

Enabling Profiling and Analysis Tools for Aurora

Rashawn L. Knapp Intel, Software and Service Group (SSG) Technical Computing, Analyzers, and Runtimes Scalable Tools Workshop, Granlibakken Resort, Lake Tahoe, California August 3-6, 2015 rashawn.l.knapp@intel.com

Goals

- Enable open source profiling and analysis tools for HPC to run well on Intel's newest and upcoming high-end server platforms.
- Collaboration of Oak Ridge, Argonne and Livermore National Laboratories (CORAL)
 - Intel with partner Cray to deliver two supercomputers to Argonne: Theta in 2016 (8.5 PF) and Aurora in 2018 (180 PF)
 - Knights Landing (KNL) for Theta and beyond for Aurora
- Current work on Xeon Haswell EP through 2015
- Develop relationships with institutions and tool owners
 - Contribute patches to ensure tool coverage, quality, and performance on Intel platforms
 - Do this on Haswell and repeat on KNL (2016) and again on early Aurora servers
 - Demonstrate a path for all tools on the new platforms via Intel and GNU compilers
 - Why Intel Compilers?
 - Expectation is that these will produce the highest quality code for the Xeon Phi based nodes (especially when first released)
 - We will explore vectorization opportunities for optimization wherever possible.

Current Sample of Tools and Status Overview On Haswell

	Tool/Versions	Description	Status
Low-level tool Foundation	Dyninst 8.2.1	dynamic binary instrumentation tool	GNU and Intel compilations, Test suite completed, Minor change to CMake configuration
Low-le Found	PAPI 5.4.1		GNU and Intel compilations, Test suite completed, Patch accepted for off-core events
		profiling and tracing tool for parallel applications, supporting both MPI and OpenMP	Intel Compilation with Intel MPI and Intel C/C++/Fortran compilers, many suite examples tested
To	Score-P 1.3	Provides a common interface for high-level tools	2015/16
High-level Tools		Dynamic Instrumentation tool for Linux: profiling, event tracing for MPI and OpenMP programs. Incorporates Dyninst and PAPI	2015/16
High	HPCToolKit 5.3.x r4793	Lightweight sampling measurement tool for HPC; supports PAPI	GNU and Intel compilations with Intel MPI, tests with PAPI and Intel MPI
	Darshan 5.3.2-r4532	IO monitoring tool	2015/16
		framework for constructing dynamic analysis tools; includes suite of tools including a debugger, and error detection for memory and pthreads.	2015/16
Low-level Independent		Detects memory errors: stack, heap, memory leaks, and MPI distributed memory. For C and C++.	2015/16
L	helgrind	Pthreads error detection: synchronization, incorrect use of pthreads API, potential deadlocks, data races. C, C++, Fortran	2015/16

intel

3

Dyninst 8.2.1 Overview

	Compilers				
GCC 5.1	Completed				
Intel 15.03.187	Completed				
	MPI				
Intel 5.1.038 Completed					
MPICH 3.1.4	TBD				
	Validation				
Test Suite					
./runTests -gcc -g++	363 tests, 353 PASSED, 10 SKIPPED, 0 CRASHED				
./runTests -icpc -icc 329 tests, 319 PASSED, 10 SKIPPED, 0 CRASHED					
Examples in DyninstAPI Appendix A GCC and Intel Ports					
	Contributions				
- CMake Configuration Change to enable Intel compilers					

(intel)

Dyninst 8.2.1 Results

Intel 15.0.3 Test results (./runTests -icpc –icc):

In total **329** tests ran, 0 CRASHED, 10 SKIPPED, 319 PASSED, and 0 FAILED:

22	test2_11	icc	none	64	create	NA	dynamic	nonPIC	SKIPPED
100	test2_11	icpc	none	64	create	NA	dynamic	nonPIC	SKIPPED
194	test1_35	icc	none	64	create	NA	dynamic	nonPIC	SKIPPED
195	test1_35	icc	none	64	rewriter	NA	dynamic	nonPIC	SKIPPED
196	test1_35	icpc	none	64	create	NA	dynamic	nonPIC	SKIPPED
197	test1_35	icpc	none	64	rewriter	NA	dynamic	nonPIC	SKIPPED
310	test_ser_anno	icc	none	64	disk	NA	dynamic	nonPIC	SKIPPED
311	<pre>test_symtab_ser_funcs</pre>	icc	none	64	disk	NA	dynamic	nonPIC	SKIPPED
320	test_ser_anno	icpc	none	64	disk	NA	dynamic	nonPIC	SKIPPED
321	test_symtab_ser_funcs	icpc	none	64	disk	NA	dynamic	nonPIC	SKIPPED

