
HW Counter prediction
using machine learning

Prediction on binary code

● Use machine learning to correlate static
code features with a vector of HW counters
for each chunk of code

● Identify the good/bad code parts

● Provide feedback to the code generator

Approach

● Dynamic data collection
○ instruments each chunk of code to collect HWCs
○ serves as ground truth for training and validation

● Static code feature extraction
○ uses byte ngram, instruction ngram, graphlets
○ adds addressing mode feature

● Machine learning: use a learning toolkit
 scikit-learn: http://scikit-learn.org/stable/

http://scikit-learn.org/stable/

Approach - Training

Binary Code

Dynamic
data
collection

 Input data HWCs

Static
code
feature
extraction Extraction tool Code features

Instrumented Binary Code
Learned model

Approach - Prediction

Another Binary Code

Static
code
feature
extraction Extraction tool Code features

Learned model HWCs

How to define "chunk of code"?

● A good definition of "chunk of code"
○ makes it simple to collect HWCs
○ contains expressive static code features

● Basic block level
○ produces too huge data to store
○ disables graphlets (cannot capture control flow)

● Loop level
○ reduces to one piece of information per loop
○ enables graphlets to capture repeated code

structure

Addressing mode feature

● It should capture the impact of data access
on performance for different instructions

● Give scores to data access types
 Imm:1 point < Rax:2 point < [Imm]:3 point < [Rax]:4 point

● The score of an instruction is the sum of the
scores of all operands

● Start with summarized score of a chunk

Status

● Loop dynamic instrumentation is done in
Extrae

● Static code feature extraction works at
function level

● To implement addressing mode features

● Select stream, matrix multiplication, and
NPB3.2-SER as the first benchmarks

Conclusion

● The big picture is complete

● We do not know it works or not until we do
experiment

● Prototype it

