PerfExpert

Jim Browne, Ashay Rane and Leo Fialho

Petascale Tools Workshop
Madison WI, 2013

THE UNIVERSITY OF

TACC [EXAS

Ly

~

"o,

/
/r

TAGG fixis

0 Introduction

Introduction
[1}

Overview: why PerfExpert?

Problem: HPC systems operate far below peak

@ Chip/node architectural complexity is growing rapidly

@ Performance optimization for these chips requires deep
knowledge of architectures, code patterns, compilers, etc.

Performance optimization tools

@ Powerful in the hands of experts
@ Require detailed performance and system expertise

@ HPC application developers are domain experts, not computer
gurus

Many HPC programmers/users do not use your tools

(seriously) YR

Introduction
oce

Goal for PerfExpert: democratize optimization!

Subgoals:

@ Make use of the tool as simple as possible

@ Start with only chip/node level optimization

@ Make it adaptable across multiple architectures

v

How to accomplish?

@ Formulate the performance optimization task as a workflow of
subtasks

@ Leverage the state-of-the-art: build on the best available tools
for the subtasks to minimize the effort and cost of
development

@ Automate the entire workflow

XA

" e -

Introduction
[el

Introduction

The four stages of automatic performance optimization:

@ Measurement and attribution (1)

@ Analysis, diagnosis and identification of bottlenecks (2)

@ Selection of effective optimizations (3)

@ Implementation of optimizations (4)

<

Use of State-of-the-Art:

e HPCToolkit/Intel VTune, MACPO based on ROSE (1)
o PerfExpert Team (2 and 3)
o PerfExpert Team based on ROSE, PIPS, Bison and Flex (4)

y

TAGG fixis

5/34

Introduction
oe

Introduction

Uniqueness of PerfExpert:

@ Nearly complete optimization first three stages of optimization
for chip/node level

@ Framework for implementing optimizations is complete and
several optimizations are completed

@ Integrates code segment focused and data structure based
measurements (MACPO)
— Code segment local measurement
— Data structure specific traces
— More accurate (associative) cache models
— Strides by data structure and code segment

— Architecture “independent” metrics

Introduction
®000

What can PerfExpert provide to you?

Performance report:

@ ldentification of bottlenecks by relevance

@ Performance analysis based on performance metrics

@ Recommendations for optimization

v

There are three possible outputs:

@ Performance report only

@ List of recommendations

@ Fully automated code transformation

TAGG fixis

7/34

Introduction
0®00

Performance Report

Loop in function compute()

at mm.c:8 (99.8% of the total runtime)

ratio to total instrns B @o00000000 #Bo0000000000 B@cco000000 MBoocooooo 100
- floating point 8 100
- data accesses 8 25 srckokokokkokokokokok
* GFLOPS (/% max) 8 12wk
- packed 8 0 *
- scalar : 12 #xckkkk
performance assessment LCPI good......okay......fair......poor......bad....
* overall : 3.0 >>>3>53555555553555555555555555555555555555555+
upper bound estimates
* data accesses : 9.6 >>>>53333353553335555553555555555555555555555>+
- Lid hits : 0.9 >>>>>3535>>>>5>>>
- L2d hits : 1.8 >>5355355555555555555555555555555555>
- L2d misses : 6.9 >>>>55535355555555555555555555555555555555555>+
* instruction accesses 8 0.1 >
- L1i hits 0.0 >
- L2i hits 0.0 >
- L2i misses 8 0.1 >
* data TLB 8 4.6 >>>O>OO55O55555555555555555555555555555555555>+
* instruction TLB : 0.0 >
* branch instructions : 0.1 >>
- correctly predicted : 0.1 >>
- mispredicted : 0.0 >
* floating—point instr : 5.1 >333555>+
- fast FP instr : 5.1 >353555>+
- slow FP instr 8 0.0 >

XAS

8 /34

Introduction
00e0

List of Recommendations

__

Recommendations for mm.c:8

__

This is a possible recommendation for this code segment
#

Description: change the order of loops

Reason: this optimization may improve the memory access
pattern and make it more cache and TLB friendly

