Scalable

mUNM SCHOOL of ENGINEERING S St?\

‘ >
Department of Computer Science \

Toward exascale tool infrastructure
(or what we’ve been up to this past year)

Dorian Arnold / University of New Mexico
With Taylor Groves and Whit Schonbein/ University of New Mexico

Where we were last year

» LIBI for normal MRNet startup Large Scale Distributed Software
] Debuggers System Monitors
o Optimal bulk process launch P
> Efficient propagation of initialization | " cromance Anabzers OPEREY NS
information LIBI
Caunchvon)
» What we desired
Job Launchers Communication
o Handling MRNet’s “disconected .@ Services
- OpenRTE

startup” modes
ALPS MPI

o Reducing topology specification

burden

Today’s adventures

Updates of our tool startup work:

1. Status of the MRNet/LIBI integration

2. Improving startup using scalable information services

3. An API for reduced tool topology specification

@\ UNM | Scalable Systems Lab

MRNet/LIBI Integration Status

» New LIBINetwork class
o Previous network classes: RshNetwork and XTNetwork

o Network class specifies MRNet’s launching protocol

» Can use SLURM or rsh for process launch
o ,/configure --with-startup [libi-slurm|libi-ssh]

o Can still use old non-LIBI startup modes (but why? ©)
» Tested against MRNet 4.0 (no regressions)

» Merged into MRNet master branch as of April 2014

@\ UNM | Scalable Systems Lab

Motivating scalable info. diss.:
Tree-based startup

» Parent creates children
o E.g. MRNet default
o Local: fork()/exec()
o Remote: rsh/ssh

PXARN
’,’// \\ \\
-7 ’ \ RS
-7 ’ \ RS
/, ’ \ \\
- ’ \ ~
e ’ \ S
e ’ \ SN
e K ' S~
-7 ’ \ NS
-7 ’ \ Ss
e / \ RS
,’ ’ \ \\
C I.I ti . f ti
[Io
passe Vla COlIlIIlan Ille l t m m
m m m' mn
it 1 111)
RN rpat rpad RN
£ st s s
s ropoa oo foyoa
’ v ! [rogoa L
;] \) \ ’ \ 1 \
I [o [
I \ U v l \ 1 \
/ " l| \ 1 " v 1 " '| \ / " I| \
\ \ \ / \
o | S o
1 1 \ 1 \
1 | | I
1 1 |

» Requires starting all

Processes

@\ UNM | Scalable Systems Lab

Motivating scalable info. diss.:
Tree-based startup

» Root creates all processes
o E.g. MRNet-LIBI

» Configuration information

PXARN
’,’// \\ <~
-7 ’ \ RS
-7 ’ \ RS
P / A SN
- ’ \ ~
e ’ \ S
e ’ \ RS
/,/ // \\ \\\
-7 ’ \ NS
P ’ \ S
/’ 4 N \\
’/ ’ \ \\
d . t
I I .
PMGR llectives
, " t m
i\ m m mn
111 1 N r
RN RN RN RN
IR R AR IR
copo s s oyt
/ [! Y rogoa fogoa
;] \) \ ’ \ 1 \
[[o [
B \ ’ \ ' \ i \
Sy S S S
ooy ooy [Y N T
o | oo 1o
1 1 \ 1 \
1 | | I
1 1 | 1

» Root gathers then scatters

» Requires starting all
rocesses

@\ UNM | Scalable Systems Lab

What about disconnected startup?

» Tool infrastructure does not start all processes

o E.g. MRNet’s “no back-end instantiation” & “lightweight back-
end” modes

» How do back-ends learn and connect to parents?
o Current solution: use the filesystem ®

» Why not leverage scalable information services (IS)?

@\ UNM | Scalable Systems Lab

Key-value stores to the rescue

» General MRNet extension for start-up data distribution

» Initial implementation uses MongoDB
o A false start tried ZFS

» Prototype available in KVS branch of MRNet repository

MRNet KVS Extension

» Root creates internal nodes

» Gathers configuration
information

» Publishes in KVS

» Third party creates leaves

» Leaves retrieve configuration
information from KVS

» Leaves connect to internal
nodes

New Node Discovery Engine (NDE)

» Generalized mechanism for
o |nitializing processes with target IS
o Parents publishing startup information into IS
o Orphans retrieving startup information from IS

» Parent and orphan interfaces

@\ UNM | Scalable Systems Lab

v

v

v

v

NDE: Node Information Object

Hosthame

Port

Rank

Parent hosthame
Parent port
Parent rank

Sessionid //currently unused

MongoDB-based Prototype

Mongo-DB
o Open-source NoSQL database

o Written in C++

NDE: Example Front-end

//instantiate MRNet internal nodes as per usual

For all leaf internal nodes:

nodeinfo.iRank = (int) leaves[curr leaf]->get Rank();
nodeinfo.iport = (int) leaves[curr leaf]->get Port();
nodeinfo.ihostname = leaves[curr leaf]->get HostName () ;

