
OMPT Breakout Report

Local:
Andreas Knuepfer (TU Dresden), Leonardo Fialho (TACC),

Kevin Huck (Oregon), John Mellor-Crummey (Rice),  
Martin Schulz (LLNL),  

Remote:
Tim Cramer (RWTH Aachen), John Del Signore (Rogue
Wave), Alexandre Eichenberger (IBM), Ignacio Laguna
(LLNL), Daniel Lorenz (TU Darmstadt), Joachim Protze

(RWTH Aachen), Mark Schlueter (JSC)

Scalable Tools Workshop August 2015

Agenda
Review several aspects of OMPT design

• Task Dependence Tracking
• TARGET callback events
• TARGET device tracing
• TARGET inquiry functions

2

Task Dependence Tracking

• Report task dependences with a separate callback rather than as
part of explicit task creation
– avoid having assembling information that a tool may not want

• Report task dependences on variables and in/out/inout
– replace version that reports dependences between task pairs

3

/* task dependences */
typedef void (*ompt_task_dependence_callback_t) (
 ompt_task_id_t task_id, /* ID of task */
 ompt_task_dependence_t *dependence_vector,
 int vector_length
);

typedef struct {
 void * base_addr;
 size_t len;
 struct { bool in:1; bool out:1; } flags;
} ompt_task_dependence_t

TARGET Device Tracing
• Goal: allow OMPT tools to gather and report information reported

in a native event trace without full knowledge of a target device
• Motivation: NVIDIA’s rich CUPTI activity API can report many

events
• New design 
 

4

ompt_native_summary_t *ompt_get_record_native_summary( 
 void *native_record 
)

typedef struct {

 ompt_native_kind_t kind // info or event 

 const char *type 
 uint64_t start_time // -1 if not available 
 uint64_t end_time // -1 if not available

 int hwid // -1 if not available

} opt_native_summary_t

Next Steps
• Revise document and circulate to tools committee
• Committee to review coverage of OpenMP Standard

• missing support for CANCEL
• Begin process of offering OMPT to standards committee

5

Details Follow

6

TARGET Callback Events

• Revise document to indicate that TARGET data and TARGET map
“end” event callbacks occur when execution finishes “on the host”
– asynchronous execution on a device must be allowed to continue

after the host signals the end event
• Replace “data_map_id” in TARGET map callback with pointers to

host and device addresses
– advantages

• no management of map ids
• useful for correctness checking

• Add new optional event “ompt_data_map_finished” to indicate end
of asynchronous map operation

7

Associating TARGET Callbacks with Code

• Current design for TARGET callbacks (target, target data, target
data map) reports pointer to outlined function
– may not exist in some implementations

• Revised design: return an opaque handle for code
– may represent an object that contains device code

8

TARGET Inquiry Functions

• Revisit design for obtaining device timestamps for synchronizing
host and device clocks
– check what CUPTI provides to make sure design is practical  
 

9

