GREMLINSs
A Tool Infrastructure for System Emulation

Martin Schulz
Lawrence Livermore National Laboratory
with Barry Rountree, Marc Casas Guix, Greg Bronevetsky, Ignacio Laguna

CScADS Workshop, University of Wisconsin ¢ July 2013

LLNL-PRES-641078

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Lahoratory under Contract DE-RC52-07NA27344.

Analytic > Architectural
Modeling IO i . Simulation

(ASPEN) a

Holistic Performance

Modeling in ExMatEx

= Analytical models provide high-level trends

But don’t cover low level details

= Simulations enable access to architectural details
« But are slow and difficult to use with complex codes / validation?

= Augment with emulation techniques
» Run complex codes on real systems

t Lawrence Livermore National Laboratory

GREMLIN: a Tool Infrastructure for System Emulation
Martin Schulz atEX

The GREMLIN Idea

= Can we make a Petascale class machine behave like what we
expect Exascale machines to look like?

« Exascale machines will be
— Resource limited (power, memory, network, 1/0, ...)
— Have less favorable compute/bandwidth ratios
— Higher fault rates and lower MTBF rates

= GREMLINS are a set of techniques to emulate such behavior
« Framework to couple range of “bad behaviors”
 Transparent to system and (mostly) to applications

= Therole in the Co-Design process
 Evaluate proxy-apps with GREMLINs and compare to baseline
« Determine bounds of behaviors proxy apps can tolerate
 Drive changes in proxy apps to counter-act GREMLINs

uL' Lawrence Livermore National Laboratory

Broad Classes of GREMLINs

Power
« Impact of changes in frequency/voltage
« Impact of limits in available power per machine/rack/node/core

Memory

« Restrictions in bandwidth

« Reduction of cache size
 Limitations of memory size

Resiliency
* Injection of faults to understand impact of faults
* Notification of “fake” faults to test recovery

= Noise
 Injection of controlled or random noise events
« Crosscut summarizing the effects of previous GREMLINs

L GREMLIN: a Tool Infrastructure for System Emulation 4
L Lawrence Livermore National Laboratory Martin Schulz aMFx

Implementation Principles

= Individual GREMLINs are implemented as modules
* One effect at a time
« Orthogonal to each other
« Each GREMLIN has “knobs” to control behavior

= Infrastructure to allow loading of GREMLINs

 Easy experiment setup using P"MPI (infrastructure to manage tools)
— Enables stacking of PMPI tools
— Transparent to applications
— Concurrent use of multiple GREMLINs/effects

* Interactive access to GREMLIN “knobs”
— Goal: Python (or similar) driver to influence behavior
— Scalable infrastructure (CBTF) for data collection and analysis

@' Lawrence Livermore National Laboratory

Architecture
, Multi node joh (e.g., MPI)

s

Measurement Measurement Measurement
GREMLIN Env. GREMLIN Env. GREMLIN Env.

L

Rank 0 Rank 1 Rank N
\(
|
GREMLIN
Control
F;onl end node

GREMLIN: a Tool Infrastructure for System Emulation
& Lawrence Livermore National Laboratory Martin Schulz aMFx

Needed: Redesign of P"MPI

Current design of P"MPI is limited
« Static tool stacks
« Focused on MPI only

Enable more dynamic loading options
« Load/enable modules on the fly

« More flexible configurations

« Separate tool stacks for each process

Interceptions of new APIs beyond MPI
« How to integrate OMPT?
« Wrapping library APIs

Integration with MPlecho

 Cloning of individual ranks to allow concurrent parameter studies

u' Lawrence Livermore National Laboratory

Designing and Deploying a GREMLIN

Step 1: Identify target resource
« Which resource is supposed to be reduced/controlled/injected into?

Step 2: Find mechanism to control/restrict resource
» Hardware mechanisms (e.g., RAPL)

« Direct software techniques (e.g., injection)

« Indirect software techniques (resource stealing)

Step 3: Measurement techniques
« Application performance metrics
 Co-execution with tools

Step 4: Mitigation mechanisms

« How can the effect of a GREMLLIN can be mitigated?
« Design of new runtime systems (e.g., Adagio)

« Fault resilience techniques to react to fault injections

@' Lawrence Livermore National Laboratory

Power GREMLINSs

= Investigate impact of constrained power on applications
« Changes in frequency/voltage to save power
 Overall power caps imposed by machine limits (per system/rack/...)
« Local power caps for overprovisioned chips with dark silicon

