionmobility to ordinary applicationsusing only user-
level mechanisms.Thesesystemshave several major features
in common. They automatically detect network connection
failures,includingthosecausedby link failures,extendedperi-
odsof disconnection,changeof IP address,andprocessmigra-
tion, within secondsof their occurrence.They automatically
recover broken connectionswithout loss of in-flight data as
connectivity is restored.When an applicationusing either of
thesesystemsestablishesa new connection,it safelyprobesits
remote peer for the presenceof a rocks- or racks-enabled
socket,andfallsbackto ordinarysocket functionalityif neither
is present.Finally, designedto be ready-to-useby ordinary
users,both systemscan be usedwithout re-compilingor re-
linking existing binariesandwithout makingkernelmodifica-
tions, and rocks can be installed by unprivileged users.

The failure detectionand recovery mechanismsare reli-
ability featuresintendedto enableapplicationsto transparently
endurethe travails of mobile computing,such as moving to
anothernetwork, unexpectedlink failure(e.g.,modemfailure),
and laptop suspension.Rocks and racks can automatically

resumea broken connectioneven when one end (it doesnot
matterwhich one)changesits IP address.For therarecasesin
which both endsmove at the sametime, rocksandrackspro-
vide a callbackinterfacefor a third-partylocationservice.This
interface is one of several value-addedservicesprovided to
rocks-or racks-awareapplicationsby the rocks-expandedAPI
(RE-API).

The remotedetectionof socketsenhancementsis accom-
plishedby a new user-level EnhancementDetectionProtocol
(EDP). This protocol achieves a tricky task: it enablesuser-
level socket enhancementsto test for compatiblefunctionality
at the other end of a new connectionwithout affecting unen-
hancedapplications.All non-trivial costsof the protocol are
borneby theclient, so it is reasonableto deploy in production
servers, and it doesnot interferewith network infrastructure
such as network addresstranslation (NAT) devices[5] or
firewalls [6]. Theprotocolis generalpurpose:it canbeusedby
othermobility systemssuchasMSOCKS[10] or mobile TCP
sockets[19,20],andit cansupportsystemsthatenhancesock-
etswith otherfunctionalitysuchascompression,encryption,or
quality-of-service.For example,the EDP could end the com-
mon practiceof reservingtwo ports, one encryptedand one
non-encrypted, for network services such as IMAP[4].

The major differencebetweenrocksandracksis the way
that they track communication.Rocksare basedon a library
that is interposedbetweentheapplicationcodeandtheoperat-
ing system.Thelibrary exportsthesocketsAPI to theapplica-
tion, permitting it to be transparentlydroppedinto ordinary
applications,while extendingthebehavior of thesefunctionsto
mask connectionfailures from the application. In contrast,
racksare basedon a separateuser-level daemonthat usesan
advanced kernel-level packet filter to redirect the flow of
selectedpackets to the daemon[15]; packet filters with such
functionality currently include the Linux netfilter and the
FreeBSDdivert sockets.Racksdo not requireany codeto be
interposedin processesthatusethem.Thetwo approacheseach
have distinct advantagesand drawbacksand both implement
transparentenhancementsof network communicationfunction-
ality in user-spacewithout requiringkernelmodifications.Both
implementationsarecomplete;wedistributeandmaintainthem
to be used with real applications.

Avoiding kernel modifications has two main benefits.
First, it facilitatesdeployment. Kernel modificationsmust be
maintainedwith eachkernelversionandareinherentlyunport-
able.Furthermore,systemadministratorsare rightly paranoid
to applykernelpatchesthatdo not provide functionalitythat is
absolutely necessary.

Second,user-level mobility is much easier to combine
with processcheckpointingmechanisms.We have usedrocks
to expandthescopeof Condor[9] processmigrationto include
distributedjobs that communicateover sockets,andto check-

Reliable Network Connections
Victor C. Zandy and Barton P. Miller

Computer Sciences Department
University of Wisconsin - Madison

{zandy,bart}@cs.wisc.edu

Permissionto make digital or hardcopiesof all or part of this work for
personalor classroomuseis grantedwithout feeprovidedthatcopiesare
not madeor distributedfor profit or commercialadvantageandthatcop-
iesbearthis noticeandthe full citationon thefirst page.To copy other-
wise, or republish,to poston serversor to redistribute to lists, requires
prior specific permission and/or a fee.
MOBICOM’02, September 23-26, 2002, Atlanta, Georgia, USA.
Copyright 2002 ACM 1-58113-486-X/02/0009...$5.00.

point parallel programsbasedon MPI. Rocks are an ideal
abstractionfor suchfunctionality: as a user-level abstraction,
they are portableand can be compatiblewith both user-level
and kernel-level checkpointing mechanisms,while as a
replacementto the socketsAPI, they cansave communication
statewithoutbeingawareof application-specificdetailssuchas
messageformatsandbuffering.Rocksandracksareakey com-
ponentin our systemfor roamingapplications, whosegoal is
to enablethemigrationto a new hostof theentirecontext of a
desktopapplication,including its network, I/O, anduserinter-
facestate,without introducingany modificationsto the appli-
cation, operating systems, or network infrastructure.

Our systemscomplementthe functionality of existing
mobile networking systems.For example,they canbe layered
over network stacksthat supportMobile IP [17] or the TCP
migrate option[21] to recover connectionsthat are not pre-
served by thesesystems,such as thosethat becomediscon-
nectedfor periodslongerthantheTCPretransmissiontimeout.
On the other hand, for userswho cannot install the kernel
mechanismsrequiredby thesenetwork stacksor the network
infrastructurerequiredby Mobile IP, rocks and racksreplace
their functionality with user-level mechanisms.Furthermore,
rocks and rackssupporta mobility model more fine-grained
than that of Mobile IP: while Mobile IP requiresall applica-
tions at a given IP addressto move together, rocksand racks
enableindependentmobility of individual connections.This
freedomenablesindividual connectionsto be easilymigrated
to new hosts.

To summarize, the contributions of this paper are:

o Two new user-level techniquesfor transparentnetwork
connectionmobility, including mechanismsfor failure
detection,connectionsuspension,andconnectionrecovery
that preserves in-flight data.

o A comparisonof the implementationtechniquesof user-
level packet filtering and interpositionas techniquesfor
transparentlyenhancingthe functionality of a network
connection.We look at issuesof transparency andperfor-
mance.

o A new user-level EDP for remotelydeterminingwhether
enhancedsocket functionality, suchas rocks or racks,is
present at the other end of a TCP connection.

o An analysisof the role of unreliable,connection-lesspro-
tocolssuchasUDP in thepresenceof network connection
reliability and mobility.
The remaining sections of the paper are as follows.

Section2 discussesthe TCP failure model that motivatedthis
work. Section3 presentsthe enhancedsocket detectionproto-
col. Section4 presentsthe architectureand functionality of
rocksanddiscussthe issueswe have hadwith its implementa-
tion model. Section5 presentsracks.Section6 discussesthe
securityissuesof rocksandracks.Section7 discussesour use
of rocks and racks in processcheckpointingand migration.
Section8 discussesour approachto thereliability andmobility
of UDP. Section9 evaluatesthe performanceof rocks and
racks. Section10 discusses related work.

2 NETWORK CONNECTION FAILURE MODEL
Rocksandracksextendthereliability of TCPby detectingfail-
ures to TCP connectionsand preventing applicationsfrom
becomingawareof them.We review the essentialbackground
on TCP and relate its failure modes to mobility events.

2.1 TCP Review
TCP provides reliable bi-directionalbyte streamcommunica-
tion betweentwo processesrunning on separatehostscalled
the local hostandthe peerhost (seeFigure1). The operating
systemkernelson eachhostmaintainthestateof their endin a
TCP socket. A TCP socket is identifiedby an internetaddress
comprisedof an IP addressanda port number;a pair of such
addressesidentifiesa TCP connection. Applicationsmanipu-
late sockets through calls to the sockets API.