GCC 5.1.0 Test Results (./runTests -gcc -g++):

In total **363** tests ran, 0 CRASHED, 10 SKIPPED, 353 PASSED, and 0 FAILED:

22 test2_11	g++	none 64	create	NA	dynamic nonPIC	SKIPPED
100 test2_11	gcc	none 64	create	NA	dynamic nonPIC	SKIPPED
194 test1_35	g++	none 64	create	NA	dynamic nonPIC	SKIPPED
195 test1_35	g++	none 64	rewriter	NA	dynamic nonPIC	SKIPPED
196 test1_35	gcc	none 64	create	NA	dynamic nonPIC	SKIPPED
197 test1_35	gcc	none 64	rewriter	NA	dynamic nonPIC	SKIPPED
344 test_ser_anno	g++	none 64	disk	NA	dynamic nonPIC	SKIPPED
345 test_symtab_ser_funcs	g++	none 64	disk	NA	dynamic nonPIC	SKIPPED
3 54 test_ser_anno	gcc	none 64	disk	NA	dynamic nonPIC	SKIPPED
355 test_symtab_ser_funcs	gcc	none 64	disk	NA	dynamic nonPIC	SKIPPED

PAPI 5.4.2 Overview

	Compilers					
GCC 5.1	Completed					
Intel 15.03.187	Completed					
	MPI (N/A)					
	Validation					
ctests104 tests: 96 PASSED (5 w/warning), 1 FAILED, 6SKIPPED, 1 does not exist						
perf_event	3 tests: 3 PASSED					
perf_event_uncore	4 tests: 3 PASSED, 1 SKIPPED					
native events (papi_native_avail)814 base events yields total combination of 11,843events (2080 added successfully)						
Contributions						
- Patch accepted for off-core tests o	n Haswell-EP					

(intel)

PAPI 5.4.2 Results

ctests

Total	Passed	Failed	Skipped	Event does not exist
104	96	1	6	1

Failed Test:

- zero.c - Flops validation error

Skipped:

- Dat-range.c Itanium2 only
- calibrate.c event does not exist
- earprofile.c Not implemented
- p4_lst_ins.c Pentium 4 only
- zero_shmem.c openSHMEM
- zero_smp.c architecture not includedEvent does not exist:
- hlrates flips, flops, failure

perf_event

Total	Passed	Failed	Skipped	Event does not exist
3	3	0	0	0

Passed Tests: perf_event_offcore_response.c, perf_event_system_wide.c, perf_event_user_kernel.c

native events

- 814 events
- 11,843 events with all possible combinations
 - 2,080 PASS by modifying unit mask value (1-10 tested).
 - 9763 combinations did not pass
 - Some may be important

Total	Passed (3)	Skipped (1)
4	perf_event_uncore, perf_event_uncore_multiple, perf_event_uncore_cbox	perf_event_amd_northbridge.c

perf_event_uncore (4 tests)

TAU 2.24.1 Overview

Compilers					
GCC 5.1	TBD				
Intel 15.03.187	Completed				
	MPI				
Intel 5.1.038	Completed				
MPICH 3.1.4	TBD				
	Validation				
Suite Examples	MPI and examples incorporating PAPI and Dyninst				
	Contributions				
- none					

