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Control Flow Graph?

R Conficker generates its malicious code at runtime; we use

Static parsing Dyninst to analyze its static and dynamic code.

Why iIs analyzing malware hard?

» Packed code: the binary’s malicious code is not generated until runtime

» Dyninst initially generates a CFG
for all visible code

» Self-modifying code: overwrites can change the code’s behavior
» Obfuscated code: what code is statically visible is hard to analyze
» These techniques are pervasive! 90% of malware is analysis-resistant
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Code coverage of basic blocks

/ Obfuscated control \ We el_‘f|C|entI_y obtain code covergge_lnformatlon for Conficker A by instrumenting
all of its basic blocks and removing instrumentation that has executed.

transfer analysis
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Code that will be overwritten
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» The code that is statically present may
% be modified before or after it executes
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Address 0x401000:
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» Hidden code is compressed or
< encrypted and looks like random data
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4 Control Flow Graph

0x41F1CD

gt
¥

Instrumentation

i
]
1)

Memory image

InterlockedExchangeg 0x41F1DE

Address Space
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» We find new code by

» At runtime the unpacking loop unpacks
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_ : determine whether the target pre-unpack code 2\ (e Conficker croates
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/ SDIRepet < oo We monitored communications code by instrumenting functions in the Windows

Unpacked code socket library (e.g., bind, send, select) to walk the call stack.

Runtime parsing

» The code must be unpacked before it
can be executed, though it could be
unpacked a piece at a time

» Dyninst parses unpacked code Conficker’s communications thread at select

regions just before they execute Frame pc=0x7c901231 func: DbgBreakPoint at 7x901230 [Win DLL]

> Candidate control transfers to Frame pc=0x10003c83 func: DYNbreakPoint at 0x100003c70 [instrument.]

» At some point a control transfer AV - _ Frame pc=0x100016f7 func: DYNstopThread at 0x100001670 [instrument. ]
Instruction passes execution to an : other unpacked regions are Frame pc=0x7lab2dc0 func: select at 0x71ab2dcO [Win DLL]
Kunpacked code region / . \ Instrumented / Frame pc=0x401£34 func: nosymlf£058 at 0x41£f058 [Conficker]
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