
PerfExpert

Jim Browne, Ashay Rane and Leo Fialho

Petascale Tools Workshop
Madison WI, 2013

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

Agenda

1 Introduction

2 PerfExpert Modular Architecture

3 Understanding and Extending
PerfExpert

4 Conclusions

2 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

Overview: why PerfExpert?

Problem: HPC systems operate far below peak
Chip/node architectural complexity is growing rapidly

Performance optimization for these chips requires deep
knowledge of architectures, code patterns, compilers, etc.

Performance optimization tools
Powerful in the hands of experts

Require detailed performance and system expertise

HPC application developers are domain experts, not computer
gurus

Many HPC programmers/users do not use your tools
(seriously)

3 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

Goal for PerfExpert: democratize optimization!

Subgoals:
Make use of the tool as simple as possible

Start with only chip/node level optimization

Make it adaptable across multiple architectures

How to accomplish?
Formulate the performance optimization task as a workflow of
subtasks

Leverage the state-of-the-art: build on the best available tools
for the subtasks to minimize the effort and cost of
development

Automate the entire workflow

4 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

Introduction

The four stages of automatic performance optimization:
Measurement and attribution (1)

Analysis, diagnosis and identification of bottlenecks (2)

Selection of effective optimizations (3)

Implementation of optimizations (4)

Use of State-of-the-Art:
HPCToolkit/Intel VTune, MACPO based on ROSE (1)

PerfExpert Team (2 and 3)

PerfExpert Team based on ROSE, PIPS, Bison and Flex (4)

5 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

Introduction

Uniqueness of PerfExpert:
Nearly complete optimization first three stages of optimization
for chip/node level

Framework for implementing optimizations is complete and
several optimizations are completed

Integrates code segment focused and data structure based
measurements (MACPO)
— Code segment local measurement
— Data structure specific traces
— More accurate (associative) cache models
— Strides by data structure and code segment
— Architecture “independent” metrics

6 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

What can PerfExpert provide to you?

Performance report:
Identification of bottlenecks by relevance

Performance analysis based on performance metrics

Recommendations for optimization

There are three possible outputs:
Performance report only

List of recommendations

Fully automated code transformation

7 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

Performance Report

Loop in function compute() at mm.c:8 (99.8% of the total runtime)
===
ratio to total instrns % 0.........25...........50.........75........100

- floating point : 100 ***
- data accesses : 25 ************

* GFLOPS (% max) : 12 ******
- packed : 0 *
- scalar : 12 ******

performance assessment LCPI good......okay......fair......poor......bad....
* overall : 3.0 >>+
upper bound estimates
* data accesses : 9.6 >>+

- L1d hits : 0.9 >>>>>>>>>>>>>>>>>
- L2d hits : 1.8 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- L2d misses : 6.9 >>+

* instruction accesses : 0.1 >
- L1i hits : 0.0 >
- L2i hits : 0.0 >
- L2i misses : 0.1 >

* data TLB : 4.6 >>+
* instruction TLB : 0.0 >
* branch instructions : 0.1 >>

- correctly predicted : 0.1 >>
- mispredicted : 0.0 >

* floating-point instr : 5.1 >>+
- fast FP instr : 5.1 >>+
- slow FP instr : 0.0 >

8 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

List of Recommendations

#--
Recommendations for mm.c:8
#--
This is a possible recommendation for this code segment
#
Description: change the order of loops
Reason: this optimization may improve the memory access
pattern and make it more cache and TLB friendly
Pattern Recognizers: c loop2 f loop2
Code example:
loop i {

loop j {...}
}
=====> loop j {

loop i {...}
}

9 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

Fully Automated Code Transformation

Before:
void compute() {
register int i, j, k;

for (i = 0; i < 1000; i++)

for (j = 0; j < 1000; j++)

for (k = 0; k < 1000; k++)
c[i][j] += (a[i][k] * b[k][j]);

}

After:
void compute() {
register int i, j, k;
//PIPS generated variable
register int jp, kp;
/* PERFEXPERT: start work here */
/* PERFEXPERT: grandparent loop */
loop 6:
for (i = 0; i <= 999; i++)
/* PERFEXPERT: parent loop */
loop 7:
for(jp = 0; jp <= 999; jp += 1)
/* PERFEXPERT: bottleneck */
for(kp = 0; kp <= 999; kp += 1)
c[i][kp] += a[i][jp]*b[jp][kp];

}

10 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

Agenda

1 Introduction

2 PerfExpert Modular Architecture

3 Understanding and Extending
PerfExpert

4 Conclusions

11 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

Current Version: The Big Picture

User Interface!

binary
object! Measurement!

