Before Execution

During Execution

n SD-Dyninst 0%

' \
" : - LWL
INSI Static-Dynamic Malware Analysis tryees WISCONSIN

The Malware Binary Dyninst Analysis of Binary Analyzing Conficker

Control Flow Graph?

R Conficker generates its malicious code at runtime; we use

Static parsing Dyninst to analyze its static and dynamic code.

Why iIs analyzing malware hard?

» Packed code: the binary’s malicious code is not generated until runtime

» Dyninst initially generates a CFG
for all visible code

» Self-modifying code: overwrites can change the code’s behavior
» Obfuscated code: what code is statically visible is hard to analyze
» These techniques are pervasive! 90% of malware is analysis-resistant

W

Code coverage of basic blocks

/ Obfuscated control \ We el_‘f|C|entI_y obtain code covergge_lnformatlon for Conficker A by instrumenting
all of its basic blocks and removing instrumentation that has executed.

transfer analysis

FENEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEENENg
)

a4 call ptr[edi] T .
Unpacking loop > We monitor two types of control] F :
» An unpacking loop decompresses or 7 RIS IS e o ';; z 5 3
9 decrypts the hidden code at runtime jmp 0x401000 \Q « Indirect transfers since we\ p ; o .
EEEEEEEEEEEEESpEEEEEEEEEEEEEEEEEEEEEE Can’tstatica”y determine '::

e
Code that will be overwritten

where they go

r
Hi
H
1

H IIIHBﬂ

Illllug
i"un” %
n B
I
]
FH
Flgg g

/
s
= Static transfers into empty

or uninitialized regions /
J

ret¥agg

gl
3
1]

e ¥ | BES |
L T

a'II

» The code that is statically present may
% be modified before or after it executes

-

]
i

]

g
Tpg

Address 0x401000:

1
i

Iy

(TR ()
by ghpiniugy B

7a 77 Oe 20 €9 3d e0 09 e8 68 cO 45 be
79 5e 8078908 27 cO0 73 1lc 88 48 6a d8

I
st [II'

lnl

(33

Higse

[N |

By
Py

FEgEn
e
gl iy
i

there’s nothing

I

i

A s
Bl

H
HH

Hidden code bytes oo oA RN o v 2o

al 37 1b 2f b9 51 84 02 1c 22 6@ &

LS
\

Illi

here at startup!

-

i
I
i
g
htily

» Hidden code is compressed or
< encrypted and looks like random data

f1 bl fb bb 1f 67 83 c0 30 42 3d f0 2d

.IIIIIIIIIIIIIIIIIIIII

obfuscated library
= calls are resolved

\dynamically /

Miasrnrtegg

i

gll‘
Brgpi bpsgn
Fug

| §
FHERR
E
e
BEEE
(T LLd

a4 p

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.
| |

4 Control Flow Graph

0x41F1CD

gt
¥

Instrumentation

i
]
1)

Memory image

InterlockedExchangeg 0x41F1DE

Address Space

i

» We find new code by

» At runtime the unpacking loop unpacks

pHiggppagtt

./

hidden code into the address space : Instrum_entlng control transfers to Tz
_ : determine whether the target pre-unpack code 2\ (e Conficker croates
> But whgre? We want to find the code : l\\ address is in a new code region) ; z T e
before it executes A e tramont . / egend i A thread y
\ / . [2;1; we 4 P executed basic block A AN ———)|
S o : O A . N ook yn-executed basic block iR)
4 . cnp eax, Oxdaicss : Modified code -
Modified code jnz .loop a ‘l' - control flow edge S
. instrument- - : A
» The program’s static code has been 7a 77 Oc 20 €9 3d e0 09 e8 68 cO 45 be E ’? . > We tra(.:k code writes by Rl
replaced by modlfied Code 79 5e 80783908 27 cO0 73 1lc 88 48 6a d8 : . : prOteCtIng COde pages and
_ e, - - 83 AL ABCo o 2 o : jmp 0x401000 - capturing the resulting exceptions - -
5b 95 =5 c2 16 80°14 8a 14 26 :3 t.3> 83 LS EEEEEEEEEEEEER IIIIIIIIIIIIIIIIIIIII. / StaCk traces at pOIntS Of Interest
al 37 1b 2f b9 51 84 02 1c 22 8& 68 01
de a2 87 ad £3 07 51 d2 d2 02 B8 A8 b5 QEEEEE NN EEEEEEENEEEEEEEEEEEENEEEEEEEER
/ SDIRepet < oo We monitored communications code by instrumenting functions in the Windows

Unpacked code socket library (e.g., bind, send, select) to walk the call stack.

Runtime parsing

» The code must be unpacked before it
can be executed, though it could be
unpacked a piece at a time

» Dyninst parses unpacked code Conficker’s communications thread at select

regions just before they execute Frame pc=0x7c901231 func: DbgBreakPoint at 7x901230 [Win DLL]

> Candidate control transfers to Frame pc=0x10003c83 func: DYNbreakPoint at 0x100003c70 [instrument.]

» At some point a control transfer AV - _ Frame pc=0x100016f7 func: DYNstopThread at 0x100001670 [instrument.]
Instruction passes execution to an : other unpacked regions are Frame pc=0x7lab2dc0 func: select at 0x71ab2dcO [Win DLL]
Kunpacked code region / . \ Instrumented / Frame pc=0x401£34 func: nosymlf£058 at 0x41£f058 [Conficker]
-