Pattern Recognizers: c_loop2 f_loop2

Code example:

loop i {
loop j {...}
}
=-===> loop j {
loop i {...}

XAS

9/34

Introduction
oooe

Fully Automated Code Transformation

void compute() {
register int i, j, k;

for (i = 0; i < 1000; i++)

for (j = 0; j < 1000; j++)

for (k = 0; k < 1000; k++)
c[i1[j] += (alillk] * blk1[j1);

void compute() {
register int i, j, k;
//PIPS generated variable
register int jp, kp;
/* PERFEXPERT: start work here */
/* PERFEXPERT: grandparent loop */
loop-6:
for (i = 0; i <= 999; i++)
/* PERFEXPERT: parent loop */
loop.7:
for(jp = 0; jp <= 999; jp += 1)
/* PERFEXPERT: bottleneck */
for(kp = 0; kp <= 999; kp += 1)
clil [kp] += a[il[jpl*bljp] [kp];

}

TAGG fixis

10/34

PerfExpert Modular Architecture
Agenda

~
© PerfExpert Modular Architecture l\ % \
’

/
7r

p-

TAGG fixis

11 /34

PerfExpert Modular Architecture

0000000000

Current Version: The Big Picture

| AaasaS 1

! .
! | Measurement and Analysis Phases o
I =
i| binary ||| &
! e N : M t general performance g
I| object [Hj= == == = = = = = = = = » [Measuremen Vedy .]
! | (HPCToolKit) : @
- Q
I 1 : 3
| | P8
I | : §
'\ Seript ! i g
1| Script |! -
| e e e e e e e e e e e e e et e e e e > Analyzer and | 2
| User Interface | Recommender| 2
_________ o+
I:I Developed by S
the authors code bottlenecks o
and list of =
recommendations 3
2

Input/output
data

TAGG fixis

12 /34

l:‘ Developed by
the authors

Standard fragments code transformers Bison/Flex recommendations
Compiler
L“p”t/ output Code Transformation Phase

ata

0®@00000000

New Version: T

PerfExpert Modular Architecture

e Big Picture

Compilation Phase

Measurement and Analysis Phases

aseyd uonjesbaju] apo)

optimized
source code

optimized code

Transformer
(PIPS/ROSE)

code fragments to
optimize and list of

Pattern

Recognizer

original
code bottlenecks and
source binary object Analyzer general performance MACPO
code (HPCToolKit) metrics
L~

add data access
performance metrics to
previous output

——— Optimization
Integrator 0 Formulator
(ROSE) ~_(Ros5)_~

code fragments to

optimize and list of

TAGG fixis

13 /34

PerfExpert Modular Architecture

00e0000000

New Version: Work Flow Script

Compilation Phase Measurement and Analysis Phases

code bottlenecks and
5| binary object || Analyzer general performance MACPO
(HPCToolKit) metrics
L

add data access
performance metrics to
previous output

original
source
code

@ This is a shell script

@ Accepts parameters ort Database OF;:)trl::‘zlgtlgrn
@ Invokes all tools —_(rose)

Pattern

l:‘ Developed by
the authors

(inc|uding the Compiler) fragments to code fragments to

ze and list of Recognizer optimize and list of’
Standard . transformers Bison/Flex; recommendations
L] Compler @ Backward compatible
L“P“t/ output Loae Iransformation Phase
ata

TAGG fixis

14 /34

PerfExpert Modular Architecture
000®000000

New Version: Analyzer

original
source
code

User Interface |

l:‘ Developed by
the authors

I Standard
Compiler
Input/output
data

Compilation Phase

Measurement and Analysis Phases

aseyd uonjesbaju] apo)

optimized
source code

/\

Integrator
(ROSE)

optimized code
fragments

binary object

i

Analyzer
(HPCToolKit)

@ This is the old
PerfExpert, minus

" "
recommender

code bottlenecks and
general performance
metrics

@ Based on HPCToolkit

MACPO
\/

add data access
performance metrics to
previous output

Optimization
Formulator

\(ROV

(PIPS/ROSE) optimize and list of
code transformers

ecogmzer
Bison/Flex

Code Transformation Phase

code to
optimize and list of

recommendations

PerfExpert Modular Architecture
[elele]eY Tolelelele)