TheTCPreliability mechanismis basedon a pair of buff-
ersin eachsocketandaschemefor acknowledgingandretrans-
mitting data.Whenthe local applicationprocesswrites to the
socket, the local kernel copiesthe data to the socket’s send
buffer beforetransmittingit to the peer. This dataremainsin
thesendbuffer andis periodicallyretransmitteduntil thekernel
receives an acknowledgementof its receipt from the peer.
Whenthelocalkernelreceivesdatafrom thepeer, it copiesit to
the destination socket’s receive buffer and sends back an
acknowledgement.Thereceive buffer holdsdatauntil it is con-
sumedby theapplicationprocess.A processcannotpassmore
datato TCP thancanbe storedin the combinedspaceof the
local sendbuffer and the peer receive buffer. This limits the
maximumamountof in-flight data, datathat hasbeenpassed
from the processto the kernel on one end, but not yet con-
sumedby theprocessfrom thekernelon theotherend,thatcan
exist at any time over a TCP connection.

TCP connectionfailuresoccur when the kernel aborts a
connection.Aborts primarily occur when data in the send
buffer goesunacknowledgedfor a periodof time that exceeds
the limits on retransmissiondefinedby TCP. Othercausesfor
an abort includea requestby the application,too many unac-
knowledged TCP keepalive probes,receipt of a TCP reset
packet (suchasafter thepeerreboots),andsometypesof net-

Figure 1: An established TCP connection.

Sockets API

Application Code

Network

Local Host

Data in flight from local host to peer host
Data in flight from peer host to local host

TCP Socket

Receive
Buffer

Send
Buffer

Kernel
Sockets API

Application Code

Peer Host

TCP Socket

Receive
Buffer

Send
Buffer

Kernel

work failuresreportedby the IP layer[1]. Oncean abort has
occurred, the socket becomes invalid to the application.

2.2 Events Leading to Aborts
Mobile computerusersroutinelyperformactionsthatcanlead
to the abort of TCP connections. These actions include:

o Disconnection: A mobile host becomesdisconnected
whenthelink becomesunreachable(suchaswhentheuser
movesout of wirelessrange),whenthe link fails (suchas
whena modemdropsa connection),or when the host is
suspended.

o Changeof IP address:A hostmight move to a new physi-
calsubnet,requiringanew IP address,or asuspendedhost
might lose its IP addressand DHCP might subsequently
provide a different one. This changeof IP addresswill
leadto a failure of the TCP connectionthe next time one
endpoint attempts to send data to the other.

o Changeof physical address:Throughprocessmigration,
applicationsin executionmaymove from onecomputerto
another. Processmigrationis animportantmobility feature
for peoplewho usemultiple computers,suchasa laptop
for travel and separatedesktopcomputersat home and
work, becauseit freesusersfrom having to restarttheir
applicationswhen they move. Migration can causetwo
typesof failures.First, it changestheIP addressof thepro-
cess.Second,unlesstheprocessmigrationmechanismcan
migrate kernel state,it will separatethe processsocket
descriptorfrom theunderlyingkernelsocket.Theoriginal
kernelsocketwill beclosedor abortedwhile furtheruseof
the descriptorby the processwill refer to a non-existent
socket. This characteristicof sockets has long beenan
obstacle to migration of applications using sockets.

o Host crashes:The peer of the crashedhost will either
reachits retransmissionlimit while the host is down or,
after thehostreboots,receive a resetmessagein response
to any packet it sendsto thehost.We do not explorehost
crashesin thispaperbecausethey entailapplicationrecov-
ery, while we consider only connection recovery.

3 DETECTING SOCKET ENHANCEMENTS
Whenestablishinga new connection,our systemsusea novel
protocol, the EnhancementDetection Protocol, to detect
whetherthe remotesocket also supportsour systems(either
one) and, if it doesnot, to trigger the fall back to ordinary
socket behavior on that connection.With rareexceptions,this
protocol is transparentto the applicationcode at eachend.
Besidesnetwork connectionmobility, theprotocolis ageneral-
purpose approachto safe, portable, and user-level remote
detection of any type of socket enhancement.Servers can
freely usethe protocol sinceit imposesa trivial performance
penaltywhenacceptingconnectionsfrom unenhancedclients.
All significantcostsof theprotocolareincurredby clientsthat
usesocket enhancements.We have verified that the protocol
works with many standardservices,including ssh, telnet, ftp,
and X windows.

It is tricky to remotelydistinguisha enhancedsocket from
an ordinaryoneusingonly user-level mechanisms.The prob-

lem for the enhancedsocket is to unmistakablyindicate its
presenceto remoteprocessesthat useenhancedsocketswith-
out affecting thosethat do not. The socket enhancementcode
cannotsimply announceits presencewhen the connectionis
established,as othershave suggested[19,20], sincean unen-
hancedprocessis likely to misinterpretit. It is alsoproblematic
to usea separateconnection,becauseany schemefor creating
the secondconnectioncould conflict with otherprocessesthat
do not participatein the scheme.And althoughthereareTCP
andsocketoptions,TCPoptionscannotbereador written from
userspacewithout emulatingall of TCP over a (usuallyprivi-
leged)raw socket,andit is notpossibleto usesocketoptionsto
constructa distinctsocket configurationthatcouldberemotely
sensed.

The protocol is as follows (see Figure2):

1. Client Probe: The client and server perform a four step
protocol to establish to the client that the server is
enhanced:
1a. The client opens a connection to the server.
1b. Theclient closesits endof theconnectionfor writing,

using the sockets API functionshutdown.
1c. The server detectsthe end-of-file and announcesin

responsethat it is enhanced,then closesthe connec-
tion.

1d. Theclient receivestheannouncementandnow knows
the server is enhanced. It closes the connection.

2. Client Announcement: The client opensanotherconnec-
tion to the server and sendsan announcementthat it is
enhanced.Now boththeserver andtheclient aremutually
aware of being enhanced.

3. Enhancement Negotiation: Theclient andserver exchange
messages to agree on which enhancements they will use.

4. Enhancement Initialization: Theclient andserver perform
enhancement-specific initialization.

5. Application Communication: The protocol is complete;
the application code begins normal communication.
The enhancementannouncementthat is exchangedmust

bea patternthat is extremelyunlikely to beproducedby unen-
hancedclients or servers. The server generatesa long (1024
byte) randombyte array as its announcement,and the client
returns this array as its enhancementannouncement.The
announcementpattern may be shared among different
enhanced server processes.

Therearea few interestingcasesto consider. First, when
an enhancedclient connectsto an unenhancedserver andper-
forms steps1 and 2 of the protocol, the server will closeor
resetits end of the connection,obliviously senddata,or do
nothing.In any case,theclient doesnot receive theannounce-
mentfrom the server, andso it abortsthe protocolandreverts
to ordinarybehavior. However, if the server doesnothing,the
clientneedssomewayto know it shouldabort.Althoughonly a
strangeserver would quietly leave opena connectionthat has
beenclosedfor writing by its client (we have not seenit hap-
pen),shouldthiseverhappentheclienthasatimeoutto prevent
it from hanging.Thetimeoutperiodis a multiple of thetime it
took for connect to succeed,a conservative estimateof the
time for several round trips.

Second,if an unenhancedclient that is connectedto an
enhancedserver happensto performthe first two stepsof the
protocol, which includesreadingfrom a half-closedconnec-
tion, thenit will unexpectedlyreceive theannouncementgener-
atedby the server. However, this client behavior is too bizarre
to be worth accommodating;for example, although some
remoteshell client implementationsmay use shutdown in a
similarway, they alwayssendcommandsanddatato theserver
beforehand, so they do not apply to this case.

