Linux perf_events status
Google Update

Stephane Eranian
Google

Petascale Tools Workshop 2015

Google

Agenda

New hardware support

New kernel features

Exploiting the uncore PMU on Intel servers
Q&A

Google

New hardware support

e Intel Haswell server (HSX) uncore in Linux v3.18
o memory controller, power, gpi, pcie, ...

e Intel Broadwell client (BDW, Xeon D) in Linux v4.1
o core PMU, power (RAPL), memory controller (IMC)

e Intel Broadwell SoC (Xeon D) uncore in Linux v4.2
o memory controller, power, pcie

e Intel SkyLake client in Linux v4.3
o core PMU, includes new LBR, PEBS features

Google

SkyLake new features
e Last Branch Buffer (LBR) has 32 entries (2x Haswell)

e Timed LBR : basic block cycle duration
o capture cycle duration between consecutive branches
o LBRrecord: 3x uint64 t now (50% increase)

e TSC is captured by PEBS

e PEBS precise Front-End sampling
o sample where I-TLB, I-CACHE misses occur

e Patches by Andi Kleen (Intel) posted on LKML for Linux v4.3

Google
LBR Call stack mode

e LBR records call branches and pops the last entry on return (Haswell)

©)

not work in certain corner cases; leaf call optimization

e Available in Linux v3.19

©)
O
O

advantage: no framepointer, no dwarf needed, no user regs/stack snapshots
gotcha: only work in user mode (hw bug)
new PERF SAMPLE BRANCH CALL STACK branch sample type

e perf tool integration

©)

O
©)
O

perf record --call-graph lbr -e cycles:uk... = user = lbr, kernel = FP
perf record --call-graph lbr -e cycles:k .. = error

perf record --call-graph lbr -e cycles:u ... = lbrcallstack
reporting: perf report and naviguate the callstacks

Google

Configurable Timestamp clock source

e Can configure the timestamp clock source per-event (Linux v4.0)
o synchronize with user level generated samples from runtimes
o was using kernel internal-only clock-source (sched clock())

e perf event attr.clockid = N, .use clockid =1
o N is a POSIX clock identifier (MONOTONIC, REALTIME, RAW, ...)

e Example: correlate with Java JVMTI JIT information
o JVMTIl agentuses clock gettime (CLOCK MONOTONIC)
o perf event attr.clockid = CLOCK MONOTONIC
o jit compiler events correlate automatically with perf samples

Google

Sampling interrupt machine state

e Capture register state at PMU interrupt (Linux v3.19)

©)

can specify which registers to capture per event

e \What is that useful for?

O
O

sampling value of registers at particular points
example: Am | calling memset () mostly with a size of 167

e Value Profiling: sample values of function arguments

O
O

©)

requires: reg-based calling convention (x86 64, ppc64, ...)

Intel x86: sample call instructions at target (1st instr of func) and save regs
Intel x86: use br_inst_retired:near_call +{pebs + skid |

$ perf record -I -e cpu/event=0xc4d,umask=0x2/p
visualization: perf report -D (for now),

Google

Monitoring L3 cache occupancy

e Intel Cache Monitoring Technology (CMT)
o Xeon specific feature, available on Haswell server
o monitor L3 cache occupancy per process

e Available in Linux v4.2
o can operate in per-thread and per-cpu mode incl. containers (cgroup)

o new PMU: intel cqm, newevent: 11c occupancy
o perf stat -I 1000 -e intel cgm/llc occupancy/ my program

e Cache Allocation Technology (CAT)
o enforce limits on L3 cache space (ways) available
o patches posted on LKML by Intel

Google

Cache monitoring examples (Haswell server)

$ perf stat -e intel cgm/llc occupancy/ -I 1000 ./triad

time counts unit events
1.003202964 47185920.00 Bytes intel cgm/llc occupancy/
2.006316523 47480832.00 Bytes intel cgm/llc occupancy/

$ taskset -c 0 triad & taskset -c 18 triad &

$ # perf stat -a -e intel cgm/llc occupancy/ -I 1000 sleep 100

it time counts unit events
1.003116711 94371840.00 Bytes intel cgm/llc occupancy/
2.006269988 94371840.00 Bytes intel cgm/llc occupancy/

Google
TSC, APERF, MPERF exposed!

e Provide a way to add free-running counters support
o free-running: non-stop, no-interrupt, fixed register

e Patch adds TSC, APERF, MPERF
o APERF:increments in proportion to actual performance
o MPERF: increments in proportion to a fixed frequency
o ratio APERF/MPERF architecturally defined

e New freq PMU with new events: tsc, aperf, mperf

o no sampling, no vmm
$ perf stat -a freq/tsc/, freq/aperf/, freqgq/mperf/ -I 1000 sleep 10

e Just a proposal on LKML (Intel, Andy Lutomirski)

Google
Exploiting uncore PMUs better in servers

e [ntel Xeon server have lots of PMUs
o SNB-EP: 20, IVB-EP: 30, HSW-EP: 40

e Can monitor I/O, memory, power, inter-socket comm

88
\

Core0

Cbox0

LLC

e Each PMU has generic counters (+ some fixed)

Core1

Cbox1

LLC

e Only support system-wide measurements

e No sampling mode in perf_events Coret

Cbox10

LLC

o no interrupt (oftentimes)

o shared resources : cannot identify core Core 1
o only sees physical addresses

Cbox11

LLC

e Kernel releases with support
o SNB-EP: v3.6, IVB-EP: v3.10, HSW-EP: v3.18 Aad

DDR

HA

IMC

IVB-EP

~
~

~

R2PCle

110

b

PCU

UBOX

LLC

Cbox12

Core12

LLC

Cbox13

Core13

LLC

Cbox22

Core22

LLC

Cbox23

Core23

DDR

Google

PCle bandwidth (Intel lvyTown)

e L3 coherency agent PMU (Cbox) (uncore_cbox_*)
o one Cbox agent per physical core
o use TOR_INSERTS event + opcode match PCle opcodes