New Version: MACPO

original
source
code

User Interface |

l:‘ Developed by
the authors

I Standard
Compiler
Input/output
data

Compilation Phase

Measurement and Analysis Phases

aseyd uonjesbaju] apo)

optimized
source code

/\

Integrator
(ROSE)

optimized code
fragments

binary object

i

Analyzer
(HPCToolKit)

code bottlenecks and
general performance
metrics

@ Enhances the set of
metrics with data access
performance metrics

@ Based on ROSE

MACPO
\/

add data access
performance metrics to
previous output

Optimization
Formulator

\(ROV

(PIPS/ROSE) optimize and list of
code transformers

ecogmzer
Bison/Flex

Code Transformation Phase

code to
optimize and list of

recommendations

PerfExpert Modular Architecture
00000®0000

New Version: Optimization Formulator

| 11 I
i _E\ I matlatia Plaaan [VPSR + ~=4 A--tyis Phases o i
| @ Loads performance metrics on the Support Database g
[3 |

“ 5 . : " MACPO 2
i @ Runs all “recommendation selection functions 7 & i
} N o a add data access g— }
| @ Concatenates and ranks the list of recommendations | |petformance metrics to| =5 |
} \ previous output § }
! o Extracts code fragments identified as bottlenecks Optimization | 3
& o) |
\ Formulator S
L' e Based on ROSE —wosey S|
<} [
5 = I
[C e Extendable: accepts user-defined performance code fragments to | | |
optimize and list of = |
E metrics recommendations ;ﬁb }
i wn I
I
[o Extendable: it is possible to write new |
. . .,]

“recommendation selection functions” (SQL query)

TAGG fixis

17 /34

PerfExpert Modular Architecture
000000®000

New Version: Support Database

-------- -~ @ This is a SQLite database

@ Stores the list of “recommendation selection functions”,

original
‘ “pattern recognizers” and “code transformers”

source
code

@ Engine to run the “recommendation selection functions”

source code
——— Optimization
Integrator 0 Formulator
(ROSE) \(Roy

l:‘ Developed by
the authors

Pattern
y code fragments to
Recognizer ||optimize and list of

Transformer
(PIPS/ROSE)

optimized code

code fragments to
optimize and list of

aseyd uonjesbaju] apo)
Saseyd UoIepuAIIOId

! Standard fragments code transformers Bison/Flex recommendations
Compiler
L“p”t/ output Code Transformation Phase
ata

TAGG fixis

18 /34

PerfExpert Modular Architecture
0000000e00

New Version: Pattern Recognizer

@ Acts as a “filter” trying to find (match) the right code

o transformer for a source code fragment (identified as bottleneck)
origin @ Language sensitive
sourc .
code @ Based on Bison and Flex

_~" @ One recommendation may have multiple pattern recognizers
Work |

|
|
|
|
|
|
|
NS
|
|
|
|
|
|
|
|

Saii @ Extendable: it is possible to write new grammars to recognize/

User Int match/filter code fragments (to work with new “transformers”)
_______ I
l:‘ Developed by} = Pattern g |

the authors | = N Transformer code fragments to y code fragments to - |

I optimized code (PIPS/ROSE) || optimize and list of Recogl‘llzer optimize and list of’ = |

! Standard } = fragments code transformers Bison/Flex recommendations ;ﬁb }
Compiler } 8 » }
L“l:Ut/ output | Code Transformation Phase !
ata | \

TAGG fixis

19/34

PerfExpert Modular Architecture
0000000080

New Version: Transformer

@ Implements the recommendation by applying source code
= transformation T
= o
| NS a0 = I
| origi @ May or may not be language sensitive g !
1| soul 3 |
i| coc @ Based on ROSE, PIPS or anything you want e |
. o
3/ @ One code pattern may lead to multiple code transformers 2 i
Work 9
| (=] |
il 'Sa e Extendable: it is possible to write code transformers using g
| o) |
| User In any language you want 2 |
_____ g |
l:‘ Developed by} = Pattern g |
the authors | = N Transformer code fragments to y code fragments to - |
I optimized code (PIPS/ROSE) || optimize and list of Recogl‘llzer optimize and list of’ = |
! Standard } = fragments code transformers Bison/Flex! recommendations & }
o]
Compiler } 8 » }
L“l:“t/ outputy Code Transformation Phase !
ata I \

TAGG fixis

20 /34

PerfExpert Modular Architecture

00000000 0e

New Version: Integrator

Compilation Phase Measurement and Analysis Phases

code bottlenecks and
5| binary object || Analyzer general performance MACPO
(HPCToolKit) metrics
L

original
source
code

| I
! I
1 o |
I g
I =
! a }
} ®
I L
[2
| — fadd data access o |
o sgp:ér:lzsge @ Generates a new source Ny B i

