PAPI-NUMA: Middleware to
Support Hardware Sampling

IVONNE LOPEZ AND SHIRLEY MOORE
UNIVERSITY OF TEXAS AT EL PASO
VINCE WEAVER
UNIVERSITY OF MAINE

SCALABLE TOOLS WORKSHOP

AUGUST 4, 2015
1




Motivation

= Modern architectures have complex shared cache and memory
hierarchies with non-uniform memory access (NUMA).

= Sub-optimal data/thread placement resulting in non-local data
accesses can seriously degrade performance.

= Application developers need tools to help diagnose NUMA
performance issues.

= Tool developers have to implement low-level access to
sampling data

o Redundant effort

o Measurement part of tool is not released or not usable on production machines.



NUMA




NUMA Example: STREAM on
Stampede with 16 threads

With first touch:

Function Best Rate MB/s Avg time Mintime Max time
Copy: 44840.9 0.005951 0.003568 0.017847
Scale: 47127.0 0.004679 0.003395 0.012240
Add: 528499 0.005304 0.004541 0.011292
Triad: 53368.3 0.005225 0.004497 0.010981
Without first touch:

Function Best Rate MB/s Avgtime Mintime Max time
Copy: 7387.9 0.023044 0.021657 0.026183
Scale: 7259.9 0.023979 0.022039 0.028078
Add: 10768.7 0.025722 0.022287 0.030115
Triad: 10942 .4 0.026642 0.021933 0.034551



Hardware Counters

= Model Specific Registers (MSRs) that count
hardware events (e.g., cycles, instructions retired,
cache misses, different types of operations)

= Data collection methodologies
o Counting: count how many times a given event occurs

> Sampling: sample event and correlate with other
information (e.g., program counter, data address, access
latency, data source)



PAPI

= The Performance Application Programming Interface (PAPI)
aims to provide the tool designer and application engineer with a
consistent interface and methodology for use of the
performance counter hardware found in most major
Microprocessors.

= PAPI enables software engineers to see, in near real time, the
relation between software performance and processor events.

= |t is being widely used to collect low level performance metrics
(e.g. instruction counts, clock cycles, cache misses) of computer
systems running UNIX/Linux operating systems.



Software Stack for NUMA
Sampling

Performance analysis tools
(e.g., HPCToolkit-NUMA, MemAxes, TAU)

PAPI-NUMA

Linux perf_event
Platform-specific Interface
(e.g., Intel PEBS-LL, AMD IBS)
Hardware Performance Counters




Linux perf event

= Linux kernel infrastructure that exposes hardware and software events
° Provides an abstraction of performance events to user space

° Provides a flexible interface for architecture-specific usage

= Exposed through perf _event_open() system call
° int perf_event_open(struct perf _event_attr *attr, pid_t pid, int cpu,
int group_fd, unsigned long flags);

o perf_event_attr struct is populated before the call
° returns a file descriptor

= Different counting and sampling configurations
= Counted events accessed through read()

= Sampled events accessed through mmap()



PAPI-NUMA Interface

= Goal: Provide a stable sampling interface to which tool
developers can program

= PAPI-NUMA routines

o PAPl_sample_init(): sets up perf_event_attr structure and calls
perf _event _open (leaves sampling disabled)

° PAPI_sample_start(): enables sampling
o PAPl_sample_stop(): disables sampling



PAP| sample init()

int PAPI_sample_init(

int EventSet,
int EventCode,
int sample_type,
int sample_period,
int threshold, /* user-defined threshold for latency events */
PAPI_sample_handler_t handler);
typedef void PAPI_sample_handler_t(int signum, siginfo_t *info,

void *ucontext);



Getting Per-thread Samples

= Highly desirable to obtain per-thread samples, since
multithreaded codes may need to be analyzed for NUMA effects.

= Remote memory access on a NUMA system can degrade
performance.

= Samples are collected only for the calling process and thread.

= perf_event kernel code specifically blocks getting mmap
samples if inherit is enabled.

= Solution: Set up a counter on each logical CPU, each with its
own mmap buffer.

= Currently requires kernel patch to propagate per-thread
samples



Modified PAPI sample init()

int PAPI_sample_init ( Client code
int EventSet, > Sets up and associates mmap
int EventCode, buffer with each file descriptor

int sample_type,

int sample_period,

int threshold,
PAPI_sample_handler_t handler,

o Calls PAPI_sample_start(fd) for
each file-descriptor to start per-
thread sampling

int *fds): ° |Interrupt handler checks which file
descriptor is passed in and reads
 Returns file descriptor from mmap buffer for that file
perf _event _open() for each logical descriptor
CPU



Utility Code

= perf_mmap_read()
e Parses the mmap buffer

* Determines type of record
* For PERF_RECORD_SAMPLE

*  Prints values of fields that were requested by PAPI_sample_init()

= Example interrupt handler
* Determines appropriate mmap buffer

e Calls perf_mmap_read() on that buffer
* Counts samples



Sample Results

« From instrumented OpenMP version of STREAM run
with 8 threads on Stampede node

PERF_SAMPLE_IP, IP: 4012c0

PERF_SAMPLE_TID, pid: 3144, tid: 3144
PERF_SAMPLE_WEIGHT, Weight: 7
PERF_SAMPLE_DATA_SRC, Raw: 68100142

Load Hit L1 cache No snoop Hit Level 1 TLB Level 2 TLB

PERF_SAMPLE_IP, IP: 401278

PERF_SAMPLE_TID, pid: 3144, tid: 3167
PERF_SAMPLE_WEIGHT, Weight: 28
PERF_SAMPLE_DATA_SRC, Raw: 68100242

Load Hit Line fill buffer No snoop Hit Level 1 TLB Level 2 TLB



How to Best Help Tool
Developers?

= How to provide results?

> Provide common PAPI-specific generic sampling interface and have all
components map their samples to it

o PAPI would need to be constantly updated to extend and handle all of the various low-level
changes.

o Dump raw data for the user/tool to interpret

> Requires additional user/tool code to interpret the data (could be provided as PAPI utility code)
o Dump data in Linux perf tool format
o All of the above?

= Survey tool developers to determine their requirements
= |nvestigate usefulness of sampling data besides NUMA data



Conclusions and Future Work

= |nitial prototype is a low-level interface intended for performance tool
developers.

= Plan to make our implementation available to tool developers to get
feedback

= Plan to design a higher-level interface that will not require the user to
provide the signal handler nor parse the mmap buffer.

= Having per-thread sampling of memory events available on stock
Linux kernels through the PAPI interface will improve tool/user
accessibility to NUMA data.

= Presented at XSEDE15, considerable interest from audience



Acknowledgments

= This work is partially supported by the

* Department of Energy SciDAC program under grant number DE-
SC00006722

* Air Force Office of Scientific Research under AFOSR Award No.
FA9550-12-1-0476