//MongoParent is derived from NDEParent
MongoParent* parent = new MongoParent (info);
parent->set DBHost (db) ;

parent->connect toDB();

parent->send MyNodelInfol();

NDE: Example Back-end

//MongoOrphan is derived from NDEOrphan
MongoOrphan orphan;

set DBHost (&orphan, argv[1l]);
connect toDB (&orphan);

init NDEO (&orphan, NULL, NULL);

discover Parent (&orphan);

A\ 44

sprintf (parHostname, “%$s”, orphan.base.myInfo.phostname);

sprintf (parPort, "%d", orphan.base.myInfo.pport);
sprintf (parRank, "%d", orphan.base.myInfo.pRank);

\\ 144

sprintf (myHostname, “$%$s”, orphan.base.myInfo.ihostname);

sprintf (myRank, "%d", orphan.base.myInfo.iRank);

//instantiate MRNet back-end node as per usual

NDE to do list

» Instead of “root gather”, parents publish own data
» Comprehensive functionality testing

» Test performance to determine scalability

» Automatic peer/session discovery: investigate ways to
avoid a priori known information, e.g. DB session IDs.
o Persistent KVS services will help

@\ UNM | Scalable Systems Lab

A vision for autonomous TBON infrastructure

TBON Autonomy aka the self-* properties:
» Self-configuring
o Automatic TBON topology configuration

» Self-monitoring
o TBON health and performance

» Self-healing
o TBON Fault tolerance and failure recovery

» Self-optimizing_
o Dynamic TBON reconfiguration to improve performance

Symptoms Decisions
‘——-v' = }
u /_j .
Events u \—) Actions

Overall autonomous operation

1. Collect metrics relevant to overlay performance
2. Performance models diagnose performance failures

3. Performance failure?

Heuristics for topology reconfiguration
4. Find reconfiguration cost (overhead)/benefit (speedup)
5. Reconfigure overlay when benefits outweigh costs

6. Gotostepl

m

Autonomous operation:
Detecting performance failures

Generally, a sub-optimal overlay network topology
o Resource oversubscription: insufficient resources for offered workload

o Resource undersubscription: insufficient work for allocated resources
o Suboptimal configuration: resources not being effectively utilized

» Develop performance models

o Coarse-grained approach
+ Consider processors and networks influence on topology performance

o Must be accurate yet tractable to execute (potentially multiple times)

» Build sensors to collect data to parameterize models

» Compare current observed performance to other configurations

m

A new dynamic ecosystem

VOOV - ©

Layer O:
Tools and Apps Tool
Sessions QQ 9 SE—
Layer 1:

_ Autonomous Resource Provisioning
Service Layer

Dynamic Resource Management
Layer 2:

Management Layer

Reducing Topology Specification:
A step to auto-topology management

» Currently MRNet user specifies complete topology
o Mapping of all processes to nodes
° Interconnectivity amongst all processes

» ldeal: User specifies nothing about the topology
o At least nothing about the internal tree topology
° Front-end and back-end may be fixed based on usage

» Intermediate point: user gives generic topology
information; we auto-configure the specifics

@\ UNM | Scalable Systems Lab

Auto-topology specification

» Physical (internal) nodes
o User specifies
o Eventual goal: MRNet requests from resource manager

» Process placement & inter-process connectivity
o Static
o Coarse policy and heuristic-based mappings

o Eventual goals: dynamic, performance optimizations based on
workload and physical network

@\ UNM | Scalable Systems Lab

Auto-topology specification methods

» createTopologySpecification():
° |nputs:
* Front-end host
* List of internal node hosts
* List of back-end hosts
- Topology specification policy:
* Dictates the constraints to use for tree topology

o Qutputs: MRNet topology file or topology buffer

» Standard MRNet calls to use created topology

@\ UNM | Scalable Systems Lab

v

v

v

Topology policy class members

Number of internal processes per node
o Default: 1

Collocate internal processes with front-end
o Default: Off

Collocate internal processes with back-end
o Default: Off

Max fan out
o Default: 128
Min fan out
o Default: 16

Tree type: balanced, perfect, binomial, graded
o Default: balanced

Modes: “maximize fan out”, “maximize depth”, “fit to
internal nodes”

Auto-topology to do list

» Performance testing of various topology types with
representative tool workloads
o Systematically chosen default policies
o Inform use-case dependent policy customizations

» More robust testing and integration into mainline
MRNet

@\ UNM | Scalable Systems Lab

General approach for MRNet extensions

» “External” add-on if possible
° Minimize MRNet interface modifications
o Minimize changes to MRNet base code
o Can still package with MRNet

» Reduces barrier to acceptance

» Eases “blame attribution”

@\ UNM | Scalable Systems Lab

Potential Working Group Topics

» Autonomous tool operation in general

» Exascale tool readiness
o Step 1: Change workshop name ©
o Will tool overhead increase with scale (like resilience)?

» How relevant are faults and failures for tools?
o Maintain operation without recovering data?
o Simple detection and restart?

o More complex data recovery?

@\ UNM | Scalable Systems Lab

Questions