8

TAU 2.24.1 Results - Examples

- taucompiler (c, f90, c++, mpic++)
 - tau_cc.sh -tau_makefile=\$TAU_MAKEFILE -tau_options=-optCompInst -o ring ring.c
 - mpirun -n 4 -perhost 1 -env I_MPI_FABRICS tcp -hostfile <pathTo>/machines.LINUX ring
 - tau_cxx.sh -tau_makefile=\$TAU_MAKEFILE -tau_options=-optCompInst klargest.cpp -o klargest
 - \$./klargest 100 98
 - tau_f90.sh -tau_makefile=\$TAU_MAKEFILE -tau_options=-optCompInst ring.f90 -o ring
 - mpirun -n 4 -perhost 1 -env I_MPI_FABRICS tcp -hostfile <pathTo>/machines.LINUX ring
 - tau_cxx.sh -tau_makefile=\$TAU_MAKEFILE -tau_options=-optCompInst -o ring ring.cpp
 - mpirun -n 4 -perhost 1 -env I_MPI_FABRICS tcp -hostfile <pathTo>/machines.LINUX ring
 - paraprof
- taututorial (computePi)*
 - tau_cxx.sh -tau_makefile=\$TAU_MAKEFILE -tau_options=-optCompInst computePi.cpp -o computePi
 - mpirun -n 4 -perhost 1 -env I_MPI_FABRICS tcp -hostfile <pathTo>/machines.LINUX computePi
- NPB2.3 (lu.W.4, sp.W.4)
 - mpirun -n 4 -perhost 1 -env I_MPI_FABRICS tcp -hostfile <pathTo>/machines.LINUX [lu.W.4|sp.W.4]
- Dyninst
 - tau_run -T pdt klargest 2500 23
- papi
 - setenv TAU_METRICS TIME:PAPI_TOT_CYC
 - ./simple

TAU 2.24.1 Results

HPCToolKit Overview

	Compilers					
GCC 5.1	Completed					
Intel 15.03.187	Completed					
	MPI					
Intel 5.1.038	Completed					
MPICH 3.1.4	TBD					
	Validation					
Compute Pi (cpi) example	4 nodes, 1 proc/node, PAPI_TOT_CYC and L2_TCM					
HPL	4 nodes, 1 proc/node, PAPI_TOT_CYC and L2_TCM					
	Contributions					
- none						

HPCToolKit Results - CPI

CPI

mpiicc -g -O3 cpi.c -o cpi -lm hpcstruct ./cpi

HPCToolKit Results - HPL

HPL

mpirun -np 4 -perhost 1 -env I_MPI_FABRICS tcp -hostfile <pathTo>/machines.LINUX \

hpcrun -t --event PAPI_TOT_CYC@10000 --event WALLCLOCK@100000 --event PAPI_L2_TCM@10000 \ ./xhpl_intel64

hpcprof -S cpi.hpcstruct -I ./'*' hpctoolkit-cpi-measurements

hpctraceviewer hpctoolkit-mmult-database

hpcviewer hpctoolkit-mmult-database

T/V	Ν	NB	Р	Q	Time	Gflops
WR01C2R4 WR01C2R4	1000 2000	168 168	1 1	4 4	1.14 0.72	5.88332e-01 7.38429e+00
T/V	Ν	NB	With P	out Ir Q	nstrumentation Time	Gflops
 WR01C2R4 WR01C2R4	1000 2000	168 168	 1 1	 4 4	0.95 0.55	 7.04063e-01 9.79022e+00

With Instrumentation

Summary, Challenges, and Next Steps

- Summary
 - We have started and have a plan to ensure that these tools run well on the CORAL machines
 - We have conducted coverage studies up to this point; still need to conduct quality and performance studies
 - We welcome collaboration with the tool groups
 - We will contribute patches as necessary
 - We started with the building block components of high level tools (e.g., Dyninst and PAPI), and we are now incorporating these into the higher level tools (OpenSpeed|Shop, Score-P).
- Challenges
 - We are working on small clusters at this time, but will need to transition to larger clusters to complete the performance studies
- Other open-source tools to consider for this contract?
 - STAT, MRNet
- New Technologies
 - Omni-Path network, NUMA technologies

Acknowledgments

All of the tool groups have been very responsive and helpful.

I want to thank Bill Williams from Dyninst who answered all of my questions regarding building, testing, and using.

Many thanks to the supportive PAPI team in guiding us through upgrading and testing.

And without my colleague, Preeti Suman, we would not have progressed to where we are.