(HPCToolKit)!
general performance

metrics!

code bottlenecks
and list of!

recommendations!
!

Analyzer and!
Recommender!

Diagnose and Recom
m

endation Phases!

Input/output
data!

Developed by
the authors !

Measurement and Analysis Phases!

Script!

12 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

New Version: The Big Picture

User Interface!

original !
source!
code! Compiler! Analyzer!

(HPCToolKit)!
MACPO!

code bottlenecks and
general performance

metrics!

add data access!
performance metrics to

previous output!

code fragments to!
optimize and list of!
recommendations!

!

Pattern
Recognizer!

(Bison/Flex)!

code fragments to
optimize and list of
code transformers!

!

optimized code
fragments!

Optimization
Formulator!

(ROSE) !
Integrator!

(ROSE) !

optimized!
source code!

!

Support Database!

Transformer!
(PIPS/ROSE)!

Compilation Phase! Diagnose and Recom
m

endation Phases!

Code Transformation Phase!

Code Integration Phase!

Input/output
data!

Developed by
the authors !
Standard
Compiler!

Measurement and Analysis Phases!

Work Flow
Script!

binary object!

13 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

New Version: Work Flow Script

User Interface!

original !
source!
code! Compiler! Analyzer!

(HPCToolKit)!
MACPO!

code bottlenecks and
general performance

metrics!

add data access!
performance metrics to

previous output!

code fragments to!
optimize and list of!
recommendations!

!

Pattern
Recognizer!

(Bison/Flex)!

code fragments to
optimize and list of
code transformers!

!

optimized code
fragments!

Optimization
Formulator!

(ROSE) !
Integrator!

(ROSE) !

optimized!
source code!

!

Support Database!

Transformer!
(PIPS/ROSE)!

Compilation Phase! Diagnose and Recom
m

endation Phases!

Code Transformation Phase!

Code Integration Phase!

Input/output
data!

Developed by
the authors !
Standard
Compiler!

Measurement and Analysis Phases!

Work Flow
Script!

binary object!

This is a shell script

Accepts parameters

Invokes all tools
(including the compiler)

Backward compatible

14 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

New Version: Analyzer

User Interface!

original !
source!
code! Compiler! Analyzer!

(HPCToolKit)!
MACPO!

code bottlenecks and
general performance

metrics!

add data access!
performance metrics to

previous output!

code fragments to!
optimize and list of!
recommendations!

!

Pattern
Recognizer!

(Bison/Flex)!

code fragments to
optimize and list of
code transformers!

!

optimized code
fragments!

Optimization
Formulator!

(ROSE) !
Integrator!

(ROSE) !

optimized!
source code!

!

Support Database!

Transformer!
(PIPS/ROSE)!

Compilation Phase! Diagnose and Recom
m

endation Phases!

Code Transformation Phase!

Code Integration Phase!

Input/output
data!

Developed by
the authors !
Standard
Compiler!

Measurement and Analysis Phases!

Work Flow
Script!

binary object!

This is the old
PerfExpert, minus
“recommender”

Based on HPCToolkit

15 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

New Version: MACPO

User Interface!

original !
source!
code! Compiler! Analyzer!

(HPCToolKit)!
MACPO!

code bottlenecks and
general performance

metrics!

add data access!
performance metrics to

previous output!

code fragments to!
optimize and list of!
recommendations!

!

Pattern
Recognizer!

(Bison/Flex)!

code fragments to
optimize and list of
code transformers!

!

optimized code
fragments!

Optimization
Formulator!

(ROSE) !
Integrator!

(ROSE) !

optimized!
source code!

!

Support Database!

Transformer!
(PIPS/ROSE)!

Compilation Phase! Diagnose and Recom
m

endation Phases!

Code Transformation Phase!

Code Integration Phase!

Input/output
data!