Finally, thetwo clientconnectionsmayreachtwo different
servers if the server applicationis replicatedbehinda device
that distributes incoming connections to multiple server
machines.However, this arrangementonly affectstheprotocol
whenthereplicatedserversarenon-uniformlyenhanced,which
weconsiderto beaproblemwith deployment,not theprotocol.

4 RELIABLE SOCKETS
Reliable sockets are implementedas a library interposed
betweentheapplicationprocessandthekernelatbothendsof a
TCPconnection(seeFigure3). Thelibrary exportsthesockets
API to the applicationcode to enableit to be transparently
droppedin ordinaryapplications.The library alsoexports the
rocks expanded API (RE-API), which enablesmobile-aware
applicationsto setpoliciesfor thebehavior of thereliablesock-
ets library and to manually control some of its mechanisms.

We give an overview of the reliable sockets architecture
andoperationandthendescribeourexperiencewith rocks,par-
ticularly issuesthatarepertinentto any systemthatattemptsto
interposeuser-level functionalitybetweenapplicationcodeand
the kernel.

4.1 Rocks Overview
The operationof a reliable socket can be summarizedby the
statediagramshown in Figure4. A reliablesocketexistsin one
of three states:CLOSED, CONNECTED,or SUSPENDED.
Note that thesestatescorrespondto reliable socket behavior
thataffectstheprocess,not theinternalTCPsocket statemain-
tainedby the kernel.A reliablesocket begins in the CLOSED
state.

To establisha reliable socket connection,the application
codemakestheusualsequenceof socketsAPI calls to createa
TCPconnection.Insteadof beinghandledby thekernelor the
systemsockets library, thesecalls are handledby the rocks
library, which performs the following steps:

1. Test for interoperability: The rocks library performsthe
EDP andrevertsthe socket to ordinarysocket behavior if
the peer does not support rocks or racks.

2. Establish the data connection: The dataconnectionis a
TCP connectionthat, oncethe reliablesocket connection
is established, is used for application communication.

Figure 2: The socket enhancement detection protocol.

connect

shutdown

read

connect

accept

read
write

accept

EOF

“ENHANCED”

À

`

´

ˆ

˜

TCP handshake

“ENHANCED”

“ROCKS or RACKS”

“ROCKS”

close

write

read
write

read
write

read

write

read

close

read

write

read
write

write

read

Knows Server
Is Enhanced

TCP handshake

Knows Client
Is Enhanced

Client Probe

Client
Announcement

Enhancement
Negotiation

Enhancement
Initialization

Application
Communication

Client Server

Figure 3: The reliable sockets architecture.

Figure 4: The reliable socket state diagram

Rock

In-Flight
Buffer

Application Code

Network

Local Host

Data in flight from local host to peer host
Data in flight from peer host to local host

TCP Socket

Receive
Buffer

Send
Buffer

Kernel

RE-API Sockets API
Rocks Library

Sockets API

Rock

In-Flight
Buffer

Application Code

Peer Host

TCP Socket

Receive
Buffer

Send
Buffer

Kernel

RE-API Sockets API
Rocks Library

Sockets API

CLOSED

CONNECTED SUSPENDED

Con
ne

ct
/A

cc
ep

t
Clo

se

TCP Failure

Reconnect

Abort

3. Initialize: Therocksestablishanidentifier for theconnec-
tion basedon the addressesof the connectionendpoints
and a timestamp, perform a Diffie-Hellman key
exchange[12] for later authentication,and exchangethe
sizesof their kernel socket buffers (which are available
from the sockets API).

4. Establishthecontrol socket: Thecontrol socket is a sepa-
rateUDPsocket thatis usedto exchangecontrolmessages
with thepeer. It is mainly usedto detectthe failureof the
data connection.
Following these steps the rock changesto the CON-

NECTED state.Onceconnected,the applicationcan use the
rock as it would use any ordinary socket.

Therock buffers in-flight dataasit is sentby theapplica-
tion. Thesizeof thein-flight buffer is thesumof thesizeof its
TCP sendbuffer andthe sizeof its peer’s TCP receive buffer,
the maximumnumberof bytesthat can be in flight from the
rock to its peer. Whentheapplicationsendsdata,therock puts
a copy of the data into the in-flight buffer, and incrementsa
count of bytessent.Older data in the in-flight buffer is dis-
cardedto make roomfor new data;the in-flight buffer is sized
to guaranteethatdatathathasnotyetbeenreceivedby thepeer
remainsin the buffer. Whenthe applicationreceivesdata,the
rock increments a count of bytes received.

Connectionfailures are detectedprimarily by heartbeat
probes that are periodically exchangedbetweenthe control
sockets.Unlike theTCPretransmissionmechanism,heartbeats
detectconnectionfailureswithin secondsinsteadof minutes,
theirsensitivity canbetunedwith theRE-APIonaper-connec-
tion basis, and they work even if the connection is idle.
Although the TCP keep-alive probecanalsodetectfailuresof
idle connections,it is poorly suitedfor reliablesocketsbecause
its two hourminimumdefault periodgenerallycannotbe low-
eredon a per-connectionbasis,only on a system-widebasisby
privileged users.A rock switchesto the SUSPENDEDstate
whenit detectsthatit hasnot receivedseveralsuccessiveheart-
beats (the number can be adjusted using RE-API).

The useof a separatecontrol socket is motivatedby the
difficulty of combining application data and asynchronous
rocks control dataon the sameTCP connection.When both
flow over a singleconnection,theremustbea way to transmit
heartbeatprobeseven when ordinary dataflow is blocked by
TCP, otherwiserocks would suspendperfectly good connec-
tions.TCPurgentdatais thebestavailablemechanismfor this
type of communication,but it has several limitations. First,
althoughsocketscanreceive urgentdataout-of-band,sending
the heartbeatover the sameconnectionas application data
would interferewith applications,suchastelnet andrlogin, that
make useof urgentdata.Second,on someoperatingsystems,
including Linux, when new out-of-banddatais received, any
previously receivedurgentdatathathasnot beenconsumedby
the application is merged into the data streamwithout any
recordof its position,possiblycorruptingtheapplicationdata.
Sincewe cannotguaranteethata heartbeatis consumedbefore
the next onearrives,we cannotprevent this corruption.Third,
on someoperatingsystems,whentheflow of normalTCPdata
is blocked, so is the flow of both urgentdataandurgentdata

notification. A separatecontrol socket avoids all theseprob-
lems.

A suspendedrock automaticallyattemptsto reconnectto
its peer by performing the following four steps:

1. Establish a new data connection: Each rock simulta-
neouslyattemptsto establisha connectionwith its peerat
its last knownaddress, the IP addressandport numberof
the peerendof the previous dataconnection.Whichever
connectionattemptsucceedsfirst becomesthe new data
connection.

2. Authenticate: The rocks mutually authenticatethrougha
challenge-responseprotocol that is basedon the key they
established during initialization.

3. Establisha new control socket: Thenew control socket is
establishedin the samemanneras the original control
socket.

4. Recover in-flight data: The rocks perform a go-back-N
retransmissionof any datathatwasin-flight at thetime of
the connectionfailure. Eachrock determinesthe amount
of in-flight datait needsto resendby comparingthenum-
berof bytesthatwerereceivedby thepeerto thenumber
bytes it sent.
Rock reconnectionis a best-effort mechanism:it depends

on the ability of one end (it doesnot matter which one) to
establishanew connectionto theother. A rockcannotestablish
a new connectionif (1) the other end hasmoved during the
period of disconnection,(2) it is blocked from establishinga
new connectionby a firewall, or (3) the last known addressof
thepeerwasmasqueradedby aNAT device.Althoughordinary
applicationscannotrecover from thesecases,theRE-API pro-
vides an interface to supportmobile-aware applicationswith
alternatemeansof recovery. Mobile-aware applicationscan
receive a callbackwhena connectionis suspendedor whenits
reconnectiontimeoutexpires,andthey canspecifyanalternate
last known address.Suspendedrocks attempt reconnectfor
threedays,a period of time that handlesdisconnectionsthat
spana weekend;theRE-API canbeusedto changeor disable
theperiodon per-rock basis.Rockssuspendedlongerswitchto
the CLOSEDstateandbehave to the applicationlike an ordi-
nary aborted socket.