= Implementation
 Access to power measurements on Intel Sandy Bridge and BG/Q
« Changes of power caps on Intel Sandy Bridge using RAPL
— Production machine with the ability to do large scale runs
— Emulation of over provisioned systems
« GREMLIN functionality mainly limited to initialization

u' Lawrence Livermore National Laboratory

Example: CoMD under Multiple Power Bounds

Avg. Power per Task

= MD proxy app

* 128 MPI ranks over 8 nodes g
e 51W bound
« Dual socket 8-core _
« RAPL measurements
(avg. package power) ',E; . .
= Observations § %
- Lower cap leads to g %\" P e
lower performance i i i
o | %° o“".a
* Lower cap leads to E e S ")
more variation :
= Power capping can =
lead to load imbalance i | | | |
0.020 0.025 0.030 0.035 0.040

Elapsed Time (Seconds)

GREMLIN: a Tool Infrastructure for System Emulation
l& Lawrence Livermore National Laboratory Martin Schulz

Power Analysis with GREMLINS

= Co-Design questions

What is the optimal configuration for a given power budget?
How will we deal with over-provisioned systems?

Which parts of a code a most sensitive to power caps?

How do automatic techniques interfere with the software stack?
How to direct power where it is needed?

= Mitigation options

Critical path based analysis and power control
Global information to steer local adaptations

= Requirements

Precise, predictive power models
Flexible access to power control mechanisms in hardware

=
Qv
u' Lawrence Livermore National Laboratory P}ﬁﬂ@ﬁEx

Memory GREMLINSs

Investigation of limitations in the memory system
« ldentification of non scalable memory requirements
« Investigation of “breaking points” for apps wrt. bandwidth/caching

Implementation (targeting size)
« Wrappers of all memory allocation routines
« Allocate multiple times the size of the request (or tracking/extrapolating)

Implementation (targeting bandwidth/caches)

 Resource stealing (more on next slide)

Mitigation mechanisms

» Locality optimizations (app)

« Communication avoiding algorithms (app)
« Scheduling optimizations (system)

uL' Lawrence Livermore National Laboratory

Measurements Using Resource Stealing

= Qverload resource

« Observe impact on application

« Study breaking point

T

Resources

Application

Time

uonezinn

= Implementation:
Interference workload

 Additional threads adding
bandwidth to a bus

« Separate thread utilizing a
predefined part of the cache

GREMLIN: a Tool Infrastructure for System Emulation ’:’
@ Lawrence Livermore National Laboratory Martin Schulz aMFx

Parallel Application Study: Lulesh

= Lulesh: Shock Hydrodynamics proxy app
« 64 MPI ranks, one task per socket [two per node
« Cache interference: random touches in predefined memory region
« Bandwidth interference: walk large buffer

Cache Capacity Analysis Bandwidth Analysis
g 40 c 16
% 30 = — Lo 2
~—35 / o ——36
& 25 / & 10
% 20 % 8
R — ;¢
@ L I @ /
£ 10 - £ 4 —
g 0 v T T T T] 2 0 T
X 75 60 35 20 12.5 X 82 65
% L3 cache capacity available % Memory BW Available

GREMLIN: a Tool Infrastructure for System Emulation
t Lawrence Livermore National Laboratory Martin Schulz AMFx

GREMLINs (Resiliency)

= Investigation of reduced reliability
« What can applications tolerate as is?
« What resiliency techniques are needed if faults go beyond that?

« At what point does a system become infeasible?

= Implementation (targeting actual faults)
 Fault injection with various mechanism
— Binary rewriting (DynlInst), LLVM, dynamic rewriting (PIN), ...
« Vulnerability studies
* Recovery testing

= Implementation (targeting “fake’” faults)
* Injection by invoking correction handler inside the application
 Evaluate overhead and feasibility of mitigation mechanisms

u' Lawrence Livermore National Laboratory

Early Study on Application-Level Recovery

= Simple retry code blocks
« Programmer annotates (or protect) code block
« If error occurs, code block is re-executed
« Retry until block terminates without errors

Original code Annotated code
void function(double *array) void function(double *array)
{ {
for (...) RETRY{
array[i] = ... for (...)
} array[i] = ...
}

= Fault model)

« Hardware errors detected by hardware
« Notification through OS that triggers RETRY block
« Triggered by a GREMLIN (“fake” fault)

GREMLIN: a Tool Infrastructure for System Emulation
@ Lawrence Livermore National Laboratory Martin Schulz

