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Motivation

e (Good data locality is important
— high performance

— low energy consumption
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e Performance tools are needed to identify data locality problems
— code-centric analysis
— data-centric analysis




Code-centric v.s. data-centric
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% Previous work

e Simulation methods

— Memspy, SLO, ThreadSpotter ...
— disadvantages
« Memspy and SLO have large overhead
« difficult to simulate complex memory hierarchies

e Measurement methods

— temporal/spatial locality (" Support both static and h
* HPCToolkit, Cache Scope heap-allocated variable

— NUMA locality s
* Memphis, MemProf attributions

|dentify both locality Work for both MPI and
problems threaded programs

(' GUI for intuitive analysis )~ ( Widely applicable )




Approach

e A scalable sampling-based call path profiler which

performs both code-centric and data-centric attribution
identifies locality and NUMA bottlenecks

monitors MPIl+threads programs running on clusters
works on almost all modern architectures

Incurs low runtime and space overhead

has a friendly graphic user interface for intuitive analysis




Prerequisite: sampling support

Sampling features that HPCToolkit needs

— necessary features
« sample memory-related events (memory accesses, NUMA events)
» capture effective addresses
 record precise IP of sampled instructions or events
— optional features
» record useful metrics: data access latency (in CPU cycle)
« sample instructions/events not related to memory

Support in modern processors

— hardware support
 AMD Opteron 10h and above: instruction-based sampling (IBS)
« IBM POWER 5 and above: marked event sampling (MRK)
* Intel Itanium 2: data event address register sampling (DEAR)
 Intel Pentium 4 and above: precise event based sampling (PEBS)
* Intel Nehalem and above: PEBS with load latency (PEBS-LL)

— software support: instrumentation-based sampling (Soft-IBS)
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Profiler: collect and attribute samples

HPCToolkit workflow

 Analyzer: merge profiles and map to source code
GUI: display metrics in both code-centric and data-centric views
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HPCToolkit profiler

e Record data allocation
— heap-allocated variables
« overload memory allocation functions: malloc, calloc, realloc, ...
» determine the allocation call stack
 record the pair (allocated memory range, call stack) into a map

— static variables
* read symbol tables of the executable and dynamic libraries in use
* identify the name and memory range for each static variable

 record the pair (memory range, name) in a map
 Record samples
— determine the calling context of the sample

— update the precise IP

— attribute to data (allocation call path or static variable name) according
to effective address touched by instruction




% HPCToolkit profiler (cont.)

Data-centric attribution for each sample

— create three CCTs
— look up the effective address in the map
* heap-allocated variables
— use the allocation call path as a prefix for the current context
— insertin first CCT
« static variables
— copy the name (as a CCT node) as the prefix

— insert in second CCT CCT for CCT for CCT for

heap allocated static unknown

 unknown variables variable variable variable

allocation path

— insert in third CCT *
\

Record per-thread profiles




HPCToolkit analyzer

 Merge profiles across threads
— begin at the root of each CCT
— merge variables next
 variables have the same name or allocation call path
— merge sample call paths finally

( CCT for CCT for CCT for
heap allocated static unknown
variable variable variable




hpcviewer: amg2006

GUI: intuitive display
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e Determine memory bound v.s. CPU bound
— metric: latency/instruction (>0.1 cycle/instruction — memory bound)

Sphot: 0.097
S3D: 0.02

» |dentify problematic variables and memory accesses

lz'ns — - = Xi—

C percentage of memory instructions )

— metric: latency for a variable or a program region:
lins | latency optimization strategy
low low no optimization needed
low high optimization would yield little benefit
high low low priority for optimization
high high high priority for optimization
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Experiments

« AMG2006

— MPI+OpenMP: 4 MPI x 128 threads

— sampling method: MRK on IBM POWER 7
e LULESH

— OpenMP: 48 threads

— sampling method: IBS on AMD Magny-Cours
e Sweep3D

— MPI: 48 MPI processes

— sampling method: IBS on AMD Magny-Cours
o Streamcluster and NW

— OpenMP: 128 threads
— sampling method: MRK on IBM POWER 7
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Optimization results

Benchmark Optimization Improvement
AMG2006 match data with computation 24% for solver
Sweep3D change data layout to match 15%

access patterns
LULESH 1. interleave data allocation 13%
2. change data layout
Streamcluster interleave data allocation 28%

NW

interleave data allocation

53%
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Overhead

Execution time

Benchmark
Native With profiling
AMG2006 551s 604s (+9.6%)
Sweep3D 88s 90s (+2.3%)
LULESH 17s 19s (+12%)
Streamcluster 25s 27s (+8.0%)
NW 77s 80s (+3.9%)
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Conclusion

« HPCToolkit capabilities
— identify data locality bottlenecks
— assess the impact of data locality bottlenecks
— provide guidance for optimization

« HPCToolkit features
— code-centric and data-centric analysis
— widely applicable on modern architectures
— work for MPIl+thread programs
— intuitive GUI for analyzing data locality bottlenecks
— low overhead and high accuracy
 HPCToolkit utilities

— identify CPU bound and memory bound programs
— provide feedback to guide data locality optimization
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