A rock closesgracefullywhenthe applicationcalls close
or shutdown. If the applicationattemptsto closea suspended
rock,therockcontinuesto try to reconnectto thepeer, andthen
automaticallyperformsa normalcloseonceit is reconnected,
preservingin all but onecasetheclosesemanticsof TCP. The
outstandingcaseis that an applicationattemptto aborta TCP
connectionis converted by the rocks library to an ordinary
close,becauserocks usesthe abort mechanismto distinguish
connectionfailure from intentionalapplication-level close.We
have yet to seeanapplicationthatdependson abortsemantics,
but shouldoneexist, rockscouldusethecontrolsocket to indi-
cate an application abort.

We provide two programs,rock and rockd, that make it
simpleto userockswith existingapplications.rock startsapro-
gramasa rock-enabledprogramby linking it with the reliable
socketslibrary at run time. rockd is a reliablesocketserver that
redirectsits client’s connectionto anotherserver over an ordi-

nary TCP connection.Rock-enabledclients can effectively
establishreliablesocket connectionswith ordinaryserversby
running rockd on the samehost as the server. Although the
connectionbetweentherockd andtheserver is not reliable,it is
immune to TCP failures, including server host IP address
changes,since it is local to the host. To simplify the useof
rockd, rock detectsthe useof somecommonclient applica-
tions, and automaticallyattemptsto start rockd on the server
host if necessary.

4.2 Experience
We have beenusingrockson a daily basisfor over a year, pri-
marily with interactive network clientssuchasssh, ftp, telnet,
andX windowsclientssuchasGNU EmacsandAdobeFrame-
maker. On hostswherewe have root access,we have modified
thestartupscriptsfor thecorrespondingserversto userock; on
other server hosts, we establishrocks connectionsthrough
rockd. Not having to restartapplicationsis addictive,andusing
rockswidely generallyworks well sincethe EDP switchesto
ordinarysocketswhennecessary. However, we sometimesrun
into troublewhentrying to userockswith a new application.
The main problem is maintaining application transparency;
new applicationscanexhibit behavior that interfereswith the
rockslibrary in unanticipatedways.Thepoint of this sectionis
to illustratethemajorproblemsthatmustbehandledby a sys-
tem that usesinterposition to maintain application transpar-
ency.

We usually link an applicationwith the reliable sockets
library by using the preloadingfeatureof the Linux loader, a
commonly available mechanismthat enablesa library to be
linked with binariesat executiontime. Preloadinghasseveral
problems.First,notall binariessupportpreloading:it cannotbe
performedon staticbinaries,sinceit dependson the dynamic
linker, andfor securityreasonsit is usuallydisabledfor setuid
binaries.Second,systemlibrariesdo not alwayscorrectlysup-
port preloading:the nameresolver in the Linux C library, for
example,containsstaticcalls to socket that cannotbe trapped
by thepreloadingmechanism.Rocksstepsaroundthisproblem
by patchingthe C library with correctedcalls at run time, but
this requiresknowledge of the problematicfunctions,which
maychangewith new library versions(thoughwe aredevelop-
ing a tool to automatethesearch).Third, therockslibrary may
not be theonly library that theuserwantsto interposein their
application.For example, they may also link thoseusedby
Kangaroo[24], Condor[9], or those createdby the Bypass
toolkit [25]. Multiple library interpositionrequiresa sensible
orderingof the libraries, linkage of interceptedfunction calls
through each library, and consistent managementof file
descriptorsandotherkernelresourcesvirtualizedby thelibrar-
ies, noneof which happensautomatically. Although libraries
generatedby Bypasscanco-exist with otherinterposedlibrar-
ies, most othersjust assumethey will be placedat the layer
closest to the kernel.

Sincethe rocksstateresidesin userspace,it is not auto-
matically managedby the kernel when the applicationcalls
fork or passesthe underlyingsocket descriptorto anotherpro-
cessover a Unix socket.Whena rock becomessharedin either
of theseways, the rocks library doesseveral things. First, it
movesthe stateof the rock to a sharedmemorysegment,and

forcesall sharingprocessesto attachto thesegment.Second,it
makesoneof thesharingprocessesresponsiblefor monitoring
therock’s heartbeatandtriggeringits reconnectionin theevent
of failure.Third, in theothersharingprocesses,it periodically
verifiesthat the responsibleprocessis still runningand,if it is
not, chooses another process to resume its responsibilities.

Another problem stemmingfrom rock sharingis that a
server daemonthat handsoff incoming client connectionsto
subprocessesmay find itself acceptingreconnectionattempts
from pastconnections.To handlethis case,whenever a server
rock acceptsa reconnectionattemptit locates,by indexing a
sharedtablewith theidentifierestablishedduringinitialization,
theprocessthathastheotherendof thatsuspendedconnection,
and passes the new connection to it.

A similar problem with the user-level state of a rock
occurs when the application calls exec. If left alone, exec
would expungefrom the processall rocksstate,including the
rocks library, but retain the underlyingkernel sockets.When
the rocks library interceptsan applicationcall to exec, it cre-
atesand sharesits rocks with a temporaryprocess,setsthe
environment variablesusedto preloadthe rocks library, and
thenallows theexec call to execute.If thecall fails, thelibrary
kills the temporaryprocess.If the call succeedsandthe rocks
library is loaded,thenduring its initialization the library trans-
fers the stateof the rocks from the temporaryprocess.If the
call succeedsbut, becausethepreloadingdoesnot work in the
new binary, the rockslibrary is not loaded,the temporarypro-
cess eventually times out and closes the rocks.

Maintaining transparency requiresvirtualizing additional
mechanisms,including: (1) emulatingpolling, asynchronous
I/O, andnon-blockingI/O semanticsfor reliablesockets,since
datamay be available to readfrom a user-level buffer in the
rocks library; (2) multiplexing the timers and signal handlers
setby both the applicationandthe heartbeatmechanism;and
(3) virtualizing processcontrol interfacessuchaswait, kill, and
SIGCHLD to isolateprocessescreatedby theapplicationfrom
those created by the rock library.

Noneof theseissuesaloneis particularlydifficult, but in
aggregation the mechanismswe have introducedto preserve
transparency are nearly as substantialas the socket enhance-
mentsthey support.They introduceadditionaloperatingsys-
temdependenciesthatmustported;sincethey aremostlyUnix
oriented,they will comprisea significantpart of the effort to
port to Windows.

5 RELIABLE PACKETS
Seekinganalternative to theapplicationtransparency problems
createdby therockslibrary, wedevelopedreliablepacketswith
thegoalof supportingnetwork connectionmobility outsidethe
kernelwithout the needto executein process’addressspace.
Themainideais to useapacketfilter to manipulatethepackets
that are exchangedbetweenthe kernel-level socket endpoints
of the connection,insteadof trying to control the behavior of
thesocketsAPI seenby applications.This ideais similar to the
useof packet manipulationin theTCPmigrateoption[21] and
the TCP spliceof the MSOCKSproxy [10]. The main differ-
encesarethatracksperformpacket manipulationswithout ker-
nel modifications and they provide additional functionality

including interoperability, long-term connectionsuspension,
and automatic failure detection and reconnection.

