
MPI Tool Interfaces 
 

Outbrief 

 

August 2015 



Agenda Before Granlibakken 

}  Goal is to redesign the MPI Profiling Interface 
while keeping all existing functionality 
}  No longer rely on weak symbols 
}  Support multiple tools and allow composability 
}  Clean Fortran support without writing tools in Fortran 

}  Main idea: Callback interface 
}  Tool startup allows multiple tools to register themselves 

}  Tool initiates it’s own registration 
}  Start-up protocol/handshake during MPI_Init 

}  Creating of a tool DAG (stackable tools) 
}  Maintain the wrapping idea 
}  Configurable “out-calls” instead of fixed PMPI calls 



Agenda After Granlibakken 

}  Discussion of role of tools led to initial misunderstandings 
}  Tools as profilers (>>Profiling<< Interface) 
}  Tools seen more general (debuggers, correctness, …) 
}  Applications extensions (e.g., fault tolerance) 

}  Goal is actually a more general Extensible MPI Interface 
}  More than tools -> plugins 
}  “Justifies” extra complexity 

}  Multiple tools are necessary to enable tools plus application extensions 
}  Useful to express dependencies 

}  New PMPI interfaces is a “side product” at the end 
}  Opens the door to many more use cases 

}  Useful for more than just MPI / could be used for any API 



Open Issues / Wishes / Requests 

}  At least limited ABI compatibility 
}  Make core interface compatible 
}  Allow for bundles tools for multiple MPIs as one library 

}  Tool/Plugin configuration 
}  How to express dependencies of plugins? 
}  How to combine system/plugin/user configurations? 
}  Priorities? 

}  Open Issues 
}  How does this relate to spawn? 
}  How to handle proper finalize of multiple plugins? 
}  How to handle simple cases with a few MPI routines only? 

https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/MPI3Tools 