\ u . . 8
L& code by integrating to the Optimization]| = |

- /\

| 2 [Integrator transformed code Formulator | 3 |
B 92 fragments e~ & |
- 5 |
D RIZV:LC;F;;?:Y} g b\, < co(?e _fragmengs to '=U }
} o ODt‘lleed code) Based on ROS E optimize and st of s }
F Standard | g R rec ns 2
Compiler I @ |
| I
L“':”t/ outputy Code Transformation Phase |
ata | \

TAGG fixis

21/34

Understanding and Extending PerfExpert

Ly

~

"o,

© Understanding and Extending >
PerfExpert

7r

p-

TAGG fixis

22 /34

Understanding and Extending PerfExpert
®000

Understanding PerfExpert Analysis

On the The Analysis Report...

@ The more “expensive” comes first

@ Tells user where the slow code sections are as well as why
they perform poorly

@ Every function or loop which takes more than 1% of the
execution time is analyzed (default value)

@ Yes, we rely on performance metrics (but not only and not the
raw ones)

@ No, we do not rely on hardware specs

@ If you are not using properly the node PerfExpert may
conclude everything is fine (use a representative workload)

TACC T

23 /34

Performance Report

Loop in function compute()

Understanding and Extending PerfExpert
0®00

at mm.c:8 (99.8% of the total runtime)

ratio to total instrns B @o00000000 #Bo0000000000 B@cco000000 MBoocooooo 100
- floating point 8 100
- data accesses 8 25 srckokokokkokokokokok
* GFLOPS (/% max) 8 12wk
- packed 8 0 *
- scalar : 12 #xckkkk
performance assessment LCPI good......okay......fair......poor......bad....
* overall : 3.0 >>>3>53555555553555555555555555555555555555555+
upper bound estimates
* data accesses : 9.6 >>>>53333353553335555553555555555555555555555>+
- Lid hits : 0.9 >>>>>3535>>>>5>>>
- L2d hits : 1.8 >>5355355555555555555555555555555555>
- L2d misses : 6.9 >>>>55535355555555555555555555555555555555555>+
* instruction accesses 8 0.1 >
- L1i hits 0.0 >
- L2i hits 0.0 >
- L2i misses 8 0.1 >
* data TLB 8 4.6 >>>O>OO55O55555555555555555555555555555555555>+
* instruction TLB : 0.0 >
* branch instructions : 0.1 >>
- correctly predicted : 0.1 >>
- mispredicted : 0.0 >
* floating—point instr : 5.1 >333555>+
- fast FP instr : 5.1 >353555>+
- slow FP instr 8 0.0 >

XAS

24 /34

Understanding and Extending PerfExpert
fe1eX Yol

Metrics used by PerfExpert
Architecture Characteristics

Memory access latency: L1, L2, L3 and main memory (based
on micro-benchmarks)

Memory topology and size (based on hwlock)

Branch latency and missed branch latency (based on
micro-benchmarks)

Float-point operation latency (based on micro-benchmarks)

Micro-architecture (in progress)

Language (C, C++, Fortran)
File name and line number
Type (loop or function)
Function name and “deepness”

Representativeness (percentage of execution time)

XAS

25 /34

Understanding and Extending PerfExpert
oooe

Metrics used by PerfExpert

Execution Performance

e Raw data (PAPI)

@ LCPI: local cycles per instruction (PerfExpert Analyzer)

Data Access Performance (from MACPO)

@ Access strides and the frequency of occurrence (*)

@ Presence or absence of cache thrashing and the frequency (*)
e Estimated cost (cycles) per access (*)

NUMA misses (*)

@ Reuse factors for data caches (*)

@ Stream count

IAGG EXAS

26 /34

(*) per variable

Understanding and Extending PerfExpert
[Jelele)

Extending PerfExpert

Adding Performance Metrics

@ Dynamically loaded into the support database

o We treat everything (most of them, actually) as metrics

Some Example Metrics

code.section_info=Loop in function compute() at mm.c:8
code.filename=mm.c

code.line number=8

code.type=loop

code.function_name=compute
code.representativeness=99.8
perfexpert.ratio.data_accesses=0.25
perfexpert.instruction_accesses.L2i_hits=0.002
perfexpert.branch_instructions.mispredicted=0.0
perfexpert.floating-point_instr.fast _FP_instr=5.073
perfexpert.data_accesses.L2d_hits=1.846 XAS