A packet filter is a kernelmechanismthat enablesa user
processto selectpackets that traversethe hostnetwork stack.
Packet selectionis basedon a setof matchingrules,suchasa
particularcombinationof TCP flags or a rangeof sourceIP
addresses,thattheprocessdynamicallypassesto thepacketfil-
ter. Early applicationsof packet filters included user-level
implementationof network protocols,tradingtheperformance
penaltyof passingnetwork traffic over the user-kernelbound-
ary for theconvenienceof kernelindependence[15]; racksfol-
lowsthis tradition.However, astheprimaryuseof packetfilters
turnedto network monitoring[11,14], the kernel functionality
that enabled packets to be redirected through user space
becamereplacedwith more efficient mechanismsfor passing
copies of packets, making systems like racks difficult to
develop.Recentlytheability to controlpacketsfrom userspace
hasreturnedto someoperatingsystems,primarily to support
firewall software. Our implementationis basedon the recent
Linux netfilter technology, but it also could use FreeBSD’s
divert sockets.

Racksareimplementedin adaemon,therackd, thatusesa
packet filter to insertitself in theflow of packetsbetweenlocal
socketsandthenetwork (seeFigure5). Thejob of therackdis
to prevent local TCP socketsfrom abortingdueto connection
failure.Sincethe rackdexecutesasa separateprocessoutside
of boththekernelandapplicationprocesses,therackdlacksthe
ability to changethe binding of kernel sockets to other pro-
cesses.If it allowedsocketsto abort,astherockslibrary does,
it could not recover the connection.

Therackdinspectspacketsflowing in eitherdirectionand,
for eachpacket, decideswhetherto discardit or to forward it,
possibly modified, to its destination.At any time, the rackd
mayalsoinject new packetsdestinedfor eitherendof thecon-
nection.Becausetheseoperationsareprivilegedon Linux, the
rackd needs to run with root privileges.

To be compatible with rocks, the rackd emulatesthe
behavior of reliablesockets,generatinga packet streamthat is
indistinguishablefrom that inducedby therockslibrary. How-
ever, for connectionsin which the peeris alsomanagedby a
rackd,it takesadvantageof thefine control it hasover packets
to usea simplerenhancementdetectionprotocolandto detect
failures without a separate control socket.

The rackd exchangesmessageswith the rackd or rocks
library at theotherendof eachconnectionduringinitialization,
authentication,and reconnection.The rackd sendsa message
by injectingit asif it weredatasentby thelocalsocket.It sends
themessagein a TCP packet whosesequencenumberfollows
the sequencenumber of the last data emitted by the local
socket. Oncea messagehasbeensentandacknowledged,the
local socket and the remoteendno longerhave synchronized
sequencenumbers.The rackd rewrites packets as it forwards
themto mapsequenceandacknowledgementnumbersto those
expected by the socket.

To establishnew connectionsunder the control of the
rackd,the rackdconfiguresthepacket filter to redirectpackets
in which only the TCP SYN flag is set; thesepacketsare the
first in the three-way handshake of TCP connectionestablish-
ment. It receivesboth outboundinitial SYN packets (connec-
tion attemptsissuedby local client sockets)andinboundones
(attemptsby remoteclientsto connectto local servers).Since
theinitial SYN containstheIP addressandportnumberof both
endsof the connectionbeingcreated,it containsall the infor-
mationnecessaryfor therackdto selectsubsequentpacketsfor
that connection.

Whenthe initial SYN originatesfrom a local socket, the
rackdcompletesthethree-way handshake on its behalf,except
it usesa different initial sequencenumberfrom the one sup-
plied in theinitial SYN andit blocksthelocal socket from see-
ing the packets exchangedduring the handshake. It performs
our EDPclient probeover theestablishedconnectionandthen
closesit. Therackdthenallowsthelocalsocket to completethe
three-way handshake by sending the original initial SYN
packet. If from the EDP probeit determinedthat the peer is
enhanced,therackdtakescontrolof theconnection.Otherwise,
it releasesthe connectionby configuring the packet filter to
ceaseredirectingtheassociatedpackets;sincethe local socket
connectionwasestablishedusing the original initial sequence
numberandno messageswereexchanged,it canfunctionnor-
mally without the rackd.

When the initial SYN originates remotely, the rackd
allows the local socket to perform the three-way handshake.
Therackddatawatchesfor oneof threeinitial eventsfrom the
remoteclient: (1) if theclientperformsaclientprobe,therackd
sendsthe enhancementannouncementto the client andcloses
bothendsof theconnection;(2) if theclient sendsanenhance-
mentannouncement,it exchangesreliablesocketsinitialization
messages; otherwise, (3) the rackd releases the connection.

Theconnectionestablishmentprotocolis shortcircuitedif
a rackdis presentatbothendsof theconnection.Whensending
aninitial SYN, therackdmodifiesthepacket to includea TCP
option that indicatesit wasproducedby a rackd.A rackdthat
receivesaninitial SYN containingthis optionalsoincludesthe
optionin thesecondpacketof thethree-wayhandshake.At this

Figure 5: The reliable packets architecture.

Host

Local
TCP

Socket

Kernel

User

Packet

Network

Filter

Outbound
Packet Flow
Inbound
Packet Flow

Application
Process Rackd

point, both endsof the new connectionaremutually awareof
their rackssupport,andimmediatelyfollowing thethird packet
of the handshake they initialize a reliablesocketsconnection.
As with any otherTCP option, the rackdoption is ignoredon
hosts that do not look for it.

Racksdetectfailureson an establishedconnectionusing
theTCPkeepaliveprotocolinsteadof aseparatecontrolsocket.
The rackd periodically sendsa standardkeep-alive probe, a
TCP packet with no payloadwhosesequencenumberis one
lessthanthe last sequencenumberacknowledgedby the peer.
When the rackd on the other end receives this packet, it for-
wardsit to theremotesocketandin response,theremotesocket
sendsthestandardreply to a keepalive probe:anacknowledge-
ment of the currentsequencenumber. To the sendingrackd,
these acknowledgementsserve the role of a heartbeatthat
assertsthe viability of the connection.This techniqueis unaf-
fectedby the useof the keepalive option by the processeson
eitherendof theconnection:TCPrespondsto theprobeseven
if theoption is not setandTCPis not affectedby thepresence
of moreprobesthanusual.Thekeepaliveprotocolis usedwhen
the rackd is connectedto anotherrack; when connectedto a
rock, the rackd manages a separate control socket.

Whenit suspendsaconnection,therackdmustpreventthe
local socket from aborting,which will happenif thereis unac-
knowledgeddata in the sendbuffer or if the applicationhas
enabledtheTCPkeep-alive probe.Therackdsendsto thelocal
socket a TCP packet advertising a zero receive-window from
its peer. Thesepacketsindicateto thelocal socket thatthepeer
is viable, but currently cannot acceptmore data. The local
socket periodically probesthe remotesocket for a changein
this condition. While the connectionis suspended,the rackd
acknowledgesthe probe,leaving the window sizeunchanged.
Although TCP implementationsarediscouragedfrom closing
their windows in this manner, their peersare required[1] to
cope with them and remain open as long as probes are
acknowledged.

Racksreconnectin thesameway asreliablesockets:each
endof the connectionattemptsto reconnectto the last known
addressof its peer. Whentherackdreceivesa new initial SYN
from a remotesocket, it first checkswhetherit is destinedfor
the previous local addressof any suspendedracks.If it is, it
handlesthe SYN as an incoming reconnection.To maintain
consistency with thelocalsocket,therackdrewritesthepackets
of the new connectionto match the sourceIP address,port
numbers,and sequencenumbersto those expected by the
receiving socket, a function similar to that performedby the
TCP splice in MSOCKS[10].

6 SECURITY
Rocksandracksdo not provide additionalprotectionfrom the
existingsecurityproblemsof network connections.To thatend,
rocks and racks guaranteethat a suspendedconnectioncan
only beresumedby thepartythatpossessesthekey established
during initialization. Since it is obtainedthrough the Diffie-
Hellmankey exchangeprotocol,thekey is secureagainstpas-
sive eavesdropping[12].

