
A Data-centric Profiler for
Parallel Programs

Xu Liu
John Mellor-Crummey

Department of Computer Science
Rice University

Petascale Tools Workshop - Madison, WI - July 16, 2013

Motivation
• Good data locality is important

– high performance
– low energy consumption

• Types of data locality
– temporal/spatial locality

• reuse distance
• data layout

– NUMA locality
• remote v.s. local
• memory bandwidth

• Performance tools are needed to identify data locality problems
– code-centric analysis
– data-centric analysis

2

remote accesses: high latency, low bandwidth

Code-centric v.s. data-centric

• Code-centric attribution
– problematic code sections

• instruction, loop, function

• Data-centric attribution
– problematic variable accesses
– aggregate metrics of different memory

accesses to the same variable
• Code-centric + data-centric

– data layout match access pattern
– data layout match computation

distribution

3

Combination of code-centric and data-centric attributions
provides insights

Previous work

• Simulation methods
– Memspy, SLO, ThreadSpotter ...
– disadvantages

• Memspy and SLO have large overhead
• difficult to simulate complex memory hierarchies

• Measurement methods
– temporal/spatial locality

• HPCToolkit, Cache Scope
– NUMA locality

• Memphis, MemProf

4

Identify both locality
problems

Work for both MPI and
threaded programs

Widely applicable GUI for intuitive analysis

Support both static and
heap-allocated variable

attributions

Approach

• A scalable sampling-based call path profiler which
– performs both code-centric and data-centric attribution
– identifies locality and NUMA bottlenecks
– monitors MPI+threads programs running on clusters
– works on almost all modern architectures
– incurs low runtime and space overhead
– has a friendly graphic user interface for intuitive analysis

5

Prerequisite: sampling support

• Sampling features that HPCToolkit needs
– necessary features

• sample memory-related events (memory accesses, NUMA events)
• capture effective addresses
• record precise IP of sampled instructions or events

– optional features
• record useful metrics: data access latency (in CPU cycle)
• sample instructions/events not related to memory

• Support in modern processors
– hardware support

• AMD Opteron 10h and above: instruction-based sampling (IBS)
• IBM POWER 5 and above: marked event sampling (MRK)
• Intel Itanium 2: data event address register sampling (DEAR)
• Intel Pentium 4 and above: precise event based sampling (PEBS)
• Intel Nehalem and above: PEBS with load latency (PEBS-LL)

– software support: instrumentation-based sampling (Soft-IBS)
6

HPCToolkit workflow

• Profiler: collect and attribute samples
• Analyzer: merge profiles and map to source code
• GUI: display metrics in both code-centric and data-centric views

7

HPCToolkit profiler

• Record data allocation
– heap-allocated variables

• overload memory allocation functions: malloc, calloc, realloc, ...
• determine the allocation call stack
• record the pair (allocated memory range, call stack) into a map

– static variables
• read symbol tables of the executable and dynamic libraries in use
• identify the name and memory range for each static variable
• record the pair (memory range, name) in a map

• Record samples
– determine the calling context of the sample
– update the precise IP
– attribute to data (allocation call path or static variable name) according

to effective address touched by instruction

8

 9

 HPCToolkit profiler (cont.)

• Data-centric attribution for each sample
– create three CCTs
– look up the effective address in the map

• heap-allocated variables
– use the allocation call path as a prefix for the current context
– insert in first CCT

• static variables
– copy the name (as a CCT node) as the prefix
– insert in second CCT

• unknown variables
– insert in third CCT

• Record per-thread profiles

HPCToolkit analyzer

• Merge profiles across threads
– begin at the root of each CCT
– merge variables next

• variables have the same name or allocation call path
– merge sample call paths finally

10

GUI: intuitive display

11

allocation call path

call site of allocation

Assess bottleneck impact

• Determine memory bound v.s. CPU bound
– metric: latency/instruction (>0.1 cycle/instruction → memory bound)

• Identify problematic variables and memory accesses
– metric: latency

12

average latency per memory access

percentage of memory instructions

for a variable or a program region:

Sphot: 0.097
S3D: 0.02

Experiments

• AMG2006
– MPI+OpenMP: 4 MPI × 128 threads
– sampling method: MRK on IBM POWER 7

• LULESH
– OpenMP: 48 threads
– sampling method: IBS on AMD Magny-Cours

• Sweep3D
– MPI: 48 MPI processes
– sampling method: IBS on AMD Magny-Cours

• Streamcluster and NW
– OpenMP: 128 threads
– sampling method: MRK on IBM POWER 7

13

Optimization results

14

Benchmark Optimization Improvement

AMG2006 match data with computation 24% for solver

Sweep3D change data layout to match
access patterns 15%

LULESH 1. interleave data allocation
 2. change data layout 13%

Streamcluster interleave data allocation 28%

NW interleave data allocation 53%

Overhead

15

Benchmark
Execution timeExecution time

Benchmark
Native With profiling

AMG2006 551s 604s (+9.6%)

Sweep3D 88s 90s (+2.3%)

LULESH 17s 19s (+12%)

Streamcluster 25s 27s (+8.0%)

NW 77s 80s (+3.9%)

Conclusion

• HPCToolkit capabilities
– identify data locality bottlenecks
– assess the impact of data locality bottlenecks
– provide guidance for optimization

• HPCToolkit features
– code-centric and data-centric analysis
– widely applicable on modern architectures
– work for MPI+thread programs
– intuitive GUI for analyzing data locality bottlenecks
– low overhead and high accuracy

• HPCToolkit utilities
– identify CPU bound and memory bound programs
– provide feedback to guide data locality optimization

16