é%ﬁhﬂtEx

Try/Catch Methods in LULESH

Method 1 Method 2

MAIN_FUNC _ONLY CORE_FUNCTIONS gL Ho
. main() {
main() { main() { TRY {
TRY { TRY { while() {
while() { while() { TRY {
functl(); TRY { functl(); } functl();
funct2(); TRY { funct2(); } funct2();
LULESH } -Funct3(); } TRY { funct3(); } -Funct3();
}
main() { } } }
/* init...*/ | 13 } }
while() { }
functl(); Method 4
funct2(); 1 _ITERATIONS BACK
funct3();
} main() { main() { main() { main() {
} TRY { TRY { TRY { TRY {
while() { while() { while() { while() {
TRY(25) { TRY(100) { TRY(200) { TRY(500) {
functl(); functl1(); functi(); functl();
funct2(); funct2(); funct2(); funct2();
funct3(); funct3(); funct3(); funct3();
} } } }
} } } }
} } } }
} } } }

& Lawrence Livermore National Laboratory

GREMLIN: a Tool Infrastructure for System Emulation
Martin Schulz

E%ihatEx

Each iteration prints “.”]
Normal LULESH Run

@f'\f'\

4 lagunaperaltl — ssh — 89x31
| @sierra®@ demo]$./run_experiment.py ./lulesh

Entering main loop

Faulty LULESH Run
Iteration count = 511
Final Origin Energy = 1.254873e+06 -
Testing Plane @ of EnergyArray: © 0 O 4} lagunaperalts\x ssh — 85x29

MaxAbsDiff = 1.746230e-10 [@sierra@ demo]$./run_experiment.py -e 500 ./lulesh_core_functions
TotalAbsDiff = 2.194418e-09 RE———— e
MaxRelDiff = 2.966367e-13 Injecting at 500 errors/hour

RUNTIME (sec): 65.926990
asierraldiemol] $

Entering main loop

prmted at the end |

Iteration count = 511

Final Origin Energy = 1.254873e+06

Testing Plane @ of EnergyArray:
MaxAbsDiff = 1.746230e-10
TotalAbsDiff = 2.194418e-09

MaxRelDiff = 2.966367e-13 When error occurs, it
RUNTIME (sec): 100.750642 printS “X”

[@sierra@® demo]$

GREMLIN: a Tool Infrastructure for System Emulation
l& Lawrence Livermore National Laboratory Martin Schulz

Experimental Results

MAIN_FUNC_ONLY
2.2 —

=
00

Slowdown
=
()}

14

=
N

]]

10 15
Errors / hour

GREMLIN: a Tool Infrastructure for System Emulation
’Lawrence Livermore National Laboratory Martin Schulz aIEX

Experimental Results

MAIN_FUNC_ONLY
2.2 =

CORE_FUNCTIONS

s s e s

Slowdown
=
(e)] o0

=
s

1.2

L]]

10 15
Errors / hour

GREMLIN: a Tool Infrastructure for System Emulation
‘Lawrence Livermore National Laboratory Martin Schulz alEX

Experimental Results

2.2

CORE_FUNCTIONS

s s e s

=
0o

Slowdown
[y
o

14

CORE_LOOP

=
N

MAIN_FUNC_ONLY

O B 5k R R S S ST AR S R e S R S i 3

L]]

10 15
Errors / hour

‘Lawrence Livermore National Laboratory

GREMLIN: a Tool Infrastructure for System Emulation
Martin Schulz aIEX

Experimental Results

MAIN_FUNC_ ONLY
2-2 n - -

CORE_FUNCTIONS
e

=
0o

Slowdown
=
(o)}

500_ITER
“+

200_ITER

14

=
N

10
Errors / hour

GREMLIN: a Tool Infrastructure for System Emulation
‘Lawrence Livermore National Laboratory Martin Schulz alEX

Co-Design Questions for Resilience

= Fault model, injection, and detection

Integration of injections techniques into GREMLINSs
Study of error models
HW/OS/RT APIs for reporting detected errors

= Mitigation mechanisms

APIs for applications to expose vulnerable state

Fault resilient algorithms

Techniques inside the application to recover from faults
— Code redundancy

— Data reconstruction

Investigate fault tolerant MPI proposals

Options for direct support in runtime systems

u' Lawrence Livermore National Laboratory

Conclusions and Future Plans

= Using emulation to support the co-design process
- Ability to execute full codes on real machines at scale

« GREMLIN approach imposes constraints to emulate future architectures

= GREMLINs can cover many aspects of future systems

Power constraints and their impact

« Constraint in memory resources

Impact of faults and recovery techniques

= Future work

New GREMLIN/emulation techniques in hardware and software
Ensemble of GREMLINSs to enable large parameter studies more quickly
Integration of GREMLINs into new programming models

Integration with new scale bridging MPMD environments

Planned for 9/13: release of the GREMLINs

u' Lawrence Livermore National Laboratory