Like ordinary network connections,rocks and racks are
vulnerableto man-in-the-middleattacksstagedduring the key

exchangeor after theconnectionis established.Resolvingthis
limitation requiresa trustedthird party that can authenticate
connectionendpoints.Currently, applicationsthat requirethis
additionallevel of securitycanregistercallbackswith theRE-
API to invoke theirauthenticationmechanismduringinitializa-
tion andreconnection.We couldeasilyextendrocksandracks
to interfacewith a public key infrastructure,but we arewaiting
for this technologyto becomemore widespread.Rocks and
racksarecompatiblewith existingprotocolsfor encryptionand
authentication,suchasSSHandIPsec(encryptedconnections
are the common case in our daily use).

In addition, rocks and racks may be more sensitive to
denial-of-serviceattacksbecausethey consumemoreresources
thanordinaryconnections.Mostof theadditionalmemorycon-
sumptionoccursat userlevel in the rockslibrary or the rackd,
however additionalkernelresourcesareconsumedby therock
control socket and the rackd packet filter rules.Thesedo not
representnew typesof denial-of-serviceattacks,but they may
lower the requirements for an attacker to bring down a host.

7 PROCESS CHECKPOINTING
Rocks and racks can extend processcheckpointingmecha-
nisms to handle parallel programs,such as those that use
MPI [13] or PVM [7] in direct messagerouting mode.They
free the checkpointmechanismfrom any knowledge of the
library-level communicationsemanticsof theapplication,since
therocksandracksrecoverymechanismsoperateon theunder-
lying sockets,theleastcommondenominator. In contrast,other
systems that checkpoint parallel programs, such as
CoCheck[22,23] and MIST [2], are explicitly aware of the
communication library used by the application.

Existing processcheckpointmechanismscantake advan-
tageof reliablesocketswithout any modification.Whena pro-
cesslinked with rocks is checkpointed,the stateof the rocks
library is automatically saved with the rest of the process
addressspace.When the processis restartedfrom the check-
point, the rocks library detectsthat the socket file descriptors
havebecomeinvalid, andinitiatestheir recovery. A processthat
usesrocks can be migrated with its connectionssimply by
restarting its checkpoint on the new host.

Racksaremorecomplicatedto checkpoint.Wehaveadded
rackscheckpointingsupportto a user-level checkpointlibrary
that is linked with the processit checkpoints.A rack check-
point consistsof the statemaintainedby the rackdand,since
therackddoesnot buffer in-flight data,thecontentsof theker-
nelsocketbuffers.Whendirectedby thecheckpointlibrary, the
rackdinducesthe socket to transmitthe contentsof any unac-
knowledged data in its send-buffer by advertising a large
receive window. The checkpointlibrary obtains the receive-
buffer contentsby readingfrom the socket. Whenrestoringa
rack checkpoint,the checkpointlibrary passesthe checkpoint
to therackd,createsa new socket,andconnectsthesocket to a
specialaddress.The rackd interceptsthe packets exchanged
during the connectionand rather than establishinga normal
connection,resumesthe connectionfrom the checkpoint.To
restorethe socket buffers, the checkpoint library sendsthe
send-buffer contentsthroughthe socket, and the rackd trans-
mits the receive-buffer contents to the local socket.

Theprocesscheckpointingfunctionalityenabledby rocks
andrackscanbeusedin severalways.To toleratethefailureof
a singlenode,the processrunningon that nodecanbe check-
pointedandthenrestartedwhenthe noderecovers.The same
checkpointcanalsobe usedto migratethe processto another
nodeby restartingthecheckpointon thenew node.In thesame
manner, the entireapplicationcanbe migratedto a new setof
hosts,althoughthis migrationmustbe performedoneprocess
at a time to ensuresuccessfulreconnection.Alternately, the
network proxy we are developing for roaming applications
enablesany subsetof theprocessesto bemigratedat thesame
time, andmoregenerally, the RE-API canbe usedto link an
arbitrary mechanismfor locating migrated processwith the
rocks library.

Racksandrockscanalsobeusedto obtainaglobalcheck-
point of a parallelapplicationfrom which the applicationcan
be restartedafter a hardware failure. Care must be taken to
ensurethatthecheckpointis globally consistent.Oneapproach
is to stopeachprocessafter it checkpoints.Onceall processes
have checkpointed,the applicationcan be resumed.A more
generalapproachthatdoesnot requiretheentireapplicationto
be stopped is to take a Chandy and Lamport distributed
snapshot[3].

We have usedracksandrocksto checkpointandmigrate
the processesof an ordinary MPI applicationrunning under
MPICH [8]. Our applicationrunson a clusterof workstations
usingthe MPICH p4 device for clusters.Oncethe application
is started,eachprocesscanbesignalledto checkpointandthen
terminateor stop.Usingthis technique,weplanto extendCon-
dor supportfor MPI applications[26] to includecheckpointing
andmigration.To obtainagloballyconsistentcheckpoint,each
processwill stopitself after it checkpointsandCondorwill be
responsible for restarting them.

8 UDP
Rocksor racksarenot anobviousfit with UDP-basedapplica-
tions,however themobility featuresof rocksandrackscanbea
clearbenefitto UDP applications,enablinga programto con-
tinue its communicationfollowing a changeof addressor an
extendedperiod of disconnection.For example, they could
allow streamingmediaapplicationsto automaticallycontinue
afteruserdisconnectionandmovement.On theotherhand,the
reliability featuresof rocksandracksarenot alwaysappropri-
atefor UDP. Althoughthey couldsimplify thereliability mech-
anisms of some UDP applications, for others the reliable
delivery of all datamay compromisethe application’s perfor-
mance or be poorly matched to its reliability model.

SinceUDP is inherentlyunreliable,applicationsthat use
UDP must be preparedfor lost, duplicated,and out-of-order
datagrams.Applications generally use timeouts to trigger
retransmissionof lost dataand to decidethat communication
shouldbe aborted.It would be difficult for rocksandracksto
override timer-basedmechanisms,since that would require
themto understandtheapplicationsufficiently to separatetimer
eventsrelatedto communicationfailurefrom thosethat trigger
othereventssuchasuser-level threadscheduling.Instead,the
mainbenefitof rocksandracksto UDPapplicationsis thatthey
can be a source of information about mobility.

For mobile-aware applications,we provide callbacksin
theRE-API throughwhich they canbenotifiedwhena failure
hasbeendetectedby rocksor racksandwhenthereconnection
mechanismhas locatedthe remotepeer. Thesecallbacksare
not a replacementfor reliability mechanismsusedby theappli-
cation, but rather they provide thesemechanismswith addi-
tional information about communicationfailures. In the rare
casesin whichthefull reliability featuresof rocksandracksare
appropriatefor a UDP application,theRE-API alsoallows the
applicationto tunnelUDP packetsover a rocks-or racks-man-
aged TCP connection.

9 PERFORMANCE
Wehaveevaluatedrocksandracksdatatransferthroughputand
latency, connectionlatency, andreconnectionlatency overTCP
connectionsbetweena stationary500MHz Intel PentiumIII
laptopandamobile700MHzIntel PentiumIII laptopbothrun-
ning Linux 2.4.17.Overall, therearefew surprises.The addi-
tional context switches and copying of redirecting packets
throughthe rackdmakesracksthe moreexpensive of the two
systems.Theoverheadof rocksis noticeableonly whendatais
transferredin small packets,while the performanceeffectsof
racksaremoresignificantandoccurat largerblock sizes.The
startupcostof bothrocksandracksconnectionestablishmentis
significantly higher than that of an ordinary TCP connection,
but only on theorderof 1 ms.Altogether, we feel theoverhead
is acceptablefor thelevel of mobility andreliability functional-
ity provided by these systems.