27 /34

Understanding and Extending PerfExpert
0®00

Extending PerfExpert

Recommendation Selection Functions

@ Isis just a SQL query

@ You can use as many functions as you want

@ We already have some strategies on how to rank
recommendations

@ A recommendation may lead to several pattern recognizers

v

A Simple Recommendation Selection Function Example

SELECT recommendation FROM t_rec WHERE
metric.A > ‘this’ AND metric.B <= ‘that’
ORDER BY score DESC;

V.

TAGG fixis

28 /34

Understanding and Extending PerfExpert
coeo

Extending PerfExpert

Pattern Recognizers

@ Any program which returns 0 or 1

@ Language sensitive

@ A pattern recognizer may lead to several code transformers

A Simple Grammar (Byson/Flex)

nested-iteration_statement

WHILE °(° exp ’)’ WHILE ’(’ exp ’)’ stmnt

WHILE °>(° exp ’)’ ’’ WHILE ’(’ exp ’)’ stmnt ’’

DO DO stmnt WHILE ’(’ exp ’)’ ’;’ stmnt WHILE ’(’ exp ’)’ ’;’

DO ’’ DO stmnt WHILE °(° exp ’)’ ’;’ ’’ WHILE °(’ exp ’)’ ’;’

FOR ’(’ exp_stmnt exp_stmnt ’)’ FOR ’(’ exp_stmnt exp.stmnt ’)’ stmnt

FOR ’(’ exp_stmnt exp.stmnt ’)’ ’’ FOR ’(’ exp_stmnt exp.stmnt ’)’ stmnt ’’

FOR ’(’ exp_stmnt exp_stmnt exp ’)’ FOR ’(’ exp_stmnt exp_stmnt exp ’)’ stmnt

FOR ’(° exp_stmnt exp.stmnt exp ’)’ ’’ FOR ’(’ exp_stmnt exp_stmnt exp ’)’ stmnt ’’ ;

TAGG fixis

29 /34

Understanding and Extending PerfExpert
ocooe

Extending PerfExpert

Code Transformers

@ Any program which returns 0 or 1

@ May be language sensitive

| \

A Simple TPIPS script

create c_loop2 ../source/mm.c

activate INTERPROCEDURAL_SUMMARY_PRECONDITION
activate TRANSFORMERS_INTER_FULL

activate PRECONDITIONS_INTER_FULL
setproperty SEMANTICS FIX POINT_OPERATOR °‘derivative’’
module compute

apply LOOP_INTERCHANGE

loop-8

apply UNSPLIT [/,PROGRAM]

close

quit

XAS

30/34

Ly

~

"o,

/
@ Conclusions '/r

TAGG fixis

Conclusions
®00

Conclusions

Why is this performance optimization “architecture” stro

@ Each piece of the tool chain can be updated/upgraded individually

@ It is extendable: metrics, performance measurement and analysis
phases, recommendations, transformations and strategies to select
recommendations

@ Multi-language, multi-architecture, open-source and built on top
of well-established tools (HPCToolkit, ROSE, PIPS, etc.)

@ Easy to use and lightweight!

@ This is the first end-to-end open-source performance optimization
tool (as far as we know)

@ It will become more and more powerful as new recommendations,
transformations and features are added

@ There is no “big code” (to increase in complexity until it become
unusable or too hard to maintain) AR

32 /34

Conclusions
oeo

Next Steps

Major Goals

@ Improve analysis based on the data access (in progress)

@ Increase the number of recommendations and possible code
transformations (continuously)

New algorithms for recommendations selection (in progress)
Add support to MIC architecture (in progress)
Add support to MPI-related recommendations (medium term)

Add support to MPI-related code transformations (long term)

V.

Minor Goals

@ Support “Makefile"-based source code/compilation tree (done!)

@ Make the required packages installation process easier (done!)
@ Add a test suite based on established benchmark codes (in progress)

@ Easy-to-use interface to manipulate the support database (medium

term) XAS

33/34

Thank You

fialho@utexas.edu

http: //www.tacc.utexas.edu/perfexpert

THE UNIVERSITY OF

TACC [EXAS