Developed by
the authors !
Standard
Compiler!

Measurement and Analysis Phases!

Work Flow
Script!

binary object!

Enhances the set of
metrics with data access
performance metrics

Based on ROSE

16 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

New Version: Optimization Formulator

User Interface!

original !
source!
code! Compiler! Analyzer!

(HPCToolKit)!
MACPO!

code bottlenecks and
general performance

metrics!

add data access!
performance metrics to

previous output!

code fragments to!
optimize and list of!
recommendations!

!

Pattern
Recognizer!

(Bison/Flex)!

code fragments to
optimize and list of
code transformers!

!

optimized code
fragments!

Optimization
Formulator!

(ROSE) !
Integrator!

(ROSE) !

optimized!
source code!

!

Support Database!

Transformer!
(PIPS/ROSE)!

Compilation Phase! Diagnose and Recom
m

endation Phases!

Code Transformation Phase!

Code Integration Phase!

Input/output
data!

Developed by
the authors !
Standard
Compiler!

Measurement and Analysis Phases!

Work Flow
Script!

binary object!
Loads performance metrics on the Support Database

Runs all “recommendation selection functions”

Concatenates and ranks the list of recommendations

Extracts code fragments identified as bottlenecks

Based on ROSE

Extendable: accepts user-defined performance
metrics

Extendable: it is possible to write new
“recommendation selection functions” (SQL query)

17 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

New Version: Support Database

User Interface!

original !
source!
code! Compiler! Analyzer!

(HPCToolKit)!
MACPO!

code bottlenecks and
general performance

metrics!

add data access!
performance metrics to

previous output!

code fragments to!
optimize and list of!
recommendations!

!

Pattern
Recognizer!

(Bison/Flex)!

code fragments to
optimize and list of
code transformers!

!

optimized code
fragments!

Optimization
Formulator!

(ROSE) !
Integrator!

(ROSE) !

optimized!
source code!

!

Support Database!

Transformer!
(PIPS/ROSE)!

Compilation Phase! Diagnose and Recom
m

endation Phases!

Code Transformation Phase!

Code Integration Phase!

Input/output
data!

Developed by
the authors !
Standard
Compiler!

Measurement and Analysis Phases!

Work Flow
Script!

binary object!

This is a SQLite database

Stores the list of “recommendation selection functions”,
“pattern recognizers” and “code transformers”

Engine to run the “recommendation selection functions”

18 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

New Version: Pattern Recognizer

User Interface!

original !
source!
code! Compiler! Analyzer!

(HPCToolKit)!
MACPO!

code bottlenecks and
general performance

metrics!

add data access!
performance metrics to

previous output!

code fragments to!
optimize and list of!
recommendations!

!

Pattern
Recognizer!

(Bison/Flex)!

code fragments to
optimize and list of
code transformers!

!

optimized code
fragments!

Optimization
Formulator!

(ROSE) !
Integrator!

(ROSE) !

optimized!
source code!

!

Support Database!

Transformer!
(PIPS/ROSE)!

Compilation Phase! Diagnose and Recom
m

endation Phases!

Code Transformation Phase!

Code Integration Phase!

Input/output
data!

Developed by
the authors !
Standard
Compiler!

Measurement and Analysis Phases!

Work Flow
Script!

binary object!

Acts as a “filter” trying to find (match) the right code
transformer for a source code fragment (identified as bottleneck)

Language sensitive

Based on Bison and Flex

One recommendation may have multiple pattern recognizers

Extendable: it is possible to write new grammars to recognize/
match/filter code fragments (to work with new “transformers”)

19 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

New Version: Transformer

User Interface!

original !
source!
code! Compiler! Analyzer!

(HPCToolKit)!
MACPO!

code bottlenecks and
general performance

metrics!

add data access!
performance metrics to

previous output!

code fragments to!
optimize and list of!
recommendations!

!

Pattern
Recognizer!

(Bison/Flex)!

code fragments to
optimize and list of
code transformers!

!

optimized code
fragments!

Optimization
Formulator!

(ROSE) !
Integrator!

(ROSE) !

optimized!
source code!

!

Support Database!

Transformer!
(PIPS/ROSE)!

Compilation Phase! Diagnose and Recom
m

endation Phases!