$ perf guncore -M pcie bw

e
Socket0 | Socketl
e e e e
PCIe Bandwidth | PCIe Bandwidth |
PCIe->RAM,QPI RAM,QPI->PCIe| PCIe->RAM,QPI RAM,QPI->PCIe|
MB/s MB/s | MB/s MB/s |
-
148.20 3.61 0.00 0.00
139.24 8.78 0.00 0.00

Google

Memory bandwidth (lvyTown)

e Integrated Memory Controller (IMC) PMU (uncore_imc_*)
o CAS_COUNT event to break down reads vs. write

e per-socket view useful to detect imbalance

$ perf guncore -M mem bw

B -
¥ Socket0 | Socketl |
B
RAM Bandwidth | RAM Bandwidth |
Wr Rd | Wr Rd |
MB/s MB/s | MB/s MB/s |
B

Google

QuickPath Interconnect bandwidth

e QPIPMU (uncore_qgpi_*)
o RXL_FLITS and TXL_FLITS events

e detect remote socket accesses
e detect workload imbalance

$ perf guncore -M gpi_ bw

B
Socket0 | Socketl |
gy
QPI Bandwidth | QPI Bandwidth |
RAM,PCIe->QPI QPI->RAM,PCIe| RAM,PCIe->QPI QPI->RAM,PCIe|
MB/s MB/s | MB/s MB/s |
gy

9.79 5.31 5.31 9.79

Google

C-state monitoring

e Power Controller Unit (PCU) PMU (uncore_pcu)
o POWER_STATE_OCCUPANCY event

e useful to detect core utilization
e power saving opportunities

$ perf guncore -M cstate

e
Socket0 | Socketl |
Sy
C-states | C-states |
Cores Cores Cores| Cores Cores Cores|
in CO/C1 in C3 in C6/C7| in CO/C1l in C3 in C6/C7|
Sy

Google

uncore view

e combining metrics to get a global view
o question: Am | accessing remote memory?
o perf guncore tool: mem_bw + qpi_bw

$ perf guncore -M mem bw,qpi_bw

o o e
Socket0 | Socketl |
e e
RAM Bandwidth | QPI Bandwidth | RAM Bandwidth | QPI Bandwidth |
Wr Rd| RAM,PCIe->QPI QPI->RAM,PCIe| Wr Rd| RAM,PCIe->QPI QPI->RAM,PCIe|
MB/s MB/s | MB/s MB/s | MB/s MB/s| MB/s MB/s |
e

6.75 19.40 6.57 4.85 8.97 20.78 4.84 6.58

5.91 21.69 9.71 3.43 9.07 17.78 3.43 9.71

4.46 17.14 5.68 2.29 6.39 15.48 2.29 5.68

e Many more metrics possible, consult uncore programming guide

Google

Intel Processor Tracing (PT)

e Hardware tracing support introduced with Broadwell processors
o can trace control flow change in a compressed trace format

e kernel support via perf_events interface (Linux v4.1)
o a lot of extensions to the sampling buffer (auxiliary buffer)
o appears as new PMU: intel pt

e perftool support not quite complete in Linux 4.2
© perf record -e intel pt//u 1s
O perf report

Google

Miscellaneous progress

e SandyBridge, lvyBridge, Haswell Hyperthreading counter corruption bug workaround
o cross HT counter corruption with events 0xd0, Oxd1, 0xd2
o sophisticated kernel workaround developed by Google
o patch integrated into v4.1 (fixed in 4.2)

e perf JIT code profiling support

vastly benefit from the per-event clock source support
rebased to 3.19

still not merged in as of 4.3

needs some more cleanups based on LKML feedback

(@)

O O O

e |IBM pushing Power8 Nest (uncore) support on LKML
o Link, Memory bandwidth
o Power

Google

Conclusions

e (Good progress this year
o better set of features
o stabilization and bug fixes

e SkyLake PMU looks very good

e Intel Cache Occupancy Monitoring is in
e Uncore PMU provides a wealth of useful information

e Intel Processor Trace is coming very soon now

Google

References

Intel official event tables
o https://download.01.org/perfmon/

Intel Cache Monitoring & Cache Allocation Technologies
o 1A32 Software Developer’s manual (SDM) Vol 3B Chapter 17
o CAT patch on LKML

TSC/APERF/MPEREF patch form LKML

Intel Processor Trace (PT) support (Linux 4.1 + Broadwell processor)
o Intel contribution (Adrian Hunter, Andi Kleen, Alexander Shishkin)
o until fully merged, needs custom perf tool available on GitHUB here

Intel uncore PMU guides
o links to all guides available here

IBM Nest patches

https://download.01.org/perfmon/
https://download.01.org/perfmon/
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
https://lkml.org/lkml/2015/6/12/558
https://lkml.org/lkml/2015/6/12/558
https://lkml.org/lkml/2015/7/20/669
https://lkml.org/lkml/2015/7/20/669
https://github.com/virtuoso/linux-perf
https://software.intel.com/en-us/blogs/2014/07/11/documentation-for-uncore-performance-monitoring-units
https://lkml.org/lkml/2015/8/3/75
https://lkml.org/lkml/2015/8/3/75

