A Data-centric Profiler for

Parallel Programs

;& |{I(

Xu Liu
John Mellor-Crummey

Department of Computer Science
Rice University

Petascale Tools Workshop - Madison, WI - July 16, 2013

Motivation

e (Good data locality is important
— high performance

— low energy consumption

core0 corel core0 corel
. HyperTi t
. Types of data locality S,
_ . core2 core3 QuickPath core2 core3
— temporal/spatial locality
_ CPUO CPUI
* reuse distance
 data layout I I
— NUMA IOcaIity memory memory

 remote v.s. local

. memory bandwicth | GHOIS Scossses: iGN Iatecy o banaNidthy

e Performance tools are needed to identify data locality problems
— code-centric analysis
— data-centric analysis

Code-centric v.s. data-centric

» Code-centric attribution or (= 01 <mi) {
_ : : 2: for(j=0;j <nm;j++) {
problematic code sections 3 for(ks 0k £ kb {
* instruction, loop, function 4: \ Alij. K] = Alij, k] + B[j, i, k] + C[k, j, i];
5:
o Data-centric attribution 6:} }
. . 7
— problematic variable accesses
— aggregate metrics of different MEMOIY | code-centric profiling data-centric profiling
accesses to the same variable
array A:
e (Code-centric + data-centric arr;;n; 4: 1% latency
— data layout mateh access pattern line 4: 100% latency line 4: 10% latency
. array C
— data layout matekh computation line 4: 89% latency
distribution

% Previous work

e Simulation methods

— Memspy, SLO, ThreadSpotter ...
— disadvantages
« Memspy and SLO have large overhead
« difficult to simulate complex memory hierarchies

e Measurement methods

— temporal/spatial locality (" Support both static and h
* HPCToolkit, Cache Scope heap-allocated variable

— NUMA locality s
* Memphis, MemProf attributions

|dentify both locality Work for both MPI and
problems threaded programs

(' GUI for intuitive analysis)~ (Widely applicable)

Approach

e A scalable sampling-based call path profiler which

performs both code-centric and data-centric attribution
identifies locality and NUMA bottlenecks

monitors MPIl+threads programs running on clusters
works on almost all modern architectures

Incurs low runtime and space overhead

has a friendly graphic user interface for intuitive analysis

Prerequisite: sampling support

Sampling features that HPCToolkit needs

— necessary features
« sample memory-related events (memory accesses, NUMA events)
» capture effective addresses
 record precise IP of sampled instructions or events
— optional features
» record useful metrics: data access latency (in CPU cycle)
« sample instructions/events not related to memory

Support in modern processors

— hardware support
 AMD Opteron 10h and above: instruction-based sampling (IBS)
« IBM POWER 5 and above: marked event sampling (MRK)
* Intel Itanium 2: data event address register sampling (DEAR)
 Intel Pentium 4 and above: precise event based sampling (PEBS)
* Intel Nehalem and above: PEBS with load latency (PEBS-LL)

— software support: instrumentation-based sampling (Soft-IBS)

&

Profiler: collect and attribute samples

HPCToolkit workflow

 Analyzer: merge profiles and map to source code
GUI: display metrics in both code-centric and data-centric views

executable
binaries

profiler

analyzer

code- &data-
centric profiles

GUI

HPCToolkit profiler

e Record data allocation
— heap-allocated variables
« overload memory allocation functions: malloc, calloc, realloc, ...
» determine the allocation call stack
 record the pair (allocated memory range, call stack) into a map

— static variables
* read symbol tables of the executable and dynamic libraries in use
* identify the name and memory range for each static variable

 record the pair (memory range, name) in a map
 Record samples
— determine the calling context of the sample

— update the precise IP

— attribute to data (allocation call path or static variable name) according
to effective address touched by instruction

% HPCToolkit profiler (cont.)

