

ution

Exec

Before

ution

0

SD-Dyninst Static-Dynamic Malware Analysis

The Malware Binary

Why is analyzing malware hard?

- Packed code: the binary's malicious code is not generated until runtime Self-modifying code: overwrites can change the code's behavior
- Obfuscated code: what code is statically visible is hard to analyze
- These techniques are pervasive! 90% of malware is analysis-resistant

Unpacking loop

> An unpacking loop decompresses or decrypts the hidden code at runtime

Code that will be overwritten

➤ The code that is statically present may be modified before or after it executes

Hidden code bytes

Hidden code is compressed or encrypted and looks like random data

File

fl bl fb bb lf 67 83 c0 30 42 3d f0 2d

Dyninst Analysis of Binary

Memory image

- > At runtime the unpacking loop unpacks hidden code into the address space
- > But where? We want to find the code before it executes

Modified code

The program's static code has been replaced by modified code

Unpacked code

- > The code must be unpacked before it can be executed, though it could be unpacked a piece at a time
- At some point a control transfer instruction passes execution to an unpacked code region

Control Flow Graph Instrumentation

ation

jmp 0x401000

Instrument-

ation

call ptr[edi

We find new code by instrumenting control transfers to determine whether the target address is in a new code region

Modified code

We track code writes by writeprotecting code pages and capturing the resulting exceptions

Runtime parsing

- Dyninst parses unpacked code regions just before they execute
- Candidate control transfers to other unpacked regions are instrumented

Analyzing Conficker

Conficker generates its malicious code at runtime; we use Dyninst to analyze its static and dynamic code.

Code coverage of basic blocks

We efficiently obtain code coverage information for Conficker A by instrumenting all of its basic blocks and removing instrumentation that has executed.

Stack traces at points of interest

We monitored communications code by instrumenting functions in the Windows socket library (e.g., bind, send, select) to walk the call stack.