Code Transformation Phase!

Code Integration Phase!

Input/output
data!

Developed by
the authors !
Standard
Compiler!

Measurement and Analysis Phases!

Work Flow
Script!

binary object!

Implements the recommendation by applying source code
transformation

May or may not be language sensitive

Based on ROSE, PIPS or anything you want

One code pattern may lead to multiple code transformers

Extendable: it is possible to write code transformers using
any language you want

20 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

New Version: Integrator

User Interface!

original !
source!
code! Compiler! Analyzer!

(HPCToolKit)!
MACPO!

code bottlenecks and
general performance

metrics!

add data access!
performance metrics to

previous output!

code fragments to!
optimize and list of!
recommendations!

!

Pattern
Recognizer!

(Bison/Flex)!

code fragments to
optimize and list of
code transformers!

!

optimized code
fragments!

Optimization
Formulator!

(ROSE) !
Integrator!

(ROSE) !

optimized!
source code!

!

Support Database!

Transformer!
(PIPS/ROSE)!

Compilation Phase! Diagnose and Recom
m

endation Phases!

Code Transformation Phase!

Code Integration Phase!

Input/output
data!

Developed by
the authors !
Standard
Compiler!

Measurement and Analysis Phases!

Work Flow
Script!

binary object!

Generates a new source
code by integrating to the
transformed code
fragments

Based on ROSE

21 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

Agenda

1 Introduction

2 PerfExpert Modular Architecture

3 Understanding and Extending
PerfExpert

4 Conclusions

22 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

Understanding PerfExpert Analysis

On the The Analysis Report...
The more “expensive” comes first

Tells user where the slow code sections are as well as why
they perform poorly

Every function or loop which takes more than 1% of the
execution time is analyzed (default value)

Yes, we rely on performance metrics (but not only and not the
raw ones)

No, we do not rely on hardware specs

If you are not using properly the node PerfExpert may
conclude everything is fine (use a representative workload)

23 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

Performance Report

Loop in function compute() at mm.c:8 (99.8% of the total runtime)
===
ratio to total instrns % 0.........25...........50.........75........100

- floating point : 100 ***
- data accesses : 25 ************

* GFLOPS (% max) : 12 ******
- packed : 0 *
- scalar : 12 ******

performance assessment LCPI good......okay......fair......poor......bad....
* overall : 3.0 >>+
upper bound estimates
* data accesses : 9.6 >>+

- L1d hits : 0.9 >>>>>>>>>>>>>>>>>
- L2d hits : 1.8 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- L2d misses : 6.9 >>+

* instruction accesses : 0.1 >
- L1i hits : 0.0 >
- L2i hits : 0.0 >
- L2i misses : 0.1 >

* data TLB : 4.6 >>+
* instruction TLB : 0.0 >
* branch instructions : 0.1 >>

- correctly predicted : 0.1 >>
- mispredicted : 0.0 >

* floating-point instr : 5.1 >>+
- fast FP instr : 5.1 >>+
- slow FP instr : 0.0 >

24 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

Metrics used by PerfExpert
Architecture Characteristics

Memory access latency: L1, L2, L3 and main memory (based
on micro-benchmarks)
Memory topology and size (based on hwlock)
Branch latency and missed branch latency (based on
micro-benchmarks)
Float-point operation latency (based on micro-benchmarks)
Micro-architecture (in progress)

Source Code
Language (C, C++, Fortran)
File name and line number
Type (loop or function)
Function name and “deepness”
Representativeness (percentage of execution time)

25 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

Metrics used by PerfExpert

Execution Performance
Raw data (PAPI)

LCPI: local cycles per instruction (PerfExpert Analyzer)

Data Access Performance (from MACPO)
Access strides and the frequency of occurrence (*)

Presence or absence of cache thrashing and the frequency (*)

Estimated cost (cycles) per access (*)

NUMA misses (*)

Reuse factors for data caches (*)

Stream count

(*) per variable
26 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

Extending PerfExpert
Adding Performance Metrics

Dynamically loaded into the support database

We treat everything (most of them, actually) as metrics

Some Example Metrics
code.section info=Loop in function compute() at mm.c:8
code.filename=mm.c
code.line number=8
code.type=loop
code.function name=compute
code.representativeness=99.8
perfexpert.ratio.data accesses=0.25
perfexpert.instruction accesses.L2i hits=0.002
perfexpert.branch instructions.mispredicted=0.0
perfexpert.floating-point instr.fast FP instr=5.073
perfexpert.data accesses.L2d hits=1.846
...