Data-centric attribution for each sample

— create three CCTs
— look up the effective address in the map
* heap-allocated variables
— use the allocation call path as a prefix for the current context
— insertin first CCT
« static variables
— copy the name (as a CCT node) as the prefix

— insert in second CCT CCT for CCT for CCT for

heap allocated static unknown

 unknown variables variable variable variable

allocation path

— insert in third CCT *
\

Record per-thread profiles

HPCToolkit analyzer

 Merge profiles across threads
— begin at the root of each CCT
— merge variables next
 variables have the same name or allocation call path
— merge sample call paths finally

(CCT for CCT for CCT for
heap allocated static unknown
variable variable variable

hpcviewer: amg2006

GUI: intuitive display

’i par_interp.c \ ‘a hypre_memory.c

S_offd = hypre_ParCSRMatrixOf,
hypre_CSRMatrixI(S_offd) = hy

173 S_diag = hypre_ParCSRMatrixDiag(S);

174 hypre_CSRMatrixI(S_diag) = hypre_CTAlloc(int, num_variables+1);
175 hypre_CSRMatrix](S_diag) = hypre_CTAlloc(int, num_nonzeros_diag);|
176

OF

e_CTAlloc(int, num_variables+1);

X Calling Context View 53 ‘ R, Callers View‘ h

Flat Viewl

|4 3|60 |5 A Ao

Scope
Experiment Aggregate Metrics
¥ monitored_heap_data
B 266: heap_data_allocation

Q// & 296: monitor_main
(0)

B 479 main

e

PM_MRK_DATA_FROM_RMEM:Sum (I) v

4

.08e+04
.87e+04
.87e+04
.82e+04
.82e+04
.93e+04
.93e+04
.93e+04
.93e+04
.93e+04
.34e+04

100 ¢
94.9%
94.9%
93.8%
93.8%
47.5%
47.5%
47.5%
47.5%
47.5%

33.08

03e+03

22.2% I

xlsmp_DynammChunkCall

Vinlined from par_interp.c: 296
Vloop at par_interp.c: 318
¥loop at par_interp.c: 318

¥ B hypre_BoomerAMGBuildIinterpSSOLSS1

.03e+03
.03e+03
.03e+03
.03e+03
.85e+03
.85e+03
.85e+03
.85e+03
.85e+03

22.2%
22.2%
22.2%

.85e+03

Vloop at par interp.c: 332
l par_interp.c: 335
¥ B hypre_ ul SULSS3

Vinlined from par_interp.c: 480
Vloop at par_interp.c: 506
¥loop at par_interp.c: 514

o o SN N S N N 00w YRR W W W W

.lge+03
.18e+03
.18e+03
.18e+03

2

2.9%
2.9%
2.9%

vl r interp.c: 539 1.18e+
l par_interp.c: 541 1.18e+03 2.9% ||

11

e Determine memory bound v.s. CPU bound
— metric: latency/instruction (>0.1 cycle/instruction — memory bound)

Sphot: 0.097
S3D: 0.02

» |dentify problematic variables and memory accesses

lz'ns — - = Xi—

C percentage of memory instructions)

— metric: latency for a variable or a program region:
lins | latency optimization strategy
low low no optimization needed
low high optimization would yield little benefit
high low low priority for optimization
high high high priority for optimization

12

Experiments

« AMG2006

— MPI+OpenMP: 4 MPI x 128 threads

— sampling method: MRK on IBM POWER 7
e LULESH

— OpenMP: 48 threads

— sampling method: IBS on AMD Magny-Cours
e Sweep3D

— MPI: 48 MPI processes

— sampling method: IBS on AMD Magny-Cours
o Streamcluster and NW

— OpenMP: 128 threads
— sampling method: MRK on IBM POWER 7

13

Optimization results

Benchmark Optimization Improvement
AMG2006 match data with computation 24% for solver
Sweep3D change data layout to match 15%

access patterns
LULESH 1. interleave data allocation 13%
2. change data layout
Streamcluster interleave data allocation 28%

NW

interleave data allocation

53%

14

Overhead

Execution time

Benchmark
Native With profiling
AMG2006 551s 604s (+9.6%)
Sweep3D 88s 90s (+2.3%)
LULESH 17s 19s (+12%)
Streamcluster 25s 27s (+8.0%)
NW 77s 80s (+3.9%)

15

Conclusion

« HPCToolkit capabilities
— identify data locality bottlenecks
— assess the impact of data locality bottlenecks
— provide guidance for optimization

« HPCToolkit features
— code-centric and data-centric analysis
— widely applicable on modern architectures
— work for MPIl+thread programs
— intuitive GUI for analyzing data locality bottlenecks
— low overhead and high accuracy
 HPCToolkit utilities

— identify CPU bound and memory bound programs
— provide feedback to guide data locality optimization

16