References

CORAL

- http://insidehpc.com/2015/04/intel-build-coral-supercomputers-argonne-200-procurement/
- http://www.hpcwire.com/2015/04/09/argonnes-200-million-supercomputing-award/
- <u>http://insidehpc.com/2015/05/interview-intels-alan-gara-discusses-the-180-petaflop-aurora-supercomputer/</u>

New Technologies

- <u>http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-fabric-overview.html</u>
- <u>http://www.cnet.com/news/intel-and-micron-debut-3d-xpoint-storage-technology-thats-1000-times-faster-than-existing-drives/</u>

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Copyright ° 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Backup PAPI 5.4.2

- Kernel upgrade from version 3.10 to 4.0.5, to enable uncore and offcore support on HSW
- Successfully installed PAPI-5.4.2 with GCC 5.1.0 and Intel Compilers
- Successfully added and tested uncore and offcore events to PAPI component tests
- Successfully added and tested imc uncore event support on HSW EP
- Reason for failed tests: disabled floating point counters
- 814 native events enabled on HSW
 - 11843 events extracted from all possible combination of native events and respective unit masks
 - 1848 events were successfully added and 232 events were successfully added after changing the unit mask value, ranging from 1 to 10.
 - 9,763 events that have not been added with the changes to the unit mask value. This returns two evenly distributed error messages: "invalid argument" and "Event does not exist".

TAU 2.24.1 Backup

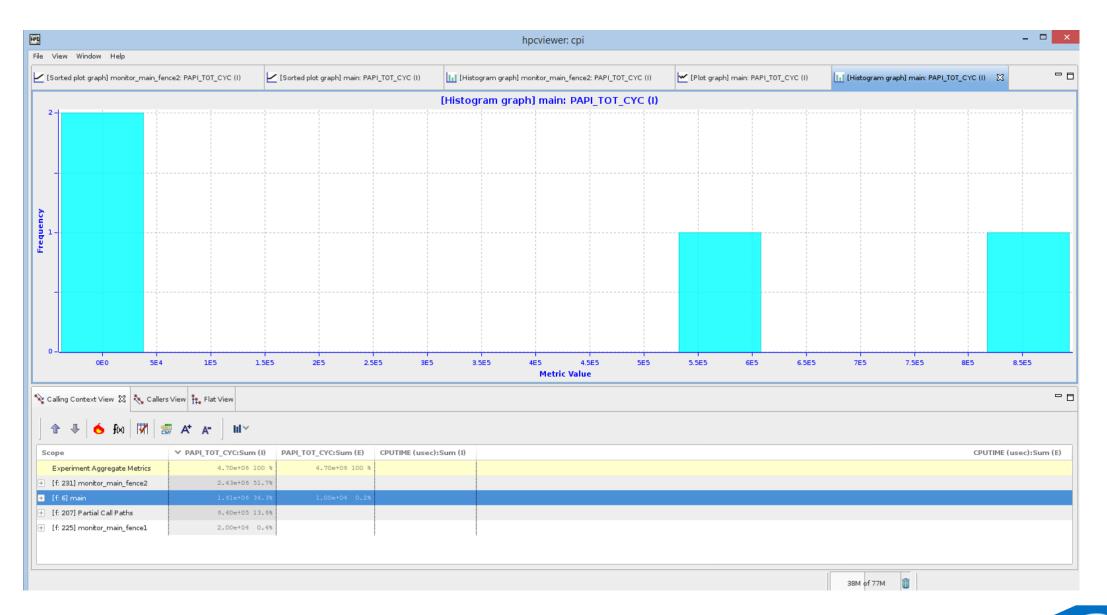
Configure:

```
./configure -c++=icpc -cc=icc -fortran=intel \
-pdt=<pathToPDT-3.20-IntelBuild> \
-papi=<pathToPAPI-5.4.2-IntelBuild> \
-PAPIWALLCLOCK -PAPIVIRTUAL -mpi \
-mpiinc=<pathToIntelMPI-5.1.0.38-IntelBuild>/compilers_and_libraries_2016/linux/mpi/intel64/include \
-mpilib=<pathToIntelMPI-5.1.0.38-IntelBuild>/compilers_and_libraries_2016/linux/mpi/intel64/lib \
-tag=IntelMPI5.1-IntelC15.3.187-PAPI5.4.2-Dyninst8.2.1-profiling \
-nocomm -COMPENSATE -PROFILEHEADROOM -PROFILEMEMORY -pthread \
-dyninst=<pathToDyninst-8.2.1-IntelBuild> -CPUTIME -LINUXTIMERS -iowrapper \
-prefix=<pathToTAU-2.24.1-IntelBuild> -bfd=download -unwind=download -pdtcompdir=intel \
-dwarflib=/nfs/fx/proj/coralhpctools/builds/libdwarf/intel/lib64<pathTo-libdwarf-20150507-IntelBuild>
```