9.1 Throughput and Latency
We attachedthe stationary laptop to a 100BaseTethernet
switch in our departmentnetwork and measuredthe TCP
throughputandlatency betweenit andthe mobile laptopfrom
threedifferentlinks: the sameswitch, the department802.11b
wirelessnetwork, anda homenetwork connectedto the Inter-
net by a cablemodem(in the uplink direction).We compared
throughputand latency of ordinary sockets, rocks, and racks
with varying block sizes.Block size is the size of the buffer
passedto thesocket send systemcall. We reportaveragemea-
surements over five runs (see Figure6).

Theoverheadof rocksandracksis mostvividly illustrated
on the fast link. For blocksof size100 bytesandlarger, ordi-
nary sockets and rocks have comparablethroughputthat is
close to the link capacity (around 90Mb/sec).For smaller
blocks throughputdropsfor all threeconnectiontypes,how-
ever thedropis largerfor rocks.Thelatency overheadof rocks
is small (around10usec)and independentof block size. We
attribute the rocksoverheadto the variousper-operationcosts
incurredduringdatatransferover rocks,includingtheoverhead
of copying into thein-flight buffer, periodicheartbeatinterrup-
tions, and the rockswrappersto underlyingsocket API func-
tions. Rackshave more dramaticoverhead.While they have
throughputsimilar to rocksonsmallblocks,for largerblocksit
plateausat a significantly lower rate (less than 75Mb/sec).
Thereis alsoa higherper-block latency overheadthat, unlike
rocks,increaseswith theblock size.We attributethis overhead
to theadditionalper-packet rackdcontext switchesandsystem
calls and the overheadof copying packets in and out of the
rackd.

Theperformanceeffectsof racksandrocksarelesseasily
discernedon theslower links. While we have exclusive access
to the100BaseTswitch,our measurementson the802.11band
cablemodemnetworksaresubjectto thevaryingconditionsof
thesesharednetworks,makingit difficult to capturecleardif-
ferences.On the 802.11blink, the standarddeviation is about
20% of the averagethroughputandabout15% of the average
latency. On the cablemodem,the standarddeviation is about
4% of the averagethroughputand about40% of the average
latency. Weconcludethattheoverheadof racksis still apparent
on slower links, but not the overhead of rocks.

9.2 Connection
We measuredthe connectionoverheadin a rock-to-rockcon-
nectionanda rack-to-rackconnection.We timed 100 applica-
tion calls to connect andreport the averagetimes in Table1.
Rockconnectiontimeis about18timeshigherthanthetimefor
ordinarysocket connection,while rack connectionis about16
timeshigher. Themostexpensive aspectof bothconnectionsis
thekey exchangefor authentication,anoperationthat involves
large integer arithmetic and takes approximately 2ms.
Althoughthesetimesarehigh, connectiontimesarestill about

4ms,which we deemanacceptablecostfor theaddedreliabil-
ity and mobility.

9.3 Reconnection
We measuredthe amountof time it takes to reconnecta sus-
pendedrock or rack.Reconnectiontime is thetime following a
restorationof network connectivity that a rock spendsestab-
lishinganew dataandcontrolsocketwith thepeerandrecover-
ing in-flight data. For our experiment, we suspendeda
connectionby disablingthenetwork interfaceon onemachine,
thenmeasuredthe time elapsedfrom whenwe re-enabledthe
interface to when the connectionreturned to the ESTAB-
LISHED state.

Figure 6: Average rocks and racks throughput and latency over 100BaseT, 802.11b, and cable modem links.

100BaseT Throughput

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 10000
Block size (bytes)

T
h

ro
u

g
h

p
u

t
(M

b
/s

ec
)

Sockets
Rocks
Racks

100BaseT Latency

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000 1200 1400
Block size (bytes)

L
at

en
cy

 (
u

se
c)

Sockets

Rocks
Racks

802.11b Throughput

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 10 100 1000 10000
Block size (bytes)

T
h

ro
u

g
h

p
u

t
(M

b
/s

ec
)

Sockets
Rocks
Racks

802.11b Latency

0

1000

2000
3000

4000

5000

6000

7000
8000

9000

10000

0 200 400 600 800 1000 1200
Block size (bytes)

L
at

en
cy

 (
u

se
c)

Sockets
Rocks
Racks

Cable Modem Throughput

0.11

0.111

0.112

0.113

0.114

0.115

0.116

0.117

0.118

1 10 100 1000 10000
Block size (bytes)

T
h

ro
u

g
h

p
u

t
(M

b
/s

ec
)

Sockets
Rocks
Racks

Cable Modem Latency

0

10000

20000

30000

40000

50000

60000

70000

80000

0 200 400 600 800 1000 1200
Block size (bytes)

L
at

en
cy

 (
u

se
c)

Sockets
Rocks
Racks

Connection Type Time (usec)

Ordinary Sockets 221

Rocks 3908

Racks 3588

Table 1: Average TCP connection establishment time.

The elapsedtime over multiple runs of the experiment
werealwaysunder2 seconds.This time is lessthan the time
requiredto restartmostnon-trivial applicationsthatwould fail
without rocksor racks,andsmallin thetimescaleof theevents
that typically lead to network connectionfailures, such as
changeof link device, link device failure, laptop suspension,
re-dial and connect, or process migration.

10 RELATED WORK
Many techniquesfor network connectionmobility have been
proposed.Unlike thesesystems,racks and rocks emphasize
reliability overmobility, viewing mobility asjustanothercause
of network connectionfailure.They provide reliability by inte-
gratingmechanismsfor rapid failure detectionandunassisted
reconnectionwith mechanismsfor preservingconnectionstate.
The otherdistinguishingfeaturesof our systemsarethat they
areimplementedentirelyoutsideof thekernelandthey enlista
new user-level protocol to interoperatesafely with ordinary
sockets.

Mobile TCP sockets[19,20] and Persistent
Connections[27] interpose,like rocks, a library betweenthe
applicationcodeandthesocketsAPI thatpreservestheillusion
of a single unbroken connectionover successive connection
instances.Betweenconnections,Mobile TCPsocketspreserve
in-flight databy using an unspecifiedkernel interface to the
contentsof the TCP sendbuffer (suchinterfacesarenot com-
mon), while PersistentConnectionsmakesno attemptto pre-
serve in-flight data.Mobile socketscannothandleTCPfailures
that result in the abort of the TCP socket, since that action
destroys the contentsof the socket sendbuffer. Both of these
techniquesdependon external supportto re-establishcontact
with a disconnectedpeer, andneitherinteroperatessafelywith
ordinaryapplications.MobileSocket [16] providesto Java pro-
grams the samein-flight data reliability of rocks and racks
usinganin-flight databuffer similar to thatof rocks,but it lacks
automaticfailure detection,usesa morecomplicatedin-flight
databuffering schemethat restrictsapplicationdataflow, and
lacks an interoperabilityfeaturelike the EDP, so it can only
operate with other applications that use MobileSocket.

The TCP Migrate option[21] is an experimentalkernel
extensionto TCP. It introducesa new stateto the TCP state
machinethatanestablishedconnectionenterswhenit becomes
disconnectedandreturnsfrom whentheconnectionis re-estab-
lished.The techniqueis similar to racksin that it manipulates
connectionstateat the packet level. However, it is basedon a
modificationto thekernelimplementationof thetransportpro-
tocol, not manipulationof the packets. In addition, it lacks
automaticfailure detectionandautomaticreconnectionand it
does not support extended periods of disconnection.

