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Agenda
Review several aspects of OMPT design 

• Task Dependence Tracking  
• TARGET callback events 
• TARGET device tracing 
• TARGET inquiry functions
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Task Dependence Tracking

• Report task dependences with a separate callback rather than as 
part of explicit task creation 
– avoid having assembling information that a tool may not want 

• Report task dependences on variables and in/out/inout  
– replace version that reports dependences between task pairs
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/* task dependences */ 
typedef void (*ompt_task_dependence_callback_t) ( 
  ompt_task_id_t task_id,       /* ID of task      */ 
  ompt_task_dependence_t *dependence_vector, 
  int vector_length 
); 

typedef struct { 
     void *               base_addr; 
     size_t               len; 
     struct { bool   in:1; bool  out:1; } flags; 
} ompt_task_dependence_t 



TARGET Device Tracing
• Goal: allow OMPT tools to gather and report information reported 

in a native event trace without full knowledge of a target device 
• Motivation: NVIDIA’s rich CUPTI activity API can report many 

events 
• New design 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ompt_native_summary_t *ompt_get_record_native_summary( 
    void *native_record 
)


typedef struct {

  ompt_native_kind_t kind // info or event 

   const char *type 
   uint64_t start_time // -1 if not available 
   uint64_t end_time // -1 if not available


    int hwid // -1 if not available

} opt_native_summary_t



Next Steps
• Revise document and circulate to tools committee 
• Committee to review coverage of OpenMP Standard 

• missing support for CANCEL 
• Begin process of offering OMPT to standards committee
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Details Follow
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TARGET Callback Events

• Revise document to indicate that TARGET data and TARGET map 
“end” event callbacks occur when execution finishes “on the host” 
– asynchronous execution on a device must be allowed to continue 

after the host signals the end event 
• Replace “data_map_id” in TARGET map callback with pointers to 

host and device addresses 
– advantages 

• no management of map ids 
• useful for correctness checking 

• Add new optional event “ompt_data_map_finished” to indicate end 
of asynchronous map operation
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Associating TARGET Callbacks with Code

• Current design for TARGET callbacks (target, target data, target 
data map) reports pointer to outlined function 
– may not exist in some implementations 

• Revised design: return an opaque handle for code 
– may represent an object that contains device code
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TARGET Inquiry Functions

• Revisit design for obtaining device timestamps for synchronizing 
host and device clocks 
– check what CUPTI provides to make sure design is practical  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