HPCToolKit - Calling Contexts View for cpi Backup

						hpo
View	Window Help					
cpi.c	23					
7	int namelen;	V DROCEGEOD NAMEL				
9	char processor_name[MPI_MA					
0	MPI_Init(&argc,&argv); MPI_Comm_size(MPI_COMM_WOR MPI_Comm_rank(MPI_COMM_WOR	LD,&numprocs);				
	MPI_Comm_rank(MPI_COMM_WOR MPI_Get_processor_name(pro	LD,&myid); cessor name.&namelen):				
4	fprintf(stderr, "Process %d					
4 5 6 7	myid, processor_name);					
8	n = 0;					
3	while (!done)					
1	if (myid == 0) {					
3/* 4 *	printf("Enter t	he number of intervals:	(0 guits) ");			
; * ; *	sca */	nf("%d",&n);				
7	if (n==0) n=100; else	n=0;				
	startwtime = MPI_Wtime	e();				
2	/ MPI_Bcast(&n, l, MPI_I if (n == 0)	NT, 0, MPI_COMM_WORLD);				
4 4	done = 1;					
5	else {					
5	h = 1.0 / (doubl sum = 0.0;					
3	4	i ∝ n; i += numprocs)				
9 1	x = h * ((doub sum += f(x);	le)i - 0.5);				
2	} mypi = h * sum;					
\$		Ani 1 MPT DOUBLE MPT	SUM, 0, MPI_COMM_WORLD);			
5	if (myid == 0)	abri il in Tooperi in T				
89	1		i			
0	pi, fab	approximately %.16f, Er s(pi - PI25DT));	ror 15 %. 16t \n",			
1	endwtime = MPI_Wtime() printf("wall clock tim	ie = %f\n",				
3 4 5	endwtime-startw }	(time);				
5	}					
7 B	MPI_Finalize();					
1 }	return 0;					
_						
Calling	Context View 🔀 🔧 Callers	View 1. Flat View				
৵	🔸 🍝 fee 🕅 😹	At At III				
cope		PAPI_TOT_CYC:Sum (I)	PAPI_TOT_CYC:Sum (E)	PAPI_L2_TCM:Sum (I)	PAPI_L2_TCM:Sum (E)	CPUTIME (usec):Sum (I)
	Experiment Aggregate Metrics	3.89e+06 100 %	3.89e+06 100 %	4.00e+04 100 %	4.00e+04 100 %	
	f: 6] main	3.27e+06 84.1%	1.00e+04 0.3%	4.00e+04 100 %		
[+		1.72e+06 44.2%	1			
•	[f: 21] loop at cpi.c: 31					
+) 	[f: 21] loop at cpi.c: 31 [f: 26] loop at cpi.c: 57	1.690106 43.4%				
+) +	[f: 21] loop at cpi.c: 31 [f: 26] loop at cpi.c: 57 ➡ 59: [f: -1918778817] printf	1.69e+D0-43.4% 2.0De+D4 0.5%				
+ + +	[f: 21] loop at cpi.c: 31 [f: 26] loop at cpi.c: 57	1.690106 43.4%	1.00e+04 0.3% 1.00e+04 0.3%	4.00e+04 100 %	1.00e+04 25.0%	