27 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

Extending PerfExpert

Recommendation Selection Functions
Is is just a SQL query

You can use as many functions as you want

We already have some strategies on how to rank
recommendations

A recommendation may lead to several pattern recognizers

A Simple Recommendation Selection Function Example
SELECT recommendation FROM t rec WHERE

metric.A > ‘this’ AND metric.B <= ‘that’
ORDER BY score DESC;

28 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

Extending PerfExpert

Pattern Recognizers
Any program which returns 0 or 1

Language sensitive

A pattern recognizer may lead to several code transformers

A Simple Grammar (Byson/Flex)
nested iteration statement
: WHILE ’(’ exp ’)’ WHILE ’(’ exp ’)’ stmnt
| WHILE ’(’ exp ’)’ ’’ WHILE ’(’ exp ’)’ stmnt ’’
| DO DO stmnt WHILE ’(’ exp ’)’ ’;’ stmnt WHILE ’(’ exp ’)’ ’;’
| DO ’’ DO stmnt WHILE ’(’ exp ’)’ ’;’ ’’ WHILE ’(’ exp ’)’ ’;’
| FOR ’(’ exp stmnt exp stmnt ’)’ FOR ’(’ exp stmnt exp stmnt ’)’ stmnt
| FOR ’(’ exp stmnt exp stmnt ’)’ ’’ FOR ’(’ exp stmnt exp stmnt ’)’ stmnt ’’
| FOR ’(’ exp stmnt exp stmnt exp ’)’ FOR ’(’ exp stmnt exp stmnt exp ’)’ stmnt
| FOR ’(’ exp stmnt exp stmnt exp ’)’ ’’ FOR ’(’ exp stmnt exp stmnt exp ’)’ stmnt ’’ ;

29 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

Extending PerfExpert

Code Transformers
Any program which returns 0 or 1

May be language sensitive

A Simple TPIPS script
create c loop2 ../source/mm.c
activate INTERPROCEDURAL SUMMARY PRECONDITION
activate TRANSFORMERS INTER FULL
activate PRECONDITIONS INTER FULL
setproperty SEMANTICS FIX POINT OPERATOR ‘‘derivative’’
module compute
apply LOOP INTERCHANGE
loop 8
apply UNSPLIT[%PROGRAM]
close
quit

30 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

Agenda

1 Introduction

2 PerfExpert Modular Architecture

3 Understanding and Extending
PerfExpert

4 Conclusions

31 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

Conclusions

Why is this performance optimization “architecture” strong?
Each piece of the tool chain can be updated/upgraded individually
It is extendable: metrics, performance measurement and analysis
phases, recommendations, transformations and strategies to select
recommendations
Multi-language, multi-architecture, open-source and built on top
of well-established tools (HPCToolkit, ROSE, PIPS, etc.)
Easy to use and lightweight!

This is the first end-to-end open-source performance optimization
tool (as far as we know)
It will become more and more powerful as new recommendations,
transformations and features are added
There is no “big code” (to increase in complexity until it become
unusable or too hard to maintain)

32 / 34

Introduction to Parallel Computing

Victor Eijkhout
April 2013

Introduction PerfExpert Modular Architecture Understanding and Extending PerfExpert Conclusions

Next Steps
Major Goals

Improve analysis based on the data access (in progress)
Increase the number of recommendations and possible code
transformations (continuously)
New algorithms for recommendations selection (in progress)
Add support to MIC architecture (in progress)
Add support to MPI-related recommendations (medium term)
Add support to MPI-related code transformations (long term)

Minor Goals
Support “Makefile”-based source code/compilation tree (done!)
Make the required packages installation process easier (done!)
Add a test suite based on established benchmark codes (in progress)
Easy-to-use interface to manipulate the support database (medium
term)

33 / 34

Thank You

fialho@utexas.edu
http://www.tacc.utexas.edu/perfexpert

Introduction to Parallel Computing

Victor Eijkhout
April 2013