MSOCKS[10] hasarchitecturalsimilaritiesto both rocks
andracks.MSOCKSis aproxy-basedsystemthatenablesacli-
ent applicationprocessto establisha mobile connectionwith
anordinaryserver. Theproxy usesa kernelmodificationcalled
a TCP splice thatallows theclient,asit moves,to closeits end
of theconnectionandestablisha new onewithout affectingthe
server. The TCP splicemapsthe stateof the original connec-
tion held openby the server with the stateof the currentcon-
nection held by the client. The TCP splice could be

reimplementedat userlevel with the rackd packet filter tech-
niqueto mappacketsbetweenlocal andremotesocket state.In
addition,MSOCKSinterposesa library betweenclientapplica-
tion code and the operatingsystemthat redirect socket API
calls to the MSOCKSproxy, and it usesa usesa mechanism
similar to the rocks in-flight buffer to preserve datasentfrom
the client to the server. MSOCKSlacksmechanismsfor auto-
matic failure detectionandreconnectionandits TCP spliceis
implemented in the kernel.

An alternative to TCP-specifictechniques,Mobile IP [17]
routesall IP packets, including thoseusedby TCP andUDP,
betweena mobile host and ordinary peersby redirectingthe
packets througha home agent, a proxy on a fixed hostwith a
specializedkernel. Except for masking IP addresschanges
from TCP sockets,Mobile IP doesnot handlefailuresto TCP
connections.It dependson externalmechanismsfor detecting
disconnection and initiating reconnection.

11 CONCLUSION
Rocks and racks transparentlyprotect ordinary applications
from network connectionfailures,including thosecausedby a
changeof IP address,link failure,andextendedperiodof dis-
connection.Besidesbeing an unavoidable part of life with
mobile computers,thesefailurescanalsooccurunexpectedly
duringnon-mobilecommunication,suchaswhenmodemsfail
or dynamicIP addressleasesexpire. Rocksand racksdo not
require modifications to kernels or network infrastructure,
work transparentlywith ordinary application binaries, and
using our new EnhancementDetectionProtocoltransparently
revert to ordinary socket behavior when communicatingwith
ordinarypeers.Weroutinelyusethesesystemssocketsfor end-
userinteractive applications,suchasremoteshellsandremote
GUI-basedapplications,and for checkpointingand migrating
parallel programs.

As part of our ongoingwork on roamingapplication,we
aredevelopinga network proxy for moregeneralnetwork con-
nectionmobility. This proxy will provide supportfor simulta-
neousmovementof bothendsof a connectionandsupportthe
rocks-andracks-basedconnectionswith ordinarypeersthatdo
not support either system.

ACKNOWLEDGEMENTS
SomeshJhaofferedseveral insightful observationsaboutrocks
andrackssecurityandmadehelpful suggestionson theoverall
paper. Phil Roth mademany usefulcommentsthroughoutthe
developmentof thepaper. JoelSummersandMariosSkounakis
convincedus to usea UDP-basedcontrol socket. A reviewer’s
observationledusto amorerobustchoiceof connectionidenti-
fier.

REFERENCES

[1] R.T. Braden.Requirementsfor InternetHosts- Applications
and Support. Internet Request for Comments RFC 1122,
October 1989.

[2] J.Casas,D.L. Clark,R. Konuru,S.W. Otto,R.M. Prouty, and
J. Walpole. MPVM: A Migration TransparentVersion of
PVM. Computing Systems 8, 2, Spring 1995.

[3] K.M. Chandy and L. Lamport. Distributed Snapshots:
Determining Global State of Distributed Systems.ACM
Transactions on Computer Systems 3, 1, February 1985.

[4] M. Crispin. Internet MessageAccess Protocol: Version
4rev1.InternetRequestfor CommentsRFC2060,December
1996.

[5] K. Egevang and P. Francis. The IP Network Address
Translator(NAT). InternetRequestfor CommentsRFC1631,
May 1994.

[6] P.FergusonandD. Senie.NetworkIngressFiltering.Internet
Request for CommentsRFC 2267, May 2000.

[7] A. Geitz,A. Beguelin,J.Dongarra,W. Jiang,R.Manchek,V.
Sunderam.PVM: ParallelVirtual Machine:A Users’Guide
andTutorial for NetworkedParallelComputing.MIT Press,
Cambridge, Massachusetts, 1994.

[8] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-
Performance,PortableImplementationof the MPI Message
Passing Interface Standard. Parallel Computing 22, 6,
September 1996.

[9] M. Litzkow, T. Tannenbaum,J. Basney,and M. Livny.
CheckpointandMigrationof UNIX Processesin theCondor
Distributed ProcessingSystem. Technical Report #1346,
ComputerSciencesDepartment,University of Wisconsin,
April 1997.

[10] D.A. Maltz andP.Bhagwat.MSOCKS:An Architecturefor
TransportLayer Mobility. INFOCOM ‘98, San Francisco,
CA, April 1998.

[11] S.McCanneandV. Jacobson.TheBSDPacketFilter: A New
Architecture for User-level PacketCapture.1993 Winter
Usenix Conference, San Diego, CA, 1993.

[12] A.J. Menezes,P.C. Van Oorschot, and S.A. Vanstone
(Editor). Handbook of Applied Cryptography. CRC
Press,1996.

[13] MessagePassingInterfaceForum.MPI: A MessagePassing
Interface Standard. May, 1994.

[14] J.C. Mogul. Efficient Use of Workstations for Passive
Monitoring of Local Area Networks.ACM Symposiumon
CommunicationsArchitecturesand Protocols (SIGCOMM
‘90), Philadelphia, PA, 1990.

[15] J.C.Mogul,R.F.Rashid,andM.J.Accetta.ThePacketFilter:
An Efficient Mechanismfor User-levelNetworkCode.11th
Symposiumon Operating SystemPrinciples (SOSP‘87).
Austin, TX, November 1987.

[16] T. Okoshi, M. Mochizuki, Y. Tobe, and H. Tokuda.
MobileSocket: Toward Continuous Operation for Java
Applications.IEEE International Conferenceon Computer
Communicationsand Networks (IC3N’99), Boston, MA,
October 1999.

[17] C. Perkins. IP Mobility Support. Internet Request for
Comments RFC 2002, October 1996.

[18] J.Postel.TransmissionControlProtocol.InternetRequestfor
Comments RFC 793, September 1981.

[19] X. Qu, J.X. Yu, and R.P. Brent. A Mobile TCP Socket.
Technical Report TR-CS-97-08, Computer Sciences
Laboratory, RSISE, The Australian National University,
Canberra, Australia, April 1997.

[20] X. Qu, J.X. Yu, and R.P. Brent. A Mobile TCP Socket.
InternationalConferenceon SoftwareEngineering(SE‘97),
San Francisco, CA, USA, November 1997.

[21] A.C.SnoerenandH. Balakrishnan.An End-to-EndApproach
to Host Mobility. 6th IEEE/ACMInternationalConference
on Mobile Computing and Networking (Mobicom ’00).
Boston, MA, August 2000.

[22] G. Stellner.CoCheck:CheckpointingandProcessMigration
for MPI. 10thInternationalParallel ProcessingSymposium,
Honolulu, HI, 1996.

[23] G. Stellner and J. Pruyne. ResourceManagementand
Checkpointingfor PVM. 2nd EuropeanPVM User Group
Meeting, Lyon, France, 1995.

[24] D. Thain, J. Basney,S. Son,andM. Livny. The Kangaroo
Approach to Data Movement on the Grid. 10th IEEE
Symposiumon High PerformanceDistributed Computing
(HPDC ‘01), San Francisco, California, August 2001.

[25] D. Thain andM. Livny. Bypass:A Tool for Building Split
Execution Systems. 9th IEEE Symposium on High
Performance Distributed Computing (HPDC ‘00),
Pittsburgh, PA, August 2000.

[26] D. Wright. CheapCyclesfrom theDesktopto theDedicated
Cluster:CombiningOpportunisticandDedicatedScheduling
with Condor. Linux Clusters: The HPC Revolution,
Champaign-Urbana, IL, USA, June 2001.

[27] Y. ZhangandS. Dao.A “PersistentConnection”Model for
Mobile and Distributed Systems. 4th International
Conferenceon ComputerCommunicationsand Networks
(ICCCN). Las Vegas, NV, September 1995.