21


(intel

HPCToolKit - Depth View for cpi Backup

HPE		Window Help	hpctraceviewer: /nfs/fx/proj/coralhpctools/users/psuman/myBuilds/Hpctoolkit/intel/tests/cpi/cpi1/hpctoolkit-cpi-database		-	۵×
File	View	Window Help			,	
🚝 Tr	ace Vie	w	중 🗢 ÷ ÷ ← → ↑ ↓ M · · · · · · · · · · · · · · · · · ·	🗖 👔 Call Path		
Time	Range:	[0.0s, 46.53s] Rank Range: [0,3] Cross Hair: (16.915s, 1)		2	2 0	อ
				nain		
				MPI_Com	nm_rank	
				dlsym		
				■ _dlerror_r		
				■_dl_catch_		
				dlsym_do		
				do_sym		
				dl_lookup		
				do_lookup	o_x	
l en						
	_			_		
➡ D	epth Vi	ew 🚺 Summary View	B			
				Mini Map		

(intel) 22

HPCToolKit - Histogram for cpi Backup

intel

HPCToolKit - Flat View for xhpl_intel64 Backup

hpcvie				hpcviewer:	ver: xhpl_intel64 – 🗆		
File View Window Help							
Calling Context View 🔧 Callers View 🕅 🗗 Flat View 🔀							
🙊 🏚 🚯 🕅 🐺 😹 🗚 🖛							
Scope	PAPI_TOT_CYC:Sum (I)	PAPI_TOT_CYC:Sum (E)	PAPI_L2_TCM:Sum (I)	PAPI_L2_TCM:Sum (E)	CPUTIME (usec):Sum (I)	CPUTIME (usec):Sum (E)	
Experiment Aggregate Metrics	3.13e+09 100 %	3.13e+09 100 %	3.05e+07 100 %	3.05e+07 100 %	2.89e+07 100 %	2.89e+07 100 %	
[c:2] [f: 2] Load module /nfs/fx/proj/e	3.03e+09 96.7%	1.95e+09 62.5≷	3.05e+07 99.9%	7.85e+06 25.7%	3.44e+06 11.9%	7.12e+05 2.5%	
+ [c:5617] [f: 5617] ~ unknown-file~	3.03e+09 96.7%	1.95e+09 62.3%	3.05e+07 99.9%	7.69e+06 25.2%	3.44e+06 11.9%	6.11e+05 2.1≹	
+ [c:4808] [f: 4808] socksm.c	1.33e+07 0.4%	1.85e+06 0.1%	1.07e+06 3.5%	1.60e+05 0.5%	1.01e+05 0.3%	1.01e+05 0.3%	
+ [c:595] [f: 595] ch3u_request.c	5.20e+06 0.2≷	1.00e+04 0.0%	4.30e+05 1.4%				
+ [c:4674] [f: 4674] segment_pack	4.62e+D6 D.1%	1.00e+04 0.0%	3.90e+05 1.3%				
+ [c:3194] [f: 3194] initthread.c	3.29e+06 0.1%	1.90e+05 0.0%	3.00e+04 0.1%				
+ [c:5402] [f: 5402] HPL_dlamch.c	1.47e+06 0.0%	1.47e+D6 D.0%					
+ [c:3] [f: 3] _gemm_buffers.c	3.50e+05 0.0%	3.50e+05 0.0%					
+ [c:3891] [f: 3891] mpid_nem_init.	2.50e+05 0.0%	2.00e+04 0.0%					
+ [c:14] [f: 14] _xgemm.c	2.10e+05 0.0%	2.10e+05 0.0%					
+ [c:4099] [f: 4099] mpidi_pg.c	1.10e+05 0.0%						
+ [c:4088] [f: 4088] mpid_segment	9.00e+04 0.0%	9.00e+04 0.0%					
+ [c:3698] [f: 3698] mpid_datatype	6.00e+04 0.0%	1.00e+04 0.0%					
+ [c:5511] [f: 5511] proc_init_utils.c	6.00e+04 0.0%	6.00e+04 0.0%					
+ [c:3030] [f: 3030] dataloop.c	4.00e+04 0.0%						
+ [c:4678] [f: 4678] simple_pmi.c	4.00e+04 0.0%						
+ [c:6] [f: 6] _gemm_strategy.c	2.00e+04 0.0%	2.00e+04 0.0%					
+ [c:3078] [f: 3078] handlemem.c	2.00e+04 0.0%	2.00e+04 0.0%					
+ [c:5386] [f: 5386] typeutil.c	2.00e+04 0.0%						
+ [c:553] [f: 553] ch3u_handle_recv	1.00e+04 0.0%						
[c:39045] [f: 39045] Load module /n	1.65e+09 52.7≷	7.00e+04 0.0%	1.49e+07 48.8%		2.73e+07 94.4%	2.49e+07 86.0	
[c:39082] [f: 39082] Load module /u	5.95e+08 19.0≷	5.95e+08 19.0%	2.70e+05 0.9%	2.60e+05 0.9%	3.03e+06 10.5%	3.03e+06 10.5	
] [c:39039] [f: 39039] Load module ~@	1.03e+08 3.3%	1.03e+08 3.3%	2.00e+04 0.1%	2.00e+04 0.1%	2.55e+07 88.1%	1.02e+05 0.4	
] [c:39065] [f: 39065] Load module /u	3.79e+06 0.1%	3.59e+06 0.1≷	1.00e+05 0.3%	1.00e+05 0.3%	2.54e+07 87.8%		
E [c:39303] [f: 39303] Load module /u	1.30e+05 0.0%	1.30e+05 0.0%					
+ [c:39318] [f: 39318] Load module /n					5.06e+05 1.7%		

(intel

24

HPCToolKit - Depth View for xhpl_intel64 Backup

HPC	hpctraceviewer: /nfs/fx/proj/coralhpctools/builds/compilers/intel/ps15/composer_xe_2015.3.187/mkl/benchmarks/mp_linpack/bin_intel/intel64/hpctoolkit-xhpl_intel64-databa	se-18618 🗕 🗇 🗙
File View Window Help		
🚝 Trace View		Call Path
Time Range: [0.0s, 59.19s] Rank R	nge: [0,3] Cross Hair: (56.129s, 0)	0
		monitor_main_fence2
	9(1) 11(1)	■ main
		PMPI_Init
		MPIR_Init_thread
	8(1) 9(1)	MPID_Init
		PMI_Init_Ext
		■ iPMI_Init_Ext
7(1)	9(1)	PMI_Barrier
1121		iPMI_Barrier
		PMIU_parse_keyvals
		MPIU_Strncpy
Depth View 🚺 Summary Vie		3
		Mini Map

25

(intel)

HPCToolKit - Histogram for xhpl_intel64 Backup

hpcviewer: xhpl_intel64 – 🗆 🗙										
File View Window Help										
[]] [Histogram graph] monitor_main_fence2: PAPI_TOT_CYC (E) 🛛 🔝	PAPI_TOT_CYC (I)			- 8						
[Histogram graph] monitor_main_fence2: PAPI_TOT_CYC (E)										
4										
3										
b										
Сорона и страниција и страниц										
ž.										
1										
0										
-1E0 -9E-1 -8E-1 -7E-1 -6E-1 -5E-1 -4E		0E0 1E-1 2E-1 3E-1 etric Value	4E-1 5E-1 6E-1 7	7E-1 8E-1 9E-1 1E0						
	Calling Context View 🕅 📞 Callers View 🕂 Flat View									
Calling Context View 🔀 🔨 Callers View 抗 Flat View										
🕆 🕀 🍝 fee 🕅 🐄 🗛 🖬										
Scope PAPI_TOT_CYC:Sum (I) PAPI_TOT_CYC:Sum (E)	PAPI_L2_TCM:Sum (I) PAPI_L2_TCM:Sum (E)	CPUTIME (usec):Sum (I)		CPUTIME (usec):Sum (E)						
Experiment Aggregate Metrics 3.13e+09 100 % 3.13e+09 100 %	3.05e+07 100 % 3.05e+07 100 %			2.89e+07 100 %						
+ [c:4908] [f: 39055] monitor_main_fe 1.65e+09 52.7%	1.49e+07 48.8%	1.92e+06 6.6%								
+ [c:2] [f: 26544] main 1.38e+09-44.0%	1.56e+07 51.1%	1.52e+06 5.3%								
+ [c:4836] [f: 39041] Partial Call Paths 1.03e+08 3.3%	2.00e+04 0.1%	2.55e+07 88.1%								
[c:10266] [f: 39059] monitor_main_f 2.00e+04 0.0%										
			45M of 71M							

26

(